1
|
Poole LG, Kopec AK, Flick MJ, Luyendyk JP. Cross-linking by tissue transglutaminase-2 alters fibrinogen-directed macrophage proinflammatory activity. J Thromb Haemost 2022; 20:1182-1192. [PMID: 35158413 PMCID: PMC9035112 DOI: 10.1111/jth.15670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The blood coagulation factor fibrin(ogen) can modulate inflammation by altering leukocyte activity. Analyses of fibrin(ogen)-mediated proinflammatory activity have largely focused on leukocyte integrin binding activity revealed by conversion of fibrinogen to a stabilized fibrin polymer by blood coagulation enzymes. In addition to coagulation enzymes, fibrinogen is a substrate for tissue transglutaminase-2 (TG2), a widely expressed enzyme that produces unique fibrinogen Aα-γ chain cross-linked products. OBJECTIVES We tested the hypothesis that TG2 dependent cross-linking alters the proinflammatory activity of surface-adhered fibrinogen. METHODS Mouse bone marrow-derived macrophages (BMDMs) were cultured on tissue culture plates coated with fibrinogen or TG2-cross-linked fibrinogen (10 µg/ml) and then stimulated with lipopolysaccharide (LPS, 1 ng/ml) or vehicle for various times. RESULTS In the absence of LPS stimulation, TG2-cross-linked fibrin(ogen) enhanced inflammatory gene induction (e.g., Tnfα) compared with unmodified fibrinogen. LPS stimulation induced mitogen-activated protein kinase phosphorylation, IκBα degradation, and expression of proinflammatory cytokines (e.g., tumor necrosis factor α) within 60 min. This initial cellular activation was unaffected by unmodified or TG2-cross-linked fibrinogen. In contrast, LPS induction of interleukin-10 mRNA and protein and STAT3 phosphorylation was selectively attenuated by TG2-cross-linked fibrinogen, which was associated with enhanced proinflammatory cytokine secretion by LPS-stimulated BMDMs at later time points (6 and 24 h). CONCLUSIONS The results indicate that atypical cross-linking by TG2 imparts unique proinflammatory activity to surface-adhered fibrinogen. The results suggest a novel coagulation-independent mechanism controlling fibrinogen-directed macrophage activation.
Collapse
Affiliation(s)
- Lauren G. Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Anna K. Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
2
|
Sivadó É, Lareure S, Attuil-Audenis V, Alaoui SE, Thomas V. Development of a sandwich ELISA assay for quantification of human tissue transglutaminase in cell lysates and tissue homogenates. Amino Acids 2016; 49:597-604. [PMID: 27761757 DOI: 10.1007/s00726-016-2347-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022]
Abstract
Tissue transglutaminase (tTG) belongs to the multigene transglutaminase family of Ca2+-dependent protein cross-linking enzymes. There is a strong evidence that tTG is involved in pathology, such as neurodegenerative diseases, cancer, and celiac disease. To study physiopathological implication of tTG, a sandwich immunoassay has been developed with a new monoclonal antibody for the capture and polyclonal antibody both generated in house. Using this ready to use assay, the tTG protein level can be measured in human tissue homogenates and cells extracts easily in about 4 h. The limit of detection is 1.7 ng/ml; the coefficients of intra- and inter-assay variations range from 1 to 2 % and from 7 to 10 %, respectively. The assay is specific to tTG, and no cross reactivity with TG1, TG3, TG6, TG7, or factor XIIIa was observed. Finally, in the addition to the tTG activity assay previously developed, this assay should be a valuable tool to increase our knowledge of the tTG involvement in physiological and pathological states.
Collapse
Affiliation(s)
- Éva Sivadó
- Research Department, Covalab S.A.S, 11 Avenue Albert Einstein, 69100, Villeurbanne, France
| | - Sabrina Lareure
- Research Department, Covalab S.A.S, 11 Avenue Albert Einstein, 69100, Villeurbanne, France
| | - Valérie Attuil-Audenis
- Research Department, Covalab S.A.S, 11 Avenue Albert Einstein, 69100, Villeurbanne, France
| | - Saïd El Alaoui
- Research Department, Covalab S.A.S, 11 Avenue Albert Einstein, 69100, Villeurbanne, France
| | - Vincent Thomas
- Research Department, Covalab S.A.S, 11 Avenue Albert Einstein, 69100, Villeurbanne, France.
