1
|
Meany EL, Klich JH, Jons CK, Mao T, Chaudhary N, Utz A, Baillet J, Song YE, Saouaf OM, Ou BS, Williams SC, Eckman N, Irvine DJ, Appel E. Generation of an inflammatory niche in an injectable hydrogel depot through recruitment of key immune cells improves efficacy of mRNA vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602305. [PMID: 39026835 PMCID: PMC11257424 DOI: 10.1101/2024.07.05.602305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Messenger RNA (mRNA) delivered in lipid nanoparticles (LNPs) rose to the forefront of vaccine candidates during the COVID-19 pandemic due in part to scalability, adaptability, and potency. Yet there remain critical areas for improvements of these vaccines in durability and breadth of humoral responses. In this work, we explore a modular strategy to target mRNA/LNPs to antigen presenting cells with an injectable polymer-nanoparticle (PNP) hydrogel depot technology which recruits key immune cells and forms an immunological niche in vivo. We characterize this niche on a single cell level and find it is highly tunable through incorporation of adjuvants like MPLAs and 3M-052. Delivering commercially available SARS-CoV-2 mRNA vaccines in PNP hydrogels improves the durability and quality of germinal center reactions, and the magnitude, breadth, and durability of humoral responses. The tunable immune niche formed within PNP hydrogels effectively skews immune responses based on encapsulated adjuvants, creating opportunities to precisely modulate mRNA/LNP vaccines for various indications from infectious diseases to cancers.
Collapse
|
2
|
Trac N, Chen Z, Oh HS, Jones L, Huang Y, Giblin J, Gross M, Sta Maria NS, Jacobs RE, Chung EJ. MRI Detection of Lymph Node Metastasis through Molecular Targeting of C-C Chemokine Receptor Type 2 and Monocyte Hitchhiking. ACS NANO 2024; 18:2091-2104. [PMID: 38212302 DOI: 10.1021/acsnano.3c09201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Biopsy is the clinical standard for diagnosing lymph node (LN) metastasis, but it is invasive and poses significant risk to patient health. Magnetic resonance imaging (MRI) has been utilized as a noninvasive alternative but is limited by low sensitivity, with only ∼35% of LN metastases detected, as clinical contrast agents cannot discriminate between healthy and metastatic LNs due to nonspecific accumulation. Nanoparticles targeted to the C-C chemokine receptor 2 (CCR2), a biomarker highly expressed in metastatic LNs, have the potential to guide the delivery of contrast agents, improving the sensitivity of MRI. Additionally, cancer cells in metastatic LNs produce monocyte chemotactic protein 1 (MCP1), which binds to CCR2+ inflammatory monocytes and stimulates their migration. Thus, the molecular targeting of CCR2 may enable nanoparticle hitchhiking onto monocytes, providing an additional mechanism for metastatic LN targeting and early detection. Hence, we developed micelles incorporating gadolinium (Gd) and peptides derived from the CCR2-binding motif of MCP1 (MCP1-Gd) and evaluated the potential of MCP1-Gd to detect LN metastasis. When incubated with migrating monocytes in vitro, MCP1-Gd transport across lymphatic endothelium increased 2-fold relative to nontargeting controls. After administration into mouse models with initial LN metastasis and recurrent LN metastasis, MCP1-Gd detected metastatic LNs by increasing MRI signal by 30-50% relative to healthy LNs. Furthermore, LN targeting was dependent on monocyte hitchhiking, as monocyte depletion decreased accumulation by >70%. Herein, we present a nanoparticle contrast agent for MRI detection of LN metastasis mediated by CCR2-targeting and demonstrate the potential of monocyte hitchhiking for enhanced nanoparticle delivery.
