1
|
Sifontes-Rodríguez S, Escalona-Montaño AR, Sánchez-Almaraz DA, Pérez-Olvera O, Aguirre-García MM. Detergent-free parasite transformation and replication assay for drug screening against intracellular Leishmania amastigotes. J Microbiol Methods 2023; 215:106847. [PMID: 37871728 DOI: 10.1016/j.mimet.2023.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Leishmaniasis is an infectious disease caused by protozoan species in the genera Leishmania and Endotrypanum. Current antileishmanial drugs are limited due to adverse effects, variable efficacy, the development of resistant parasites, high cost, parenteral administration and lack of availability in endemic areas. Therefore, active searching for new antileishmanial drugs has been done for years, mainly by academia. Drug screening techniques have been a challenge since the intracellular localization of Leishmania amastigotes implies that the host cell may interfere with the quantification of the parasites and the final estimation of the effect. One of the procedures to avoid host cell interference is based on its detergent-mediated lysis and subsequent transformation of viable amastigotes into promastigotes, their proliferation and eventual quantification as an axenic culture of promastigotes. However, the use of detergent involves additional handling of cultures and variability. In the present work, cultures of intracellular amastigotes were incubated for 72 h at 26 °C after exposure to the test compounds and the transformation and proliferation of parasites took place without need of adding any detergent. The assay demonstrated clear differentiation of negative and positive controls (average Z´ = 0.75) and 50% inhibitory concentrations of compounds tested by this method and by the gold standard enumeration of Giemsa-stained cultures were similar (p = 0.5002) and highly correlated (r = 0.9707). This simplified procedure is less labor intensive, the probability of contamination and the experimental error are reduced, and it is appropriate for the automated high throughput screening of compounds.
Collapse
Affiliation(s)
- Sergio Sifontes-Rodríguez
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080 Tlalpan, Mexico
| | - Alma Reyna Escalona-Montaño
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080 Tlalpan, Mexico
| | - Daniel Andrés Sánchez-Almaraz
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080 Tlalpan, Mexico
| | - Ofelia Pérez-Olvera
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080 Tlalpan, Mexico
| | - María Magdalena Aguirre-García
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080 Tlalpan, Mexico.
| |
Collapse
|
2
|
Davies-Bolorunduro O, Osuolale O, Saibu S, Adeleye I, Aminah N. Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects. Heliyon 2021; 7:e07710. [PMID: 34409179 PMCID: PMC8361068 DOI: 10.1016/j.heliyon.2021.e07710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Revived analysis interests in natural products in the hope of discovering new and novel antileishmanial drug leads have been driven partially by the increasing incidence of drug resistance. However, the search for novel chemotherapeutics to combat drug resistance had previously concentrated on the terrestrial environment. As a result, the marine environment was often overlooked. For example, actinomycetes are an immensely important group of bacteria for antibiotic production, producing two-thirds of the known antibiotics. However, these bacteria have been isolated primarily from terrestrial sources. Consequently, there have been revived efforts to discover new compounds from uncharted or uncommon environments like the marine ecosystem. Isolation, purification and structure elucidation of target compounds from complex metabolic extract are major challenges in natural products chemistry. As a result, marine-derived natural products from actinomycetes that have antileishmanial bioactivity potentials have been understudied. This review highlights metagenomic and bioassay approaches which could help streamline the drug discovery process thereby greatly reducing time and cost of dereplication to identify suitable antileishmanial drug candidates.
Collapse
Affiliation(s)
- O.F. Davies-Bolorunduro
- Microbiology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
- Postdoc Fellow Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - O. Osuolale
- Applied Environmental Metagenomics and Infectious Diseases Research Group (AEMIDR), Department of Biological Sciences, Elizade University, Ilara Mokin, Nigeria
| | - S. Saibu
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - I.A. Adeleye
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - N.S. Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo, Surabaya, 60115, Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga, Indonesia
| |
Collapse
|
3
|
Alam MN, Chakraborti S, Paik D, Bagchi A, Chakraborti T. Functional attribution of LdISP, an endogenous serine protease inhibitor from Leishmania donovani in promoting infection. Biochimie 2018; 147:105-113. [PMID: 29366936 DOI: 10.1016/j.biochi.2018.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/16/2018] [Indexed: 01/16/2023]
Abstract
Leishmaniasis, a parasitic disease caused by unicellular eukaryotic protozoa of the genus Leishmania, affects more than 12 million people worldwide. Events of leishmaniasis are based on the infection of the mammalian host, precisely macrophages, where both host and parasite derived proteases and endogenous inhibitors are significant. Pathogen derived protease inhibitors have generated considerable interest as they often act as an agent promoting infection and parasitic survivability. An endogenous serine protease inhibitor from Indian strain of Leishmania donovani was previously identified by our group and named as LdISP. It has been found to inhibit neutrophil elastase (NE), responsible for natural inflammation process. However, LdISP's role in progression of infection or the proteomics based structural exposition has not been explored. The present study is aimed to localize and validate the potential role of LdISP in infectivity. We found that LdISP localized endogenously and treatment of infected host cells with LdISP curbs ROS and NO production. Additionally, in silico studies are carried out to predict the putative amino acid residues of LdISP involved in the inhibition process. Taken together, our results demonstrate that LdISP eventually exerts a pronounced role in L. donovani infection.