| |
Collapse
|
3
|
van Strien ME, de Vries HE, Chrobok NL, Bol JGJM, Breve JJP, van der Pol SMP, Kooij G, van Buul JD, Karpuj M, Steinman L, Wilhelmus MM, Sestito C, Drukarch B, Van Dam AM. Tissue Transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration. Brain Behav Immun 2015; 50:141-154. [PMID: 26133787 DOI: 10.1016/j.bbi.2015.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis is a serious neurological disorder, resulting in e.g., sensory, motor and cognitive deficits. A critical pathological aspect of multiple sclerosis (MS) is the influx of immunomodulatory cells into the central nervous system (CNS). Identification of key players that regulate cellular trafficking into the CNS may lead to the development of more selective treatment to halt this process. The multifunctional enzyme tissue Transglutaminase (TG2) can participate in various inflammation-related processes, and is known to be expressed in the CNS. In the present study, we question whether TG2 activity contributes to the pathogenesis of experimental MS, and could be a novel therapeutic target. In human post-mortem material, we showed the appearance of TG2 immunoreactivity in leukocytes in MS lesions, and particular in macrophages in rat chronic-relapsing experimental autoimmune encephalomyelitis (cr-EAE), an experimental MS model. Clinical deficits as observed in mouse EAE were reduced in TG2 knock-out mice compared to littermate wild-type mice, supporting a role of TG2 in EAE pathogenesis. To establish if the enzyme TG2 represents an attractive therapeutic target, cr-EAE rats were treated with TG2 activity inhibitors during ongoing disease. Reduction of TG2 activity in cr-EAE animals dramatically attenuated clinical deficits and demyelination. The mechanism underlying these beneficial effects pointed toward a reduction in macrophage migration into the CNS due to attenuated cytoskeletal flexibility and RhoA GTPase activity. Moreover, iNOS and TNFα levels were selectively reduced in the CNS of cr-EAE rats treated with a TG2 activity inhibitor, whereas other relevant inflammatory mediators were not affected in CNS or spleen by reducing TG2 activity. We conclude that modulating TG2 activity opens new avenues for therapeutic intervention in MS which does not affect peripheral levels of inflammatory mediators.
Collapse
Affiliation(s)
- Miriam E van Strien
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy & Neurosciences, The Netherlands
| | - Helga E de Vries
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Navina L Chrobok
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy & Neurosciences, The Netherlands
| | - John G J M Bol
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy & Neurosciences, The Netherlands
| | - John J P Breve
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy & Neurosciences, The Netherlands
| | - Susanne M P van der Pol
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Gijs Kooij
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Molecular Cell Biology and Immunology, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Dept. Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Lawrence Steinman
- Beckman Center for Molecular Medicine, Stanford University, Stanford, USA
| | - Micha M Wilhelmus
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy & Neurosciences, The Netherlands
| | - Claudia Sestito
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy & Neurosciences, The Netherlands
| | - Benjamin Drukarch
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy & Neurosciences, The Netherlands
| | - Anne-Marie Van Dam
- VU University Medical Center, Neuroscience Campus Amsterdam, Dept. Anatomy & Neurosciences, The Netherlands.
| |
Collapse
|
4
|
Quantification of human tissue transglutaminase by a luminescence sandwich enzyme-linked immunosorbent assay. Anal Biochem 2011; 419:153-60. [DOI: 10.1016/j.ab.2011.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/11/2011] [Accepted: 08/13/2011] [Indexed: 11/30/2022]
|
5
|
Verhaar R, Drukarch B, Bol JGJM, Jongenelen CAM, Musters RJP, Wilhelmus MMM. Increase in endoplasmic reticulum-associated tissue transglutaminase and enzymatic activation in a cellular model of Parkinson's disease. Neurobiol Dis 2011; 45:839-50. [PMID: 22051113 DOI: 10.1016/j.nbd.2011.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/12/2011] [Accepted: 10/16/2011] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is characterized by accumulation of α-synuclein aggregates and degeneration of melanized, catecholaminergic neurons. The tissue transglutaminase (tTG) enzyme catalyzes molecular protein cross-linking. In PD, tTG levels are increased and cross-linking has been identified as an important factor in α-synuclein aggregation. In our quest to link tTGs distribution in the human brain to the hallmarks of PD pathology, we recently reported that catecholaminergic neurons in PD disease-affected brain areas display typical endoplasmic reticulum (ER) granules showing tTG immunoreactivity. In the present study, we set out to elucidate the nature of the interaction between tTG and the ER in PD pathogenesis, using retinoic-acid differentiated SH-SY5Y cells exposed to the PD-mimetic 1-methyl-4-phenylpyridinium (MPP(+)). Alike our observations in PD brain, MPP(+)-treated cells displayed typical TG-positive granules, that were also induced by other PD mimetics and by ER-stress inducing toxins. Additional immunocytochemical and biochemical investigation revealed that tTG is indeed associated to the ER, in particular at the cytoplasmic face of the ER. Upon MPP(+) exposure, additional recruitment of tTG toward the ER was found. In addition, we observed that MPP(+)-induced tTG activity results in transamidation of ER membrane proteins, like calnexin. Our data provide strong evidence for a, so far unrecognized, localization of tTG at the ER, at least in catecholaminergic neurons, and suggests that in PD activation of tTG may have a direct impact on ER function, in particular via post-translational modification of ER membrane proteins.
