1
|
Microbial biosensor for Salmonella using anti-bacterial antibodies isolated from human serum. Enzyme Microb Technol 2020; 144:109721. [PMID: 33541568 DOI: 10.1016/j.enzmictec.2020.109721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022]
Abstract
In this work, we present a novel microbial biosensor for Salmonella based on impedance spectrometry by using isolated antibodies against a specific bacterial strain from human serum. Anti-Salmonella (or BL21(DE3)) antibodies were isolated from human serum using S. enteritidis (or BL21(DE3)) and the mutant strain ClearColi. After the purification steps, the purification yield of the antibodies was calculated to be 0.2 %. From the FACS analysis, the isolated anti-Salmonella antibodies were estimated to have more than 6-fold higher binding affinity for S. enteritidis compared to antibodies against other kinds of Gram-negative bacterial strains, including HB101, ClearColi, JM110, DH5α, and BL21(DE3). Finally, the anti-Salmonella antibodies isolated herein were used for bacterial detection using electrochemical biosensors based on impedance spectrometry and the Rct value of the antibodies was estimated for S. enteritidis from the Nyquist plot. The limit of detection of the isolated anti-Salmonella antibodies was estimated to be 1.0 × 103 cells/mL for S. enteritidis and 1.0 × 106 cells/mL for BL21(DE3), respectively.
Collapse
|
2
|
Lee GY, Bong JH, Jung J, Kang MJ, Jose J, Pyun JC. Application of a thermophoretic immunoassay in the diagnosis of lupus using outer membrane particles from E. coli. Biosens Bioelectron 2020; 156:112110. [PMID: 32174550 DOI: 10.1016/j.bios.2020.112110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
Abstract
Thermophoresis is the physical diffusion of molecules from hot to cold induced by a thermal gradient. Thermophoresis has been used to evaluate the interaction of biomolecules in solution. In this study, the outer membrane from E. coli was isolated and used to produce OM particles with a diameter of approximately 100 nm. These prepared OM particles were applied in a thermophoretic immunoassay. First, outer membrane (OM) particles with lipopolysaccharides (LPS) and anti-LPS antibodies were used as a model to demonstrate proof of concept and the difference in E. coli thermophoresis was explained by the changes in the molecular surface area (A) and effective charge (σeff). The hydrodynamic size of the molecules was measured as a changing parameter, molecular surface area (A), by dynamic laser scattering (DLS), and the zeta potential was measured as a changing parameter of effective charge (σeff) and then evaluated by the Soret equation. Using the hydrodynamic size and zeta potential values, the interaction between the antigen (OM particle with LPS) and antibody (anti-LPS antibodies) could be monitored and the results were fitted to the thermophoretic immunoassay using the Soret coefficient and equation. Finally, this OM-based immunoassay was applied to the medical diagnosis of systemic lupus erythematosus. Here, OM particles with Ro and La proteins were used to analyze the autoantibodies in patient and control sera. Thermophoretic immunoassay results were also compared to the fitted analysis using hydrodynamic size and zeta potential values and the Soret coefficient and equation.
Collapse
Affiliation(s)
- Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology, Seoul, South Korea
| | - Joachim Jose
- Institute of Pharmaceutical and Medical Chemistry, University of Münster, Münster, Germany
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul, 120-749, South Korea.
