1
|
Nezhad Shamohammadi F, Yazdanifar M, Oraei M, Kazemi MH, Roohi A, Mahya Shariat Razavi S, Rezaei F, Parvizpour F, Karamlou Y, Namdari H. Controversial role of γδ T cells in pancreatic cancer. Int Immunopharmacol 2022; 108:108895. [PMID: 35729831 DOI: 10.1016/j.intimp.2022.108895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.
Collapse
Affiliation(s)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang Z, Ahmed S, Labib M, Wang H, Hu X, Wei J, Yao Y, Moffat J, Sargent EH, Kelley SO. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nat Biomed Eng 2022; 6:108-117. [PMID: 35087171 DOI: 10.1038/s41551-021-00820-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Adoptive cell therapies require the recovery and expansion of highly potent tumour-infiltrating lymphocytes (TILs). However, TILs in tumours are rare and difficult to isolate efficiently, which hinders the optimization of therapeutic potency and dose. Here we show that a configurable microfluidic device can efficiently recover potent TILs from solid tumours by leveraging specific expression levels of target cell-surface markers. The device, which is sandwiched by permanent magnets, balances magnetic forces and fluidic drag forces to sort cells labelled with magnetic nanoparticles conjugated with antibodies for the target markers. Compared with conventional cell sorting, immunomagnetic cell sorting recovered up to 30-fold higher numbers of TILs, and the higher levels and diversity of the recovered TILs accelerated TIL expansion and enhanced their therapeutic potency. Immunomagnetic cell sorting also allowed us to identify and isolate potent TIL subpopulations, in particular TILs with moderate levels of CD39 (a marker of T-cell reactivity to tumours and T-cell exhaustion), which we found are tumour-specific, self-renewable and essential for the long-term success of adoptive cell therapies.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Xiyue Hu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jiarun Wei
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yuxi Yao
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. .,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada. .,Department of Chemistry, Northwestern University, Evanston, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
3
|
ZG16 regulates PD-L1 expression and promotes local immunity in colon cancer. Transl Oncol 2020; 14:101003. [PMID: 33360840 PMCID: PMC7773682 DOI: 10.1016/j.tranon.2020.101003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
CRC is a heterogeneous disease due to global molecular alterations, including mismatch-repair-deficient (dMMR) and microsatellite instability-high (MSI-H). Immunotherapy has achieved durable responses in a subset of patients with dMMR-MSI-H metastatic CRC. It has been showed that Loss of ZG16 is highly associated with colorectal cancer. However, whether ZG16 modulates tumor immunity in colorectal cancer is unclear. In this study, we demonstrated that the expression of ZG16 is associated with distant metastasis and lymphatic invasive in colorectal cancer. Besides, ZG16 is negatively correlated to PD-L1 expression in patient with CRC and overexpression of ZG16 blocks PD-L1 expression in colorectal cancer cells. In addition, overexpression of ZG16 promotes NK cells survival and proliferation, which is dependent on NKG2D expression. Our data demonstrate that ZG16 plays a role in modulation of immune response in colorectal cancer. The strong correlation between ZG16 and PD-L1 suggests that ZG16 may serve a biomarker to stratify patient who will benefit from immunotherapy.
