1
|
Jiang F, Guo Y, Ma H, Na S, Zhong W, Han Y, Wang T, Huang J. GTE: a graph learning framework for prediction of T-cell receptors and epitopes binding specificity. Brief Bioinform 2024; 25:bbae343. [PMID: 39007599 PMCID: PMC11247411 DOI: 10.1093/bib/bbae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The interaction between T-cell receptors (TCRs) and peptides (epitopes) presented by major histocompatibility complex molecules (MHC) is fundamental to the immune response. Accurate prediction of TCR-epitope interactions is crucial for advancing the understanding of various diseases and their prevention and treatment. Existing methods primarily rely on sequence-based approaches, overlooking the inherent topology structure of TCR-epitope interaction networks. In this study, we present $GTE$, a novel heterogeneous Graph neural network model based on inductive learning to capture the topological structure between TCRs and Epitopes. Furthermore, we address the challenge of constructing negative samples within the graph by proposing a dynamic edge update strategy, enhancing model learning with the nonbinding TCR-epitope pairs. Additionally, to overcome data imbalance, we adapt the Deep AUC Maximization strategy to the graph domain. Extensive experiments are conducted on four public datasets to demonstrate the superiority of exploring underlying topological structures in predicting TCR-epitope interactions, illustrating the benefits of delving into complex molecular networks. The implementation code and data are available at https://github.com/uta-smile/GTE.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Computer Science and Engineering, University of Texas at Arlington, 701 S. Nedderman Drive, TX 76019, United States
| | - Yuzhi Guo
- Department of Computer Science and Engineering, University of Texas at Arlington, 701 S. Nedderman Drive, TX 76019, United States
| | - Hehuan Ma
- Department of Computer Science and Engineering, University of Texas at Arlington, 701 S. Nedderman Drive, TX 76019, United States
| | - Saiyang Na
- Department of Computer Science and Engineering, University of Texas at Arlington, 701 S. Nedderman Drive, TX 76019, United States
| | - Wenliang Zhong
- Department of Computer Science and Engineering, University of Texas at Arlington, 701 S. Nedderman Drive, TX 76019, United States
| | - Yi Han
- Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, TX 75390, United States
| | - Tao Wang
- Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, TX 75390, United States
| | - Junzhou Huang
- Department of Computer Science and Engineering, University of Texas at Arlington, 701 S. Nedderman Drive, TX 76019, United States
| |
Collapse
|
2
|
Wu J, Qi M, Zhang F, Zheng Y. TPBTE: A model based on convolutional Transformer for predicting the binding of TCR to epitope. Mol Immunol 2023; 157:30-41. [PMID: 36966551 DOI: 10.1016/j.molimm.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
T cell receptors (TCRs) selectively bind to antigens to fight pathogens with specific immunity. Current tools focus on the nature of amino acids within sequences and take less into account the nature of amino acids far apart and the relationship between sequences, leading to significant differences in the results from different datasets. We propose TPBTE, a model based on convolutional Transformer for Predicting the Binding of TCR to Epitope. It takes epitope sequences and the complementary decision region 3 (CDR3) sequences of TCRβ chain as inputs. And it uses a convolutional attention mechanism to learn amino acid representations between different positions of the sequences based on learning local features of the sequences. At the same time, it uses cross attention to learn the interaction information between TCR sequences and epitope sequences. A comprehensive evaluation of the TCR-epitope data shows that the average area under the curve of TPBTE outperforms the baseline model, and demonstrate an intentional performance. In addition, TPBTE can give the probability of binding TCR to epitopes, which can be used as the first step of epitope screening, narrowing the scope of epitope search and reducing the time of epitope search.