Collapse
Affiliation(s)
- Md Nur Alam
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Dibyendu Paik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
4
|
Lima-Junior DS, Mineo TWP, Calich VLG, Zamboni DS. Dectin-1 Activation during Leishmania amazonensis Phagocytosis Prompts Syk-Dependent Reactive Oxygen Species Production To Trigger Inflammasome Assembly and Restriction of Parasite Replication. THE JOURNAL OF IMMUNOLOGY 2017; 199:2055-2068. [PMID: 28784846 DOI: 10.4049/jimmunol.1700258] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/08/2017] [Indexed: 01/01/2023]
Abstract
Protozoan parasites of the genus Leishmania are the causative agents of Leishmaniasis, a disease that can be lethal and affects 12 million people worldwide. Leishmania replicates intracellularly in macrophages, a process that is essential for disease progression. Although the production of reactive oxygen species (ROS) accounts for restriction of parasite replication, Leishmania is known to induce ROS upon macrophage infection. We have recently demonstrated NLRP3 inflammasome activation in infected macrophages, a process that is important for the outcome of infection. However, the molecular mechanisms responsible for inflammasome activation are unknown. In this article, we demonstrate that ROS induced via NADPH oxidase during the early stages of L. amazonensis infection is critical for inflammasome activation in macrophages. We identified that ROS production during L. amazonensis infection occurs upon engagement of Dectin-1, a C-type lectin receptor that signals via spleen tyrosine kinase (Syk) to induce ROS. Accordingly, inflammasome activation in response to L. amazonensis is impaired by inhibitors of NADPH oxidase, Syk, focal adhesion kinase, and proline-rich tyrosine kinase 2, and in the absence of Dectin-1. Experiments performed with Clec7a-/- mice support the critical role of Dectin-1 for inflammasome activation, restriction of parasite replication in macrophages, and mouse resistance to L. amazonensis infection in vivo. Thus, we reported that activation of the Dectin-1/Syk/ROS/NLRP3 pathway during L. amazonensis phagocytosis is important for macrophage restriction of the parasite replication and effectively accounts for host resistance to Leishmania infection.
Collapse
Affiliation(s)
- Djalma S Lima-Junior
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Tiago W P Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil; and
| | - Vera L G Calich
- Department of Immunology, Institute of Biomedical Sciences, São Paulo University, São Paulo 05508-900, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil;
| |
Collapse
|
5
|
Badirzadeh A, Taheri T, Taslimi Y, Abdossamadi Z, Heidari-Kharaji M, Gholami E, Sedaghat B, Niyyati M, Rafati S. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites. PLoS Negl Trop Dis 2017; 11:e0005774. [PMID: 28708893 PMCID: PMC5529023 DOI: 10.1371/journal.pntd.0005774] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022] Open
Abstract
Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite proliferation and required for infection in mice. ARG activity can be used as one of the main marker of the disease severity.