Collapse
|
4
|
Baker FL, Bigley AB, Agha NH, Pedlar CR, O'Connor DP, Bond RA, Bollard CM, Katsanis E, Simpson RJ. Systemic β-Adrenergic Receptor Activation Augments the ex vivo Expansion and Anti-Tumor Activity of Vγ9Vδ2 T-Cells. Front Immunol 2020; 10:3082. [PMID: 32038628 PMCID: PMC6993603 DOI: 10.3389/fimmu.2019.03082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
TCR-gamma delta (γδ) T-cells are considered important players in the graft-vs.-tumor effect following allogeneic hematopoietic cell transplantation (alloHCT) and have emerged as candidates for adoptive transfer immunotherapy in the treatment of both solid and hematological tumors. Systemic β-adrenergic receptor (β-AR) activation has been shown to mobilize TCR-γδ T-cells to the blood, potentially serving as an adjuvant for alloHCT and TCR-γδ T-cell therapy. We investigated if systemic β-AR activation, using acute dynamic exercise as an experimental model, can increase the mobilization, ex vivo expansion, and anti-tumor activity of TCR-γδ T-cells isolated from the blood of healthy humans. We also sought to investigate the β-AR subtypes involved, by administering a preferential β1-AR antagonist (bisoprolol) and a non-preferential β1 + β2-AR antagonist (nadolol) prior to exercise as part of a randomized placebo controlled cross-over experiment. We found that exercise mobilized TCR-γδ cells to blood and augmented their ex vivo expansion by ~182% compared to resting blood when stimulated with IL-2 and ZOL for 14-days. Exercise also increased the proportion of CD56+, NKG2D+/CD62L-, CD158a/b/e+ and NKG2A- cells among the expanded TCR-γδ cells, and increased their cytotoxic activity against several tumor target cells (K562, U266, 221.AEH) in vitro by 40-60%. Blocking NKG2D on TCR-γδ cells in vitro eliminated the augmented cytotoxic effects of exercise against U266 target cells. Furthermore, administering a β1 + β2-AR (nadolol), but not a β1-AR (bisoprolol) antagonist prior to exercise abrogated the exercise-induced enhancement in TCR-γδ T-cell mobilization and ex vivo expansion. Furthermore, nadolol completely abrogated while bisoprolol partially inhibited the exercise-induced increase in the cytotoxic activity of the expanded TCR-γδ T-cells. We conclude that acute systemic β-AR activation in healthy donors markedly augments the mobilization, ex vivo expansion, and anti-tumor activity of TCR-γδ T-cells and that some of these effects are due to β2-AR signaling and phenotypic shifts that promote a dominant activating signal via NKG2D. These findings highlight β-ARs as potential targets to favorably alter the composition of allogeneic peripheral blood stem cell grafts and improve the potency of TCR-γδ T-cell immune cell therapeutics.
Collapse
Affiliation(s)
- Forrest L. Baker
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Austin B. Bigley
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Nadia H. Agha
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Charles R. Pedlar
- School of Sport, Health and Applied Science, St. Mary's University, London, United Kingdom
| | - Daniel P. O'Connor
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
| | - Richard A. Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children's National Health System and the George Washington University, Washington, DC, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Richard J. Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, United States
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Sawaisorn P, Tangchaikeeree T, Polpanich D, Midoeng P, Udomsangpetch R, Elaissari A, Jangpatarapongsa K. Enrichment of human Vγ9Vδ2 T lymphocytes by magnetic poly(divinylbenzene-co-glycidyl methacrylate) colloidal particles conjugated with specific antibody. RSC Adv 2018; 8:14393-14400. [PMID: 35540746 PMCID: PMC9079956 DOI: 10.1039/c8ra01468j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/12/2018] [Indexed: 11/21/2022] Open
Abstract
γδ T cells play a significant role in protection against cancer. Purification of γδ T cells is needed for insight when studying their anti-cancer functionality and their utilization in adoptive cell therapy. To improve the purification of γδ T cells, in this work, a composite material based on magnetic nanoparticles was developed for purification of Vγ9Vδ2 T cells, the predominant subset of γδ T lymphocytes in human peripheral blood. The epoxy-functionalized magnetic poly(divinylbenzene-co-glycidyl methacrylate) particles (mPDGs) were bio-conjugated with anti-human Vδ2 antibody to provide specific recognition sites for T cell receptors of Vγ9Vδ2 T cells. Using fluorescence-activated cell sorting (FACS) analysis, separation of Vγ9Vδ2 T cells from peripheral blood mononuclear cells of healthy donors was confirmed with high purity [89.77% (range 87.00–91.80, n = 3)]. More interestingly, the immobilized particles did not affect the viability of purified cells as high cell viability was indicated (>90%). By combining the properties of magnetic nanoparticles with specific antibodies, these immobilized particles were shown to be used as a cell-friendly purification tool of Vγ9Vδ2 T lymphocytes without any limits for the further use of cells. The purified Vγ9Vδ2 T cells using the antibody-immobilized epoxy-functionalized mPDGs could be used directly without a detachment step for further cultivation and expansion. This highlights the advantages of this method in allowing the study of cell function and further investigation of such rare T cell populations in immunotherapy. Schematic procedure of Vγ9Vδ2 T cell purification using antibody-immobilized epoxy-functionalized mPDGs.![]()