Collapse
|
3
|
Cai Y, Chen R, Gao S, Li W, Liu Y, Su G, Song M, Jiang M, Jiang C, Zhang X. Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy. Front Oncol 2023; 12:1054231. [PMID: 36698417 PMCID: PMC9868469 DOI: 10.3389/fonc.2022.1054231] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023] Open
Abstract
The field of cancer neoantigen investigation has developed swiftly in the past decade. Predicting novel and true neoantigens derived from large multi-omics data became difficult but critical challenges. The rise of Artificial Intelligence (AI) or Machine Learning (ML) in biomedicine application has brought benefits to strengthen the current computational pipeline for neoantigen prediction. ML algorithms offer powerful tools to recognize the multidimensional nature of the omics data and therefore extract the key neoantigen features enabling a successful discovery of new neoantigens. The present review aims to outline the significant technology progress of machine learning approaches, especially the newly deep learning tools and pipelines, that were recently applied in neoantigen prediction. In this review article, we summarize the current state-of-the-art tools developed to predict neoantigens. The standard workflow includes calling genetic variants in paired tumor and blood samples, and rating the binding affinity between mutated peptide, MHC (I and II) and T cell receptor (TCR), followed by characterizing the immunogenicity of tumor epitopes. More specifically, we highlight the outstanding feature extraction tools and multi-layer neural network architectures in typical ML models. It is noted that more integrated neoantigen-predicting pipelines are constructed with hybrid or combined ML algorithms instead of conventional machine learning models. In addition, the trends and challenges in further optimizing and integrating the existing pipelines are discussed.
Collapse
Affiliation(s)
- Yu Cai
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Rui Chen
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Shenghan Gao
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Wenqing Li
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Yuru Liu
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Guodong Su
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Mingming Song
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Mengju Jiang
- School of Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Chao Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China,*Correspondence: Chao Jiang, ; Xi Zhang,
| | - Xi Zhang
- School of Medicine, Northwest University, Xi’an, Shaanxi, China,*Correspondence: Chao Jiang, ; Xi Zhang,
| |
Collapse
|
4
|
Liu Y, Sun B, Wang J, Sun H, Lu Z, Chen L, Lan M, Xu J, Pan J, Shi J, Sun Y, Zhang X, Wang J, Jiang D, Yang K. In silico analyses and experimental validation of the MHC class-I restricted epitopes of Ebolavirus GP. Int Immunol 2022; 34:313-325. [PMID: 35192720 DOI: 10.1093/intimm/dxac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Ebolavirus (EBOV) causes an extremely high mortality and prevalence disease called Ebola virus disease (EVD). There is only one glycoprotein (GP) on the virus particle surface, which mediates entry into the host cell. MHC class-I restricted CD8 + T cell responses are important antiviral immune responses. Therefore, it is of great importance to understand EBOV GP-specific MHC class-I restricted epitopes within immunogenicity. In this study, computational approaches were employed to predict the dominant MHC class-I molecule epitopes of EBOV GP for mouse H2 and major alleles of HLA class-I supertypes. Our results yielded 42 dominant epitopes in H2 haplotypes and 301 dominant epitopes in HLA class-I haplotypes. After validation by ELISpot assay, in-depth analyses to ascertain their nature of conservation, immunogenicity, and docking with the corresponding MHC class-I molecules were undertaken. Our study predicted MHC class-I restricted epitopes that may aid the advancement of anti-EBOV immune responses. And the integrated strategy of epitope prediction, validation, and comparative analyses were postulated, promising for epitope-based immunotherapy development and application to viral epidemics.
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China.,Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, P.R. China
| | - Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jiawei Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Hao Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China.,Tangshan Sannvhe Airport, Tangshan, Hebei, P.R. China
| | - Zhenhua Lu
- Department of Epidemiology, Public Health School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Longyu Chen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Mingfu Lan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jiahao Xu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jingyu Pan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jingqi Shi
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jing Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| |
Collapse
|
5
|
Li G, Iyer B, Prasath VBS, Ni Y, Salomonis N. DeepImmuno: deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity. Brief Bioinform 2021; 22:bbab160. [PMID: 34009266 PMCID: PMC8135853 DOI: 10.1093/bib/bbab160] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cytolytic T-cells play an essential role in the adaptive immune system by seeking out, binding and killing cells that present foreign antigens on their surface. An improved understanding of T-cell immunity will greatly aid in the development of new cancer immunotherapies and vaccines for life-threatening pathogens. Central to the design of such targeted therapies are computational methods to predict non-native peptides to elicit a T-cell response, however, we currently lack accurate immunogenicity inference methods. Another challenge is the ability to accurately simulate immunogenic peptides for specific human leukocyte antigen alleles, for both synthetic biological applications, and to augment real training datasets. Here, we propose a beta-binomial distribution approach to derive peptide immunogenic potential from sequence alone. We conducted systematic benchmarking of five traditional machine learning (ElasticNet, K-nearest neighbors, support vector machine, Random Forest and AdaBoost) and three deep learning models (convolutional neural network (CNN), Residual Net and graph neural network) using three independent prior validated immunogenic peptide collections (dengue virus, cancer neoantigen and SARS-CoV-2). We chose the CNN as the best prediction model, based on its adaptivity for small and large datasets and performance relative to existing methods. In addition to outperforming two highly used immunogenicity prediction algorithms, DeepImmuno-CNN correctly predicts which residues are most important for T-cell antigen recognition and predicts novel impacts of SARS-CoV-2 variants. Our independent generative adversarial network (GAN) approach, DeepImmuno-GAN, was further able to accurately simulate immunogenic peptides with physicochemical properties and immunogenicity predictions similar to that of real antigens. We provide DeepImmuno-CNN as source code and an easy-to-use web interface.