Collapse
Affiliation(s)
- Alireza Badirzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Heidari-Kharaji
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Baharehsadat Sedaghat
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Heidari-Kharaji M, Taheri T, Doroud D, Habibzadeh S, Rafati S. Solid lipid nanoparticle loaded with paromomycin: in vivo efficacy against Leishmania tropica infection in BALB/c mice model. Appl Microbiol Biotechnol 2016; 100:7051-60. [DOI: 10.1007/s00253-016-7422-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 11/28/2022]
|
7
|
Sadeghi S, Seyed N, Etemadzadeh MH, Abediankenari S, Rafati S, Taheri T. In Vitro Infectivity Assessment by Drug Susceptibility Comparison of Recombinant Leishmania major Expressing Enhanced Green Fluorescent Protein or EGFP-Luciferase Fused Genes with Wild-Type Parasite. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:385-94. [PMID: 26323836 PMCID: PMC4566512 DOI: 10.3347/kjp.2015.53.4.385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/24/2015] [Accepted: 07/02/2015] [Indexed: 01/26/2023]
Abstract
Leishmaniasis is a worldwide uncontrolled parasitic disease due to the lack of effective drug and vaccine. To speed up effective drug development, we need powerful methods to rapidly assess drug effectiveness against the intracellular form of Leishmania in high throughput assays. Reporter gene technology has proven to be an excellent tool for drug screening in vitro. The effects of reporter proteins on parasite infectivity should be identified both in vitro and in vivo. In this research, we initially compared the infectivity rate of recombinant Leishmania major expressing stably enhanced green fluorescent protein (EGFP) alone or EGFP-luciferase (EGFP-LUC) with the wild-type strain. Next, we evaluated the sensitivity of these parasites to amphotericin B (AmB) as a standard drug in 2 parasitic phases, promastigote and amastigote. This comparison was made by MTT and nitric oxide (NO) assay and by quantifying the specific signals derived from reporter genes like EGFP intensity and luciferase activity. To study the amastigote form, both B10R and THP-1 macrophage cell lines were infected in the stationary phase and were exposed to AmB at different time points. Our results clearly revealed that the 3 parasite lines had similar in vitro infectivity rates with comparable parasite-induced levels of NO following interferon-γ/lipopolysaccharide induction. Based on our results we proposed the more reporter gene, the faster and more sensitive evaluation of the drug efficiency.
Collapse
Affiliation(s)
- Somayeh Sadeghi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.,Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeid Abediankenari
- Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Terrazas C, Oghumu S, Varikuti S, Martinez-Saucedo D, Beverley SM, Satoskar AR. Uncovering Leishmania-macrophage interplay using imaging flow cytometry. J Immunol Methods 2015; 423:93-8. [PMID: 25967951 PMCID: PMC4620550 DOI: 10.1016/j.jim.2015.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/03/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
Abstract
Host-pathogen interaction is an area of considerable interest. Intracellular parasites such as Leishmania reside inside phagocytes such as macrophages, dendritic cells and neutrophils. Macrophages can be activated by cytokines such as IFN-γ and Toll like receptor (TLR) agonists resulting in enhanced microbicidal activity. Leishmania parasites hijack the microbicidal function of macrophages, mainly by interfering with intracellular signaling initiated by IFN-γ and TLR ligands. Here we used transgenic Leishmania donovani parasites expressing the red fluorescent protein DsRed2 and imaging-flow cytometry technology to evaluate parasitic loads inside the macrophage in vitro. Further, this methodology enables us to visualize impairment in NFκB translocation to the nucleus in L. donovani infected macrophages. Additionally we show that uninfected bystander macrophages have a similar impairment in NFκB translocation as in L. donovani infected macrophages in response to the TLR4 agonist LPS. This evidence suggests a possible immunosuppressive role for infected macrophages in regulating the activation of uninfected bystander macrophages.
Collapse
Affiliation(s)
- Cesar Terrazas
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, USA.
| | - Steve Oghumu
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, USA
| | - Sanjay Varikuti
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, USA
| | - Diana Martinez-Saucedo
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, USA; UBIMED, FES-Iztacala, UNAM, Tlalnepantla Estado de Mexico, Mexico
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, USA.
| |
Collapse
|
9
|
Forestier CL, Späth GF, Prina E, Dasari S. Simultaneous multi-parametric analysis of Leishmania and of its hosting mammal cells: A high content imaging-based method enabling sound drug discovery process. Microb Pathog 2014; 88:103-8. [PMID: 25448129 DOI: 10.1016/j.micpath.2014.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/18/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
Leishmaniasis is a vector-borne disease for which only limited therapeutic options are available. The disease is ranked among the six most important tropical infectious diseases and represents the second-largest parasitic killer in the world. The development of new therapies has been hampered by the lack of technologies and methodologies that can be integrated into the complex physiological environment of a cell or organism and adapted to suitable in vitro and in vivo Leishmania models. Recent advances in microscopy imaging offer the possibility to assess the efficacy of potential drug candidates against Leishmania within host cells. This technology allows the simultaneous visualization of relevant phenotypes in parasite and host cells and the quantification of a variety of cellular events. In this review, we present the powerful cellular imaging methodologies that have been developed for drug screening in a biologically relevant context, addressing both high-content and high-throughput needs. Furthermore, we discuss the potential of intra-vital microscopy imaging in the context of the anti-leishmanial drug discovery process.