Collapse
Affiliation(s)
- Piamsiri Sawaisorn
- Center for Research and Innovation
- Faculty of Medical Technology
- Mahidol University
- Bangkok 10700
- Thailand
| | - Tienrat Tangchaikeeree
- Center for Research and Innovation
- Faculty of Medical Technology
- Mahidol University
- Bangkok 10700
- Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center
- National Science and Technology Development Agency (NSTDA)
- Thailand Science Park
- Thailand
| | - Panuwat Midoeng
- Department of Pathology
- Army Institute of Pathology
- Phramongkutklao Hospital
- Bangkok 10700
- Thailand
| | - Rachanee Udomsangpetch
- Center for Research and Innovation
- Faculty of Medical Technology
- Mahidol University
- Bangkok 10700
- Thailand
| | | | | |
Collapse
|
6
|
Van Acker HH, Anguille S, Willemen Y, Van den Bergh JM, Berneman ZN, Lion E, Smits EL, Van Tendeloo VF. Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human gamma delta T cells. J Hematol Oncol 2016; 9:101. [PMID: 27686372 PMCID: PMC5041439 DOI: 10.1186/s13045-016-0329-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/16/2016] [Indexed: 12/12/2022] Open
Abstract
Background Adoptive immunotherapy is gaining momentum to fight malignancies, whereby γδ T cells have received recent attention as an alternative cell source as to natural killer cells and αβ T cells. The advent of γδ T cells is largely due to their ability to recognize and target tumor cells using both innate characteristic and T cell receptor (TCR)-mediated mechanisms, their capacity to enhance the generation of antigen-specific T cell responses, and their potential to be used in an autologous or allogeneic setting. Methods In this study, we explored the beneficial effect of the immunostimulatory cytokine interleukin (IL)-15 on purified γδ T cells and its use as a stimulatory signal in the ex vivo expansion of γδ T cells for adoptive transfer. The expansion protocol was validated both with immune cells of healthy individuals and acute myeloid leukemia patients. Results We report that the addition of IL-15 to γδ T cell cultures results in a more activated phenotype, a higher proliferative capacity, a more pronounced T helper 1 polarization, and an increased cytotoxic capacity of γδ T cells. Moreover γδ T cell expansion starting with peripheral blood mononuclear cells from healthy individuals and acute myeloid leukemia patients is boosted in the presence of IL-15, whereby the antitumor properties of the γδ T cells are strengthened as well. Conclusions Our results support the rationale to explore the use of IL-15 in clinical adoptive therapy protocols exploiting γδ T cells.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Antwerp, Belgium.
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Antwerp, Belgium
| | - Johan M Van den Bergh
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium.,Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijkstraat 10, 2650, Edegem, Antwerp, Belgium
| |
Collapse
|
7
|
Targeted Therapies in Adult B-Cell Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:217593. [PMID: 26425544 PMCID: PMC4575712 DOI: 10.1155/2015/217593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
Abstract
B-lymphocytes are programmed for the production of immunoglobulin (Ig) after antigen presentation, in the context of T-lymphocyte control within lymphoid organs. During this differentiation/activation process, B-lymphocytes exhibit different restricted or common surface markers, activation of cellular pathways that regulate cell cycle, metabolism, proteasome activity, and protein synthesis. All molecules involved in these different cellular mechanisms are potent therapeutic targets. Nowadays, due to the progress of the biology, more and more targeted drugs are identified, a situation that is correlated with an extended field of the targeted therapy. The full knowledge of the cellular machinery and cell-cell communication allows making the best choice to treat patients, in the context of personalized medicine. Also, focus should not be restricted to the immediate effects observed as clinical endpoints, that is, response rate, survival markers with conventional statistical methods, but it should consider the prediction of different clinical consequences due to other collateral drug targets, based on new methodologies. This means that new reflection and new bioclinical follow-up have to be monitored, particularly with the new drugs used with success in B-cell malignancies. This review discussed the principal aspects of such evident bioclinical progress.