| |
Collapse
|
3
|
Quantitative Assessment of an Artificial Neural Network for the Variation in Immunity to Salmonella Infection Among Sudanese and Chinese Populations and the Relationship Between HLA-DQB1 and Antibody: A Preliminary Study. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.99379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Differences in Antibodies Against Blood Group, HBV, and Salmonella Regarding Protein Content, Activity, and Affinity in Black and Yellow Healthy Individuals. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.94687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
5
|
Fluorescence immunoassay of E. coli using anti-lipopolysaccharide antibodies isolated from human serum. Biosens Bioelectron 2019; 126:518-528. [DOI: 10.1016/j.bios.2018.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/07/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
|
6
|
Goh YS, Necchi F, O’Shaughnessy CM, Micoli F, Gavini M, Young SP, Msefula CL, Gondwe EN, Mandala WL, Gordon MA, Saul AJ, MacLennan CA. Bactericidal Immunity to Salmonella in Africans and Mechanisms Causing Its Failure in HIV Infection. PLoS Negl Trop Dis 2016; 10:e0004604. [PMID: 27057743 PMCID: PMC4825999 DOI: 10.1371/journal.pntd.0004604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Nontyphoidal strains of Salmonella are a leading cause of death among HIV-infected Africans. Antibody-induced complement-mediated killing protects healthy Africans against Salmonella, but increased levels of anti-lipopolysaccharide (LPS) antibodies in some HIV-infected African adults block this killing. The objective was to understand how these high levels of anti-LPS antibodies interfere with the killing of Salmonella. Methodology/Principal Findings Sera and affinity-purified antibodies from African HIV-infected adults that failed to kill invasive S. Typhimurium D23580 were compared to sera from HIV-uninfected and HIV-infected subjects with bactericidal activity. The failure of sera from certain HIV-infected subjects to kill Salmonella was found to be due to an inherent inhibitory effect of anti-LPS antibodies. This inhibition was concentration-dependent and strongly associated with IgA and IgG2 anti-LPS antibodies (p<0.0001 for both). IgG anti-LPS antibodies, from sera of HIV-infected individuals that inhibit killing at high concentration, induced killing when diluted. Conversely, IgG, from sera of HIV-uninfected adults that induce killing, inhibited killing when concentrated. IgM anti-LPS antibodies from all subjects also induced Salmonella killing. Finally, the inhibitory effect of high concentrations of anti-LPS antibodies is seen with IgM as well as IgG and IgA. No correlation was found between affinity or avidity, or complement deposition or consumption, and inhibition of killing. Conclusion/Significance IgG and IgM classes of anti-S. Typhimurium LPS antibodies from HIV-infected and HIV-uninfected individuals are bactericidal, while at very high concentrations, anti-LPS antibodies of all classes inhibit in vitro killing of Salmonella. This could be due to a variety of mechanisms relating to the poor ability of IgA and IgG2 to activate complement, and deposition of complement at sites where it cannot insert in the bacterial membrane. Vaccine trials are required to understand the significance of lack of in vitro killing by anti-LPS antibodies from a minority of HIV-infected individuals with impaired immune homeostasis. Bacteremia caused by nontyphoidal Salmonellae are a major health burden in Africa. While antibody-induced complement-mediated killing protects healthy Africans against Salmonella, increased levels of anti-LPS antibodies in some HIV-infected Africans block this killing. Little is known about the mechanism of the interference of killing by these antibodies. Here, we compared sera and affinity-purified antibodies from African HIV-infected adults that are unable to kill invasive S. Typhimurium D23580, with sera from HIV-uninfected and HIV-infected subjects with bactericidal activity. We found that the blocking effect of anti-LPS antibodies is a factor of antibody concentration, rather than antibody structure or specificity. While all three isotypes (IgG, IgA and IgM) can inhibit killing of Salmonella at grossly high concentrations, the IgG and IgM isotypes of the anti-LPS antibodies have in vitro bactericidal activity against invasive African S. Typhimurium. Inhibition of killing did not associate with antibody affinity or avidity, or complement deposition or consumption. It is possible that a LPS-based vaccine would induce antibodies at bactericidal rather than inhibitory concentrations in HIV-uninfected individuals. In HIV-infected individuals, it is uncertain whether vaccination will induce a protective response or a dysregulated excess of anti-LPS antibodies that impairs serum killing of Salmonella.