Collapse
Affiliation(s)
- Claire-Lise Forestier
- INSERM U1095, URMITE-UMR CNRS 7278, Infectiopole Sud, University of Aix-Marseille, Marseille, France.
| | - Gerald Frank Späth
- Institut Pasteur and CNRS URA2581, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and CNRS URA2581, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Sreekanth Dasari
- INSERM U1095, URMITE-UMR CNRS 7278, Infectiopole Sud, University of Aix-Marseille, Marseille, France
| |
Collapse
|
10
|
Calvo-Álvarez E, Álvarez-Velilla R, Fernández-Prada C, Balaña-Fouce R, Reguera RM. Trypanosomatids see the light: recent advances in bioimaging research. Drug Discov Today 2014; 20:114-21. [PMID: 25256779 DOI: 10.1016/j.drudis.2014.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/29/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
The use of genetically engineered pathogens that express fluorescent or luminescent proteins represents a huge stride forward in the understanding of trypanosomatid-borne tropical diseases. Nowadays, such modified microorganisms are being used to screen thousands of compounds under a target-free (phenotypic) approach. In addition, experimental infections with transgenic parasites drastically reduce the number of animals required for preclinical studies, because no animal needs to be put down to assess its parasite load. Finally, the use of fluorescent parasites is contributing to unraveling genetic exchange events between trypanosomatid strains. This phenomenon is important for understanding the mechanism by which traits such as virulence, tissue tropism, and drug resistance are transferred, as well as the emergence of novel strains.
Collapse
Affiliation(s)
- Estefanía Calvo-Álvarez
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Raquel Álvarez-Velilla
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Christopher Fernández-Prada
- Infectious Diseases Research Center of the CHUL of Québec and Laval University, Québec City, Québec G1V 4G2, Canada
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain.
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
11
|
Rocha MN, Corrêa CM, Melo MN, Beverley SM, Martins-Filho OA, Madureira AP, Soares RP. An alternative in vitro drug screening test using Leishmania amazonensis transfected with red fluorescent protein. Diagn Microbiol Infect Dis 2013; 75:282-91. [PMID: 23312610 PMCID: PMC3733281 DOI: 10.1016/j.diagmicrobio.2012.11.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/25/2012] [Accepted: 11/16/2012] [Indexed: 11/30/2022]
Abstract
Fluorescent and colorimetric reporter genes are valuable tools for drug screening models, since microscopy is labor intensive and subject to observer variation. In this work, we propose a fluorimetric method for drug screening using red fluorescent parasites. Fluorescent Leishmania amazonensis were developed after transfection with integration plasmids containing either red (RFP) or green fluorescent protein (GFP) genes. After transfection, wild-type (LaWT) and transfected (LaGFP and LaRFP) parasites were subjected to flow cytometry, macrophage infection, and tests of susceptibility to current antileishmanial agents and propranolol derivatives previously shown to be active against Trypanosoma cruzi. Flow cytometry analysis discriminated LaWT from LaRFP and LaGFP parasites, without affecting cell size or granulosity. With microscopy, transfection with antibiotic resistant genes was not shown to affect macrophage infectivity and susceptibility to amphotericin B and propranolol derivatives. Retention of fluorescence remained in the intracellular amastigotes in both LaGFP and LaRFP transfectants. However, detection of intracellular RFP parasites was only achieved in the fluorimeter. Murine BALB/c macrophages were infected with LaRFP parasites, exposed to standard (meglumine antimoniate, amphotericin B, Miltefosine, and allopurinol) and tested molecules. Although it was possible to determine IC(50) values for 4 propranolol derivatives (1, 2b, 3, and 4b), all compounds were considered inactive. This study is the first to develop a fluorimetric drug screening test for L. amazonensis RFP. The fluorimetric test was comparable to microscopy with the advantage of being faster and not requiring manual counting.