Collapse
|
8
|
Trastuzumab enhanced the cytotoxicity of Vγ9Vδ2 T cells against zoledronate-sensitized osteosarcoma cells. Int Immunopharmacol 2015; 28:160-7. [DOI: 10.1016/j.intimp.2015.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 06/01/2015] [Accepted: 06/01/2015] [Indexed: 11/17/2022]
|
9
|
Dörrie J, Krug C, Hofmann C, Müller I, Wellner V, Knippertz I, Schierer S, Thomas S, Zipperer E, Printz D, Fritsch G, Schuler G, Schaft N, Geyeregger R. Human adenovirus-specific γ/δ and CD8+ T cells generated by T-cell receptor transfection to treat adenovirus infection after allogeneic stem cell transplantation. PLoS One 2014; 9:e109944. [PMID: 25289687 PMCID: PMC4188623 DOI: 10.1371/journal.pone.0109944] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/05/2014] [Indexed: 12/01/2022] Open
Abstract
Human adenovirus infection is life threatening after allogeneic haematopoietic stem cell transplantation (HSCT). Immunotherapy with donor-derived adenovirus-specific T cells is promising; however, 20% of all donors lack adenovirus-specific T cells. To overcome this, we transfected α/β T cells with mRNA encoding a T-cell receptor (TCR) specific for the HLA-A*0101-restricted peptide LTDLGQNLLY from the adenovirus hexon protein. Furthermore, since allo-reactive endogenous TCR of donor T lymphocytes would induce graft-versus-host disease (GvHD) in a mismatched patient, we transferred the TCR into γ/δ T cells, which are not allo-reactive. TCR-transfected γ/δ T cells secreted low quantities of cytokines after antigen-specific stimulation, which were increased dramatically after co-transfection of CD8α-encoding mRNA. In direct comparison with TCR-transfected α/β T cells, TCR-CD8α-co-transfected γ/δ T cells produced more tumor necrosis factor (TNF), and lysed peptide-loaded target cells as efficiently. Most importantly, TCR-transfected α/β T cells and TCR-CD8α-co-transfected γ/δ T cells efficiently lysed adenovirus-infected target cells. We show here, for the first time, that not only α/β T cells but also γ/δ T cells can be equipped with an adenovirus specificity by TCR-RNA electroporation. Thus, our strategy offers a new means for the immunotherapy of adenovirus infection after allogeneic HSCT.
Collapse
MESH Headings
- Adenoviridae Infections/etiology
- Adenoviridae Infections/immunology
- Adenoviridae Infections/prevention & control
- Adenoviruses, Human/immunology
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- CD8 Antigens/chemistry
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cloning, Molecular
- Cytokines/biosynthesis
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Electroporation
- Gene Expression
- Hematopoietic Stem Cell Transplantation/adverse effects
- Humans
- Jurkat Cells
- Molecular Sequence Data
- Peptides/chemistry
- Peptides/genetics
- Peptides/immunology
- Peptides/pharmacology
- Primary Cell Culture
- RNA/genetics
- RNA/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Transfection
- Transplantation, Homologous
- Unrelated Donors
Collapse
Affiliation(s)
- Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Krug
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Hofmann
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ina Müller
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Verena Wellner
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ilka Knippertz
- Department of Immune Modulation at the Dept. of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephan Schierer
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simone Thomas
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Elke Zipperer
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
| | - Dieter Printz
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
| | - Gerhard Fritsch
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gerold Schuler
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| | - Rene Geyeregger
- St. Anna Kinderkrebsforschung e.V., Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
10
|
Fournié JJ, Sicard H, Poupot M, Bezombes C, Blanc A, Romagné F, Ysebaert L, Laurent G. What lessons can be learned from γδ T cell-based cancer immunotherapy trials? Cell Mol Immunol 2012; 10:35-41. [PMID: 23241899 DOI: 10.1038/cmi.2012.39] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During the last several years, research has produced a significant amount of knowledge concerning the characteristics of human γδ T lymphocytes. Findings regarding the immune functions of these cells, particularly their natural killer cell-like lytic activity against tumor cells, have raised expectations for the therapeutic applications of these cells for cancer. Pharmaceutical companies have produced selective agonists for these lymphocytes, and several teams have launched clinical trials of γδ T cell-based cancer therapies. The findings from these studies include hematological malignancies (follicular lymphoma, multiple myeloma, acute and chronic myeloid leukemia), as well as solid tumors (renal cell, breast and prostate carcinomas), consisting of samples from more than 250 patients from Europe, Japan and the United States. The results of these pioneering studies are now available, and this short review summarizes the lessons learned and the role of γδ T cell-based strategies in the current landscape of cancer immunotherapies.