Collapse
Affiliation(s)
- Guangyuan Li
- University of Cincinnati, 3333 Burnet Ave, MLC7024, Cincinnati, OH 45267, USA
| | | | - V B Surya Prasath
- Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, USA
| | - Yizhao Ni
- Cincinnati Children’s Hospital Medical Center, USA
| | | |
Collapse
|
6
|
Schaap-Johansen AL, Vujović M, Borch A, Hadrup SR, Marcatili P. T Cell Epitope Prediction and Its Application to Immunotherapy. Front Immunol 2021; 12:712488. [PMID: 34603286 PMCID: PMC8479193 DOI: 10.3389/fimmu.2021.712488] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
T cells play a crucial role in controlling and driving the immune response with their ability to discriminate peptides derived from healthy as well as pathogenic proteins. In this review, we focus on the currently available computational tools for epitope prediction, with a particular focus on tools aimed at identifying neoepitopes, i.e. cancer-specific peptides and their potential for use in immunotherapy for cancer treatment. This review will cover how these tools work, what kind of data they use, as well as pros and cons in their respective applications.
Collapse
Affiliation(s)
| | - Milena Vujović
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Annie Borch
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Paolo Marcatili
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
7
|
Li G, Iyer B, Prasath VBS, Ni Y, Salomonis N. DeepImmuno: Deep learning-empowered prediction and generation of immunogenic peptides for T cell immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.24.424262. [PMID: 33398286 PMCID: PMC7781330 DOI: 10.1101/2020.12.24.424262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
T-cells play an essential role in the adaptive immune system by seeking out, binding and destroying foreign antigens presented on the cell surface of diseased cells. An improved understanding of T-cell immunity will greatly aid in the development of new cancer immunotherapies and vaccines for life threatening pathogens. Central to the design of such targeted therapies are computational methods to predict non-native epitopes to elicit a T cell response, however, we currently lack accurate immunogenicity inference methods. Another challenge is the ability to accurately simulate immunogenic peptides for specific human leukocyte antigen (HLA) alleles, for both synthetic biological applications and to augment real training datasets. Here, we proposed a beta-binomial distribution approach to derive epitope immunogenic potential from sequence alone. We conducted systematic benchmarking of five traditional machine learning (ElasticNet, KNN, SVM, Random Forest, AdaBoost) and three deep learning models (CNN, ResNet, GNN) using three independent prior validated immunogenic peptide collections (dengue virus, cancer neoantigen and SARS-Cov-2). We chose the CNN model as the best prediction model based on its adaptivity for small and large datasets, and performance relative to existing methods. In addition to outperforming two highly used immunogenicity prediction algorithms, DeepHLApan and IEDB, DeepImmuno-CNN further correctly predicts which residues are most important for T cell antigen recognition. Our independent generative adversarial network (GAN) approach, DeepImmuno-GAN, was further able to accurately simulate immunogenic peptides with physiochemical properties and immunogenicity predictions similar to that of real antigens. We provide DeepImmuno-CNN as source code and an easy-to-use web interface. DATA AVAILABILITY DeepImmuno Python3 code is available at https://github.com/frankligy/DeepImmuno . The DeepImmuno web portal is available from https://deepimmuno.herokuapp.com . The data in this article is available in GitHub and supplementary materials.