Collapse
Affiliation(s)
- Yun Shan Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Francesca Necchi
- Sclavo Behring Vaccines Institute for Global Health, a GlaxoSmith Kline Company, Siena, Italy
| | - Colette M. O’Shaughnessy
- School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Micoli
- Sclavo Behring Vaccines Institute for Global Health, a GlaxoSmith Kline Company, Siena, Italy
| | | | - Stephen P. Young
- Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chisomo L. Msefula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Pathology, Division of Microbiology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Esther N. Gondwe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Department of Basic Medical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Wilson L. Mandala
- Centre for Translational Inflammation Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Melita A. Gordon
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Allan J. Saul
- Sclavo Behring Vaccines Institute for Global Health, a GlaxoSmith Kline Company, Siena, Italy
| | - Calman A. MacLennan
- School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Hart PJ, O’Shaughnessy CM, Siggins MK, Bobat S, Kingsley RA, Goulding DA, Crump JA, Reyburn H, Micoli F, Dougan G, Cunningham AF, MacLennan CA. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen. PLoS One 2016; 11:e0145945. [PMID: 26741681 PMCID: PMC4712142 DOI: 10.1371/journal.pone.0145945] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.
Collapse
Affiliation(s)
- Peter J. Hart
- School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Colette M. O’Shaughnessy
- School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew K. Siggins
- School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Saeeda Bobat
- School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert A. Kingsley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David A. Goulding
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - John A. Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
- Kilimanjaro Christian Medical Centre and Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, United States of America
- Duke Global Health Institute, Duke University, Durham, United States of America
| | - Hugh Reyburn
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Francesca Micoli
- Sclavo-Behring Vaccines Institute for Global Health, a GlaxoSmithKline Company, Siena, Italy
| | - Gordon Dougan
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Adam F. Cunningham
- School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Calman A. MacLennan
- School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Li Q, Wang J, Yang L, Gao X, Chen H, Zhao X, Bian L, Zheng X. Estimation of interaction between oriented immobilized green fluorescent protein and its antibody by high performance affinity chromatography and molecular docking. J Mol Recognit 2015; 28:438-46. [DOI: 10.1002/jmr.2460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Qian Li
- College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Jing Wang
- College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Lingjian Yang
- College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Xiaokang Gao
- College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Hongwei Chen
- College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Xinfeng Zhao
- College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Liujiao Bian
- College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Xiaohui Zheng
- College of Life Sciences; Northwest University; Xi'an 710069 China
| |
Collapse
|
9
|
Invasive African Salmonella Typhimurium induces bactericidal antibodies against O-antigens. Microb Pathog 2013; 63:19-23. [DOI: 10.1016/j.micpath.2013.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022]
|
10
|
Role of antilipopolysaccharide antibodies in serum bactericidal activity against Salmonella enterica serovar Typhimurium in healthy adults and children in the United States. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1491-8. [PMID: 23803904 DOI: 10.1128/cvi.00289-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent observations from Africa have rekindled interest in the role of serum bactericidal antibodies in protecting against systemic infection with Salmonella enterica serovar Typhimurium. To determine whether the findings are applicable to other populations, we analyzed serum samples collected from healthy individuals in the United States. We found that all but 1 of the 49 adult samples tested had robust bactericidal activity against S. Typhimurium in a standard in vitro assay. The activity was dependent on complement and could be reproduced by immunoglobulin G (IgG) purified from the sera. The bactericidal activity was inhibited by competition with soluble lipopolysaccharide (LPS) from S. Typhimurium but not from Escherichia coli, consistent with recognition of a determinant in the O-antigen polysaccharide. Sera from healthy children aged 10 to 48 months also had bactericidal activity, although it was significantly less than in the adults, correlating with lower levels of LPS-specific IgM and IgG. The lone sample in our collection that lacked bactericidal activity was able to inhibit killing of S. Typhimurium by the other sera. The inhibition correlated with the presence of an LPS-specific IgM and was associated with decreased complement deposition on the bacterial surface. Our results indicate that healthy individuals can have circulating antibodies to LPS that either mediate or inhibit killing of S. Typhimurium. The findings contrast with the observations from Africa, which linked bactericidal activity to antibodies against an S. Typhimurium outer membrane protein and correlated the presence of inhibitory anti-LPS antibodies with human immunodeficiency virus infection.
Collapse
|