Collapse
|
11
|
Abstract
γδ-T cells represent a small population of immune cells, but play an indispensable role in host defenses against exogenous pathogens, immune surveillance of endogenous pathogenesis and even homeostasis of the immune system. Activation and expansion of γδ-T cells are generally observed in diverse human infectious diseases and correlate with their progression and prognosis. γδ-T cells have both 'innate' and 'adaptive' characteristics in the immune response, and their anti-infection activities are mediated by multiple pathways that are under elaborate regulation by other immune components. In this review, we summarize the current state of the literature and the recent advancements in γδ-T cell-mediated immune responses against common human infectious pathogens. Although further investigation is needed to improve our understanding of the characteristics of different γδ-T cell subpopulations under specific conditions, γδ-T cell-based therapy has great potential for the treatment of infectious diseases.
Collapse
|
12
|
Siegers GM, Felizardo TC, Mathieson AM, Kosaka Y, Wang XH, Medin JA, Keating A. Anti-leukemia activity of in vitro-expanded human gamma delta T cells in a xenogeneic Ph+ leukemia model. PLoS One 2011; 6:e16700. [PMID: 21304898 PMCID: PMC3033392 DOI: 10.1371/journal.pone.0016700] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 12/24/2010] [Indexed: 02/02/2023] Open
Abstract
Gamma delta T cells (GDTc) lyse a variety of hematological and solid tumour cells in vitro and in vivo, and are thus promising candidates for cellular immunotherapy. We have developed a protocol to expand human GDTc in vitro, yielding highly cytotoxic Vgamma9/Vdelta2 CD27/CD45RA double negative effector memory cells. These cells express CD16, CD45RO, CD56, CD95 and NKG2D. Flow cytometric, clonogenic, and chromium release assays confirmed their specific cytotoxicity against Ph(+) cell lines in vitro. We have generated a fluorescent and bioluminescent Ph(+) cell line, EM-2eGFPluc, and established a novel xenogeneic leukemia model. Intravenous injection of EM-2eGFPluc into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice resulted in significant dose-dependent bone marrow engraftment; lower levels engrafted in blood, lung, liver and spleen. In vitro-expanded human GDTc injected intraperitoneally were found at higher levels in blood and organs compared to those injected intravenously; GDTc survived at least 33 days post-injection. In therapy experiments, we documented decreased bone marrow leukemia burden in mice treated with GDTc. Live GDTc were found in spleen and bone marrow at endpoint, suggesting the potential usefulness of this therapy.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cells, Cultured
- Cytotoxicity, Immunologic/physiology
- Disease Models, Animal
- Humans
- Immunotherapy, Adoptive/methods
- K562 Cells
- Leukemia/genetics
- Leukemia/immunology
- Leukemia/pathology
- Leukemia/therapy
- Male
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Philadelphia Chromosome
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/physiology
- T-Lymphocytes, Cytotoxic/transplantation
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Gabrielle M Siegers
- Cell Therapy Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kabelitz D. Human γδ T lymphocytes for immunotherapeutic strategies against cancer. F1000 MEDICINE REPORTS 2010; 2. [PMID: 20948839 PMCID: PMC2950047 DOI: 10.3410/m2-45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
γδ T lymphocytes are a numerically small subset of T cells with potent cytotoxic activity against a variety of tumor cells. Human γδ T cells expressing the Vγ9Vδ2 T cell antigen receptor recognize endogenous pyrophosphate molecules that are overproduced in transformed cells. Moreover, the intracellular accumulation of such pyrophosphates is strongly enhanced by aminobisphosphonates used in the treatment of osteoporosis and bone metastasis in certain cancer patients. A new concept of cancer immunotherapy is based on the endogenous activation of γδ T cells with aminobisphosphonates plus low-dose interleukin-2.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, University of Kiel Arnold-Heller-Str 3, Haus 17, D-24105 Kiel Germany
| |
Collapse
|