Collapse
Affiliation(s)
- Marcele N. Rocha
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz/FIOCRUZ, 30190-002 Belo Horizonte, MG, Brazil
| | - Célia M. Corrêa
- Laboratório de Química Farmacêutica, DEFAR, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria N. Melo
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Ana Paula Madureira
- Departamento de Engenharia de Biossistemas (DEPEB), Universidade Federal de São João Del Rey, São João Del Rey, Minas Gerais, Brazil
| | - Rodrigo P. Soares
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz/FIOCRUZ, 30190-002 Belo Horizonte, MG, Brazil
| |
Collapse
|
12
|
Calvo-Álvarez E, Guerrero NA, Álvarez-Velilla R, Prada CF, Requena JM, Punzón C, Llamas MÁ, Arévalo FJ, Rivas L, Fresno M, Pérez-Pertejo Y, Balaña-Fouce R, Reguera RM. Appraisal of a Leishmania major strain stably expressing mCherry fluorescent protein for both in vitro and in vivo studies of potential drugs and vaccine against cutaneous leishmaniasis. PLoS Negl Trop Dis 2012; 6:e1927. [PMID: 23209866 PMCID: PMC3510153 DOI: 10.1371/journal.pntd.0001927] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/16/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Leishmania major cutaneous leishmaniasis is an infectious zoonotic disease. It is produced by a digenetic parasite, which resides in the phagolysosomal compartment of different mammalian macrophage populations. There is an urgent need to develop new therapies (drugs) against this neglected disease that hits developing countries. The main goal of this work is to establish an easier and cheaper tool of choice for real-time monitoring of the establishment and progression of this pathology either in BALB/c mice or in vitro assays. To validate this new technique we vaccinated mice with an attenuated Δhsp70-II strain of Leishmania to assess protection against this disease. METHODOLOGY We engineered a transgenic L. major strain expressing the mCherry red-fluorescent protein for real-time monitoring of the parasitic load. This is achieved via measurement of fluorescence emission, allowing a weekly record of the footpads over eight weeks after the inoculation of BALB/c mice. RESULTS In vitro results show a linear correlation between the number of parasites and fluorescence emission over a range of four logs. The minimum number of parasites (amastigote isolated from lesion) detected by their fluorescent phenotype was 10,000. The effect of antileishmanial drugs against mCherry+L. major infecting peritoneal macrophages were evaluated by direct assay of fluorescence emission, with IC(50) values of 0.12, 0.56 and 9.20 µM for amphotericin B, miltefosine and paromomycin, respectively. An experimental vaccination trial based on the protection conferred by an attenuated Δhsp70-II mutant of Leishmania was used to validate the suitability of this technique in vivo. CONCLUSIONS A Leishmania major strain expressing mCherry red-fluorescent protein enables the monitoring of parasitic load via measurement of fluorescence emission. This approach allows a simpler, faster, non-invasive and cost-effective technique to assess the clinical progression of the infection after drug or vaccine therapy.
Collapse
Affiliation(s)
| | - Nestor Adrian Guerrero
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Jose María Requena
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Luis Rivas
- Centro de Investigaciones Biológicas, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
- Diomune, Parque Cientifico de Madrid, Madrid, Spain
| | | | | | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
| |
Collapse
|
13
|
Costa Lima S, Rodrigues V, Garrido J, Borges F, Kong Thoo Lin P, Cordeiro da Silva A. In vitro evaluation of bisnaphthalimidopropyl derivatives loaded into pegylated nanoparticles against Leishmania infantum protozoa. Int J Antimicrob Agents 2012; 39:424-30. [DOI: 10.1016/j.ijantimicag.2012.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 11/15/2022]
|
14
|
Kolodziej H. Antimicrobial, Antiviral and Immunomodulatory Activity Studies of Pelargonium sidoides (EPs ® 7630) in the Context of Health Promotion. Pharmaceuticals (Basel) 2011; 4:1295-1314. [PMID: 27721327 PMCID: PMC4060126 DOI: 10.3390/ph4101295] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/20/2011] [Accepted: 09/29/2011] [Indexed: 11/20/2022] Open
Abstract
Pelargonium species contribute significantly to the health care of a large population in the Southern African region, as part of a long-standing medical system intimately linked to traditional healing practices. Most notably, extracts of the roots of P. sidoides have commonly been applied for the treatment of dysentery and diarrhoea but only occasionally for respiratory complaints. Clinical trials have shown that a modern aqueous-ethanolic formulation of P. sidoides extracts (EPs® 7630) is an efficacious treatment for disorders of the respiratory tract, for example bronchitis and sinusitis. It should be noted that EPs® 7630 is the most widely investigated extract and therefore is the focus of this review. In order to provide a rationale for its therapeutic activity extracts have been evaluated for antibacterial activity and for their effects on non-specific immune functions. Only moderate direct antibacterial capabilities against a spectrum of bacteria, including Mycobacteria strains, have been noted. In contrast, a large body of in vitro studies has provided convincing evidence for an anti-infective principle associated with activation of the non-specific immune system. Interestingly, significant inhibition of interaction between bacteria and host cells, a key to the pathogenesis of respiratory tract infections, has emerged from recent studies. In addition, antiviral effects have been demonstrated, including inhibition of the replication of respiratory viruses and the enzymes haemagglutinin and neuraminidase. Besides, an increase of cilliary beat frequency of respiratory cells may contribute to the beneficial effects of P. sidoides extracts. This example provides a compelling argument for continuing the exploration of Nature and traditional medical systems as a source of therapeutically useful herbal medicines.