Collapse
Affiliation(s)
- Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 USA
| | - Balaji Iyer
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, OH 45221 USA
| | - V. B. Surya Prasath
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, OH 45221 USA
| | - Yizhao Ni
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, OH, 45267 USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, OH 45221 USA
| |
Collapse
|
8
|
Haji Abdolvahab M, Venselaar H, Fazeli A, Arab SS, Behmanesh M. Point Mutation Approach to Reduce Antigenicity of Interferon Beta. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09938-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Uncovering the Tumor Antigen Landscape: What to Know about the Discovery Process. Cancers (Basel) 2020; 12:cancers12061660. [PMID: 32585818 PMCID: PMC7352969 DOI: 10.3390/cancers12061660] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
According to the latest available data, cancer is the second leading cause of death, highlighting the need for novel cancer therapeutic approaches. In this context, immunotherapy is emerging as a reliable first-line treatment for many cancers, particularly metastatic melanoma. Indeed, cancer immunotherapy has attracted great interest following the recent clinical approval of antibodies targeting immune checkpoint molecules, such as PD-1, PD-L1, and CTLA-4, that release the brakes of the immune system, thus reviving a field otherwise poorly explored. Cancer immunotherapy mainly relies on the generation and stimulation of cytotoxic CD8 T lymphocytes (CTLs) within the tumor microenvironment (TME), priming T cells and establishing efficient and durable anti-tumor immunity. Therefore, there is a clear need to define and identify immunogenic T cell epitopes to use in therapeutic cancer vaccines. Naturally presented antigens in the human leucocyte antigen-1 (HLA-I) complex on the tumor surface are the main protagonists in evocating a specific anti-tumor CD8+ T cell response. However, the methodologies for their identification have been a major bottleneck for their reliable characterization. Consequently, the field of antigen discovery has yet to improve. The current review is intended to define what are today known as tumor antigens, with a main focus on CTL antigenic peptides. We also review the techniques developed and employed to date for antigen discovery, exploring both the direct elution of HLA-I peptides and the in silico prediction of epitopes. Finally, the last part of the review analyses the future challenges and direction of the antigen discovery field.
Collapse
|
10
|
Mei S, Li F, Leier A, Marquez-Lago TT, Giam K, Croft NP, Akutsu T, Smith AI, Li J, Rossjohn J, Purcell AW, Song J. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Brief Bioinform 2020; 21:1119-1135. [PMID: 31204427 DOI: 10.1093/bib/bbz051] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen class I (HLA-I) molecules are encoded by major histocompatibility complex (MHC) class I loci in humans. The binding and interaction between HLA-I molecules and intracellular peptides derived from a variety of proteolytic mechanisms play a crucial role in subsequent T-cell recognition of target cells and the specificity of the immune response. In this context, tools that predict the likelihood for a peptide to bind to specific HLA class I allotypes are important for selecting the most promising antigenic targets for immunotherapy. In this article, we comprehensively review a variety of currently available tools for predicting the binding of peptides to a selection of HLA-I allomorphs. Specifically, we compare their calculation methods for the prediction score, employed algorithms, evaluation strategies and software functionalities. In addition, we have evaluated the prediction performance of the reviewed tools based on an independent validation data set, containing 21 101 experimentally verified ligands across 19 HLA-I allotypes. The benchmarking results show that MixMHCpred 2.0.1 achieves the best performance for predicting peptides binding to most of the HLA-I allomorphs studied, while NetMHCpan 4.0 and NetMHCcons 1.1 outperform the other machine learning-based and consensus-based tools, respectively. Importantly, it should be noted that a peptide predicted with a higher binding score for a specific HLA allotype does not necessarily imply it will be immunogenic. That said, peptide-binding predictors are still very useful in that they can help to significantly reduce the large number of epitope candidates that need to be experimentally verified. Several other factors, including susceptibility to proteasome cleavage, peptide transport into the endoplasmic reticulum and T-cell receptor repertoire, also contribute to the immunogenicity of peptide antigens, and some of them can be considered by some predictors. Therefore, integrating features derived from these additional factors together with HLA-binding properties by using machine-learning algorithms may increase the prediction accuracy of immunogenic peptides. As such, we anticipate that this review and benchmarking survey will assist researchers in selecting appropriate prediction tools that best suit their purposes and provide useful guidelines for the development of improved antigen predictors in the future.