Collapse
Affiliation(s)
- Robin Verhaar
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
6
|
van Strien ME, Brevé JJP, Fratantoni S, Schreurs MWJ, Bol JGJM, Jongenelen CAM, Drukarch B, van Dam AM. Astrocyte-derived tissue transglutaminase interacts with fibronectin: a role in astrocyte adhesion and migration? PLoS One 2011; 6:e25037. [PMID: 21949843 PMCID: PMC3174992 DOI: 10.1371/journal.pone.0025037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/26/2011] [Indexed: 12/26/2022] Open
Abstract
An important neuropathological feature of neuroinflammatory processes that occur during e.g. Multiple Sclerosis (MS) is the formation of an astroglial scar. Astroglial scar formation is facilitated by the interaction between astrocytes and extracellular matrix proteins (ECM) such as fibronectin. Since there is evidence indicating that glial scars strongly inhibit both axon growth and (re)myelination in brain lesions, it is important to understand the factors that contribute to the interaction between astrocytes and ECM proteins. Tissue Transglutaminase (TG2) is a multifunctional enzyme with an ubiquitous tissue distribution, being clearly present within the brain. It has been shown that inflammatory cytokines can enhance TG2 activity. In addition, TG2 can mediate cell adhesion and migration and it binds fibronectin with high affinity. We therefore hypothesized that TG2 is involved in astrocyte-fibronectin interactions. Our studies using primary rat astrocytes show that intracellular and cell surface expression and activity of TG2 is increased after treatment with pro-inflammatory cytokines. Astrocyte-derived TG2 interacts with fibronectin and is involved in astrocyte adhesion onto and migration across fibronectin. TG2 is involved in stimulating focal adhesion formation which is necessary for the interaction of astrocytes with ECM proteins. We conclude that astrocyte-derived TG2 contributes to the interaction between astrocytes and fibronectin. It might thereby regulate ECM remodeling and possibly glial scarring.
Collapse
Affiliation(s)
- Miriam E. van Strien
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - John J. P. Brevé
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Silvina Fratantoni
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Marco W. J. Schreurs
- Department of Pathology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - John G. J. M. Bol
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A. M. Jongenelen
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Benjamin Drukarch
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Verhaar R, Jongenelen CA, Gerard M, Baekelandt V, Van Dam AM, Wilhelmus MM, Drukarch B. Blockade of enzyme activity inhibits tissue transglutaminase-mediated transamidation of α-synuclein in a cellular model of Parkinson's disease. Neurochem Int 2011; 58:785-93. [DOI: 10.1016/j.neuint.2011.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 01/17/2023]
|
8
|
Wolf J, Lachmann I, Wagner U, Osman A, Mothes T. Immunoassay of in vitro activated human tissue transglutaminase. Anal Biochem 2011; 411:10-5. [DOI: 10.1016/j.ab.2010.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/09/2010] [Accepted: 12/06/2010] [Indexed: 01/05/2023]
|
9
|
Pecora A, Aguirreburualde MP, Rodriguez D, Seki C, Levy M, Bochoeyer D, Dus Santos M, Wigdorovitz A. Development and validation of an ELISA for quantitation of Bovine Viral Diarrhea Virus antigen in the critical stages of vaccine production. J Virol Methods 2009; 162:170-8. [DOI: 10.1016/j.jviromet.2009.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 01/27/2023]
|
10
|
Wilhelmus MMM, Grunberg SCS, Bol JGJM, van Dam AM, Hoozemans JJM, Rozemuller AJM, Drukarch B. Transglutaminases and transglutaminase-catalyzed cross-links colocalize with the pathological lesions in Alzheimer's disease brain. Brain Pathol 2008; 19:612-22. [PMID: 18673368 DOI: 10.1111/j.1750-3639.2008.00197.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by pathological lesions, in particular senile plaques (SPs), cerebral amyloid angiopathy (CAA) and neurofibrillary tangles (NFTs), predominantly consisting of self-aggregated proteins amyloid beta (Abeta) and tau, respectively. Transglutaminases (TGs) are inducible enzymes, capable of modifying conformational and/or structural properties of proteins by inducing molecular covalent cross-links. Both Abeta and tau are substrates for TG cross-linking activity, which links TGs to the aggregation process of both proteins in AD brain. The aim of this study was to investigate the association of transglutaminase 1 (TG1), transglutaminase 2 (TG2) and TG-catalyzed cross-links with the pathological lesions of AD using immunohistochemistry. We observed immunoreactivity for TG1, TG2 and TG-catalyzed cross-links in NFTs. In addition, both TG2 and TG-catalyzed cross-links colocalized with Abeta in SPs. Furthermore, both TG2 and TG-catalyzed cross-links were associated with CAA. We conclude that these TGs demonstrate cross-linking activity in AD lesions, which suggests that both TG1 and TG2 are likely involved in the protein aggregation processes underlying the formation of SPs, CAA and/or NFTs in AD brain.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Institute for Clinical and Experimental Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|