Collapse
Affiliation(s)
- Herbert Kolodziej
- Institute of Pharmacy, Pharmaceutical Biology, Freie Universität Berlin, Koenigin-Luise-Str. 2+4, Berlin 14195, Germany.
| |
Collapse
|
15
|
Bolhassani A, Taheri T, Taslimi Y, Zamanilui S, Zahedifard F, Seyed N, Torkashvand F, Vaziri B, Rafati S. Fluorescent Leishmania species: development of stable GFP expression and its application for in vitro and in vivo studies. Exp Parasitol 2010; 127:637-45. [PMID: 21187086 DOI: 10.1016/j.exppara.2010.12.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 02/06/2023]
Abstract
Reporter genes have proved to be an excellent tool for studying disease progression. Recently, the green fluorescent protein (GFP) ability to quantitatively monitor gene expression has been demonstrated in different organisms. This report describes the use of Leishmania tarentolae (L. tarentolae) expression system (LEXSY) for high and stable levels of GFP production in different Leishmania species including L. tarentolae, L. major and L. infantum. The DNA expression cassette (pLEXSY-EGFP) was integrated into the chromosomal ssu locus of Leishmania strains through homologous recombination. Fluorescent microscopic image showed that GFP transgenes can be abundantly and stably expressed in promastigote and amastigote stages of parasites. Furthermore, flow cytometry analysis indicated a clear quantitative distinction between wild type and transgenic Leishmania strains at both promastigote and amastigote forms. Our data showed that the footpad lesions with GFP-transfected L. major are progressive over time by using fluorescence small-animal imaging system. Consequently, the utilization of stable GFP-transfected Leishmania species will be appropriate for in vitro and in vivo screening of anti-leishmanial drugs and vaccine development as well as understanding the biology of the host-parasite interactions at the cellular level.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Marim FM, Silveira TN, Lima DS, Zamboni DS. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS One 2010; 5:e15263. [PMID: 21179419 PMCID: PMC3003694 DOI: 10.1371/journal.pone.0015263] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/10/2010] [Indexed: 12/18/2022] Open
Abstract
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.
Collapse
Affiliation(s)
- Fernanda M. Marim
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo (FMRP/USP), Ribeirão Preto, Brazil
| | - Tatiana N. Silveira
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo (FMRP/USP), Ribeirão Preto, Brazil
| | - Djalma S. Lima
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo (FMRP/USP), Ribeirão Preto, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo (FMRP/USP), Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
17
|
Dube A, Gupta R, Singh N. Reporter genes facilitating discovery of drugs targeting protozoan parasites. Trends Parasitol 2009; 25:432-9. [PMID: 19720564 DOI: 10.1016/j.pt.2009.06.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/24/2009] [Accepted: 06/22/2009] [Indexed: 02/03/2023]
Abstract
Transfection of protozoan parasites, such as Plasmodium, Leishmania, Trypanosoma and Toxoplasma, with various reporter gene constructs, has revolutionized studies to understand the biology of the host-parasite interactions at the cellular level. It has provided impetus to the development of rapid and reliable drug screens both for established drugs and for new molecules against different parasites and other pathogens. Furthermore, reporter genes have proved to be an excellent and promising tool for studying disease progression. Here, we review the recent advances made by using reporter genes for in vitro and in vivo drug screening, high-throughput screening, whole-animal non-invasive imaging for parasites and for the study of several aspects of host-parasite interactions.
Collapse
Affiliation(s)
- Anuradha Dube
- Division of Parasitology, Central Drug Research Institute, Lucknow 226 001, India.
| | | | | |
Collapse
|