Collapse
Affiliation(s)
- Shutao Mei
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Fuyi Li
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - André Leier
- Department of Genetics and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Tatiana T Marquez-Lago
- Department of Genetics and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Kailin Giam
- Department of Immunology, King's College London, London, UK
| | - Nathan P Croft
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Tatsuya Akutsu
- Bioinformatics Centre, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - A Ian Smith
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Monash Centre for Data Science, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Kim S, Kim H, Kim E, Lee M, Shin EC, Paik S, Kim S. Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information. Ann Oncol 2018; 29:1030-1036. [DOI: 10.1093/annonc/mdy022] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
12
|
Antunes DA, Abella JR, Devaurs D, Rigo MM, Kavraki LE. Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes. Curr Top Med Chem 2018; 18:2239-2255. [PMID: 30582480 PMCID: PMC6361695 DOI: 10.2174/1568026619666181224101744] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms involved in the activation of an immune response is essential to many fields in human health, including vaccine development and personalized cancer immunotherapy. A central step in the activation of the adaptive immune response is the recognition, by T-cell lymphocytes, of peptides displayed by a special type of receptor known as Major Histocompatibility Complex (MHC). Considering the key role of MHC receptors in T-cell activation, the computational prediction of peptide binding to MHC has been an important goal for many immunological applications. Sequence- based methods have become the gold standard for peptide-MHC binding affinity prediction, but structure-based methods are expected to provide more general predictions (i.e., predictions applicable to all types of MHC receptors). In addition, structural modeling of peptide-MHC complexes has the potential to uncover yet unknown drivers of T-cell activation, thus allowing for the development of better and safer therapies. In this review, we discuss the use of computational methods for the structural modeling of peptide-MHC complexes (i.e., binding mode prediction) and for the structure-based prediction of binding affinity.
Collapse
Affiliation(s)
| | - Jayvee R. Abella
- Computer Science Department, Rice University, Houston, Texas, USA
| | - Didier Devaurs
- Computer Science Department, Rice University, Houston, Texas, USA
| | - Maurício M. Rigo
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lydia E. Kavraki
- Computer Science Department, Rice University, Houston, Texas, USA
| |
Collapse
|
13
|
Liu XS, Mardis ER. Applications of Immunogenomics to Cancer. Cell 2017; 168:600-612. [PMID: 28187283 DOI: 10.1016/j.cell.2017.01.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/05/2023]
Abstract
Cancer immunogenomics originally was framed by research supporting the hypothesis that cancer mutations generated novel peptides seen as "non-self" by the immune system. The search for these "neoantigens" has been facilitated by the combination of new sequencing technologies, specialized computational analyses, and HLA binding predictions that evaluate somatic alterations in a cancer genome and interpret their ability to produce an immune-stimulatory peptide. The resulting information can characterize a tumor's neoantigen load, its cadre of infiltrating immune cell types, the T or B cell receptor repertoire, and direct the design of a personalized therapeutic.
Collapse
Affiliation(s)
- X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, 450 Brookline Ave, Boston MA 02215, USA.
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, and The Ohio State University College of Medicine, 575 Children's Crossroad, Columbus OH 43205, USA.
| |
Collapse
|
14
|
Saethang T, Payne DM, Avihingsanon Y, Pisitkun T. A machine learning strategy for predicting localization of post-translational modification sites in protein-protein interacting regions. BMC Bioinformatics 2016; 17:307. [PMID: 27534850 PMCID: PMC4989344 DOI: 10.1186/s12859-016-1165-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/05/2016] [Indexed: 02/02/2023] Open
Abstract
Background One very important functional domain of proteins is the protein-protein interacting region (PPIR), which forms the binding interface between interacting polypeptide chains. Post-translational modifications (PTMs) that occur in the PPIR can either interfere with or facilitate the interaction between proteins. The ability to predict whether sites of protein modifications are inside or outside of PPIRs would be useful in further elucidating the regulatory mechanisms by which modifications of specific proteins regulate their cellular functions. Results Using two of the comprehensive databases for protein-protein interaction and protein modification site data (PDB and PhosphoSitePlus, respectively), we created new databases that map PTMs to their locations inside or outside of PPIRs. The mapped PTMs represented only 5 % of all known PTMs. Thus, in order to predict localization within or outside of PPIRs for the vast majority of PTMs, a machine learning strategy was used to generate predictive models from these mapped databases. For the three mapped PTM databases which had sufficient numbers of modification sites for generating models (acetylation, phosphorylation, and ubiquitylation), the resulting models yielded high overall predictive performance as judged by a combined performance score (CPS). Among the multiple properties of amino acids that were used in the classification tasks, hydrophobicity was found to contribute substantially to the performance of the final predictive models. Compared to the other classifiers we also evaluated, the SVM provided the best performance overall. Conclusions These models are the first to predict whether PTMs are located inside or outside of PPIRs, as demonstrated by their high predictive performance. The models and data presented here should be useful in prioritizing both known and newly identified PTMs for further studies to determine the functional relationship between specific PTMs and protein-protein interactions. The implemented R package is available online (http://sysbio.chula.ac.th/PtmPPIR). Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1165-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thammakorn Saethang
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - D Michael Payne
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Yingyos Avihingsanon
- Department of Medicine, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Trairak Pisitkun
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand. .,Epithelial Systems Biology Laboratory, NHLBI, National Institutes of Health, Bethesda, MD, 20892-1603, USA.
| |
Collapse
|
15
|
Gfeller D, Bassani-Sternberg M, Schmidt J, Luescher IF. Current tools for predicting cancer-specific T cell immunity. Oncoimmunology 2016; 5:e1177691. [PMID: 27622028 DOI: 10.1080/2162402x.2016.1177691] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022] Open
Abstract
Tumor exome and RNA sequencing data provide a systematic and unbiased view on cancer-specific expression, over-expression, and mutations of genes, which can be mined for personalized cancer vaccines and other immunotherapies. Of key interest are tumor-specific mutations, because T cells recognizing neoepitopes have the potential to be highly tumoricidal. Here, we review recent developments and technical advances in identifying MHC class I and class II-restricted tumor antigens, especially neoantigen derived MHC ligands, including in silico predictions, immune-peptidome analysis by mass spectrometry, and MHC ligand validation by biochemical methods on T cells.
Collapse
Affiliation(s)
- David Gfeller
- Ludwig Center for Cancer Research, University of Lausanne, Epalinges, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Julien Schmidt
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges, Switzerland
| | - Immanuel F Luescher
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges, Switzerland
| |
Collapse
|
16
|
Zhang W, Niu Y, Zou H, Luo L, Liu Q, Wu W. Accurate prediction of immunogenic T-cell epitopes from epitope sequences using the genetic algorithm-based ensemble learning. PLoS One 2015; 10:e0128194. [PMID: 26020952 PMCID: PMC4447411 DOI: 10.1371/journal.pone.0128194] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
Background T-cell epitopes play the important role in T-cell immune response, and they are critical components in the epitope-based vaccine design. Immunogenicity is the ability to trigger an immune response. The accurate prediction of immunogenic T-cell epitopes is significant for designing useful vaccines and understanding the immune system. Methods In this paper, we attempt to differentiate immunogenic epitopes from non-immunogenic epitopes based on their primary structures. First of all, we explore a variety of sequence-derived features, and analyze their relationship with epitope immunogenicity. To effectively utilize various features, a genetic algorithm (GA)-based ensemble method is proposed to determine the optimal feature subset and develop the high-accuracy ensemble model. In the GA optimization, a chromosome is to represent a feature subset in the search space. For each feature subset, the selected features are utilized to construct the base predictors, and an ensemble model is developed by taking the average of outputs from base predictors. The objective of GA is to search for the optimal feature subset, which leads to the ensemble model with the best cross validation AUC (area under ROC curve) on the training set. Results Two datasets named ‘IMMA2’ and ‘PAAQD’ are adopted as the benchmark datasets. Compared with the state-of-the-art methods POPI, POPISK, PAAQD and our previous method, the GA-based ensemble method produces much better performances, achieving the AUC score of 0.846 on IMMA2 dataset and the AUC score of 0.829 on PAAQD dataset. The statistical analysis demonstrates the performance improvements of GA-based ensemble method are statistically significant. Conclusions The proposed method is a promising tool for predicting the immunogenic epitopes. The source codes and datasets are available in S1 File.
Collapse
Affiliation(s)
- Wen Zhang
- School of Computer, Wuhan University, Wuhan, 430072, China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, China
- * E-mail:
| | - Yanqing Niu
- School of Mathematics and Statistics, South-central University for Nationalities, Wuhan, 430074, China
| | - Hua Zou
- School of Computer, Wuhan University, Wuhan, 430072, China
| | - Longqiang Luo
- School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China
| | - Qianchao Liu
- School of Computer, Wuhan University, Wuhan, 430072, China
| | - Weijian Wu
- School of Computer, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
17
|
Olsen LR, Campos B, Barnkob MS, Winther O, Brusic V, Andersen MH. Bioinformatics for cancer immunotherapy target discovery. Cancer Immunol Immunother 2014; 63:1235-49. [PMID: 25344903 PMCID: PMC11029190 DOI: 10.1007/s00262-014-1627-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 10/08/2014] [Indexed: 12/13/2022]
Abstract
The mechanisms of immune response to cancer have been studied extensively and great effort has been invested into harnessing the therapeutic potential of the immune system. Immunotherapies have seen significant advances in the past 20 years, but the full potential of protective and therapeutic cancer immunotherapies has yet to be fulfilled. The insufficient efficacy of existing treatments can be attributed to a number of biological and technical issues. In this review, we detail the current limitations of immunotherapy target selection and design, and review computational methods to streamline therapy target discovery in a bioinformatics analysis pipeline. We describe specialized bioinformatics tools and databases for three main bottlenecks in immunotherapy target discovery: the cataloging of potentially antigenic proteins, the identification of potential HLA binders, and the selection epitopes and co-targets for single-epitope and multi-epitope strategies. We provide examples of application to the well-known tumor antigen HER2 and suggest bioinformatics methods to ameliorate therapy resistance and ensure efficient and lasting control of tumors.
Collapse
Affiliation(s)
- Lars Rønn Olsen
- Department of Biology, Bioinformatics Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark,
| | | | | | | | | | | |
Collapse
|
18
|
Varicella-zoster virus-derived major histocompatibility complex class I-restricted peptide affinity is a determining factor in the HLA risk profile for the development of postherpetic neuralgia. J Virol 2014; 89:962-9. [PMID: 25355886 DOI: 10.1128/jvi.02500-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Postherpetic neuralgia (PHN) is the most common complication of herpes zoster and is typified by a lingering pain that can last months or years after the characteristic herpes zoster rash disappears. It is well known that there are risk factors for the development of PHN, such as its association with certain HLA alleles. In this study, previous HLA genotyping results were collected and subjected to a meta-analysis with increased statistical power. This work shows that the alleles HLA-A*33 and HLA-B*44 are significantly enriched in PHN patients, while HLA-A*02 and HLA-B*40 are significantly depleted. Prediction of the varicella-zoster virus (VZV) peptide affinity for these four HLA variants by using one in-house-developed and two existing state-of-the-art major histocompatibility complex (MHC) class I ligand prediction methods reveals that there is a great difference in their absolute and relative peptide binding repertoires. It was observed that HLA-A*02 displays a high affinity for an ∼7-fold-higher number of VZV peptides than HLA-B*44. Furthermore, after correction for HLA allele-specific limitations, the relative affinity of HLA-A*33 and HLA-B*44 for VZV peptides was found to be significantly lower than those of HLA-A*02 and HLA-B*40. In addition, HLA peptide affinity calculations indicate strong trends for VZV to avoid high-affinity peptides in some of its proteins, independent of the studied HLA allele. IMPORTANCE Varicella-zoster virus can cause two distinct diseases: chickenpox (varicella) and shingles (herpes zoster). Varicella is a common disease in young children, while herpes zoster is more frequent in older individuals. A common complication of herpes zoster is postherpetic neuralgia, a persistent and debilitating pain that can remain months up to years after the resolution of the rash. In this study, we show that the relative affinity of HLA variants associated with higher postherpetic neuralgia risk for varicella-zoster virus peptides is lower than that of variants with a lower risk. These results provide new insight into the development of postherpetic neuralgia and strongly support the hypothesis that one of its possible underlying causes is a suboptimal anti-VZV immune response due to weak HLA binding peptide affinity.
Collapse
|