Collapse
Affiliation(s)
- Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Zixi Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hyun-Seok Oh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Leila Jones
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua Giblin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Mitchell Gross
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, California 90064, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute and Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Russell E Jacobs
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute and Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Karampitsakos T, Galaris A, Chrysikos S, Papaioannou O, Vamvakaris I, Barbayianni I, Kanellopoulou P, Grammenoudi S, Anagnostopoulos N, Stratakos G, Katsaras M, Sampsonas F, Dimakou K, Manali ED, Papiris S, Tourki B, Juan-Guardela BM, Bakakos P, Bouros D, Herazo-Maya JD, Aidinis V, Tzouvelekis A. Expression of PD-1/PD-L1 axis in mediastinal lymph nodes and lung tissue of human and experimental lung fibrosis indicates a potential therapeutic target for idiopathic pulmonary fibrosis. Respir Res 2023; 24:279. [PMID: 37964265 PMCID: PMC10648728 DOI: 10.1186/s12931-023-02551-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Mediastinal lymph node enlargement is prevalent in patients with idiopathic pulmonary fibrosis (IPF). Studies investigating whether this phenomenon reflects specific immunologic activation are lacking. METHODS Programmed cell death-1 (PD-1)/ programmed cell death ligand-1 (PD-L1) expression in mediastinal lymph nodes and lung tissues was analyzed. PD-1, PD-L1 mRNA expression was measured in tracheobronchial lymph nodes of mice following bleomycin-induced injury on day 14. Finally, the effect of the PD-1 inhibitor, pembrolizumab, in bleomycin-induced pulmonary fibrosis was investigated. RESULTS We analyzed mediastinal lymph nodes of thirty-three patients (n = 33, IPF: n = 14, lung cancer: n = 10, concomitant IPF and lung cancer: n = 9) and lung tissues of two hundred nineteen patients (n = 219, IPF: 123, controls: 96). PD-1 expression was increased, while PD-L1 expression was decreased, in mediastinal lymph nodes of patients with IPF compared to lung cancer and in IPF lungs compared to control lungs. Tracheobronchial lymph nodes isolated on day 14 from bleomycin-treated mice exhibited increased size and higher PD-1, PD-L1 mRNA levels compared to saline-treated animals. Pembrolizumab blunted bleomycin-induced lung fibrosis, as indicated by reduction in Ashcroft score and improvement in respiratory mechanics. CONCLUSIONS Mediastinal lymph nodes of patients with IPF exhibit differential expression profiles than those of patients with lung cancer indicating distinct immune-mediated pathways regulating fibrogenesis and carcinogenesis. PD-1 expression in mediastinal lymph nodes is in line with lung tissue expression. Lower doses of pembrolizumab might exert antifibrotic effects. Clinical trials aiming to endotype patients based on mediastinal lymph node profiling and accordingly implement targeted therapies such as PD-1 inhibitors are greatly anticipated.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Apostolos Galaris
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Serafeim Chrysikos
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Ourania Papaioannou
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Ioannis Vamvakaris
- Department of Pathology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Ilianna Barbayianni
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Paraskevi Kanellopoulou
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Sofia Grammenoudi
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Nektarios Anagnostopoulos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Grigoris Stratakos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthaios Katsaras
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece
| | - Katerina Dimakou
- 5th Department of Pneumonology, Hospital for Thoracic Diseases, "SOTIRIA", Athens, Greece
| | - Effrosyni D Manali
- 2nd Pulmonary Medicine Department, Athens Medical School, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Papiris
- 2nd Pulmonary Medicine Department, Athens Medical School, "ATTIKON" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Bochra Tourki
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Petros Bakakos
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Demosthenes Bouros
- First Academic Department of Pneumonology, "SOTIRIA", Medical School, Hospital for Thoracic Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Jose D Herazo-Maya
- Ubben Center and Laboratory for Pulmonary Fibrosis Research, Morsani College of Medicine, University of South Florida, 33620, Tampa, FL, USA
| | - Vassilis Aidinis
- Institute of Bio- Innovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Argyris Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, Rio, Greece.
| |
Collapse
|
4
|
Guo X, Song X, Long X, Liu Y, Xie Y, Xie C, Ji B. New nomogram for predicting lymph node positivity in pancreatic head cancer. Front Oncol 2023; 13:1053375. [PMID: 36761960 PMCID: PMC9907461 DOI: 10.3389/fonc.2023.1053375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Pancreatic cancer is one of the most malignant cancers worldwide, and it mostly occurs in the head of the pancreas. Existing laparoscopic pancreaticoduodenectomy (LPD) surgical techniques have has undergone a learning curve, a wide variety of approaches for the treatment of pancreatic cancer have been proposed, and the operation has matured. At present, pancreatic head cancer has been gradually changing from "surgeons' evaluation of anatomical resection" to "biologically inappropriate resection". In this study, the risk of lymph node metastasis in pancreatic head cancer was predicted using common preoperative clinical indicators. Methods The preoperative clinical data of 191 patients with pancreatic head cancer who received LPD in the First Affiliated Hospital of Jilin University from May 2016 to December 2021 were obtained. A univariate regression analysis study was conducted, and the indicators with a significance level of P<0.05 were included in the univariate logistic regression analysis into multivariate. Lastly, a nomogram was built based on age, tumor size, leucocyte,albumin(ALB), and lymphocytes/monocytes(LMR). The model with the highest resolution was selected by obtaining the area under a curve. The clinical net benefit of the prediction model was examined using decision curve analyses.Risk stratification was performed by combining preoperative CT scan with existing models. Results Multivariate logistic regression analysis found age, tumor size, WBC, ALB, and LMR as five independent factors. A nomogram model was constructed based on the above indicators. The model was calibrated by validating the calibration curve within 1000 bootstrap resamples. The ROC curve achieved an AUC of 0.745(confidence interval of 95%: 0.673-0.816), thus indicating that the model had excellent discriminative skills. DCA suggested that the predictive model achieved a high net benefit in the nearly entire threshold probability range. Conclusions This study has been the first to investigate a nomogram for preoperative prediction of lymphatic metastasis in pancreatic head cancer. The result suggests that age, ALB, tumor size, WBC, and LMR are independent risk factors for lymph node metastasis in pancreatic head cancer. This study may provide a novel perspective for the selection of appropriate continuous treatment regimens, the increase of the survival rate of patients with pancreatic head cancer, and the selection of appropriate neoadjuvant therapy patients.
Collapse
|
5
|
Blair TC, Bambina S, Kramer GF, Dowdell AK, Alice AF, Baird JR, Lund AW, Piening BD, Crittenden MR, Gough MJ. Fluorescent tracking identifies key migratory dendritic cells in the lymph node after radiotherapy. Life Sci Alliance 2022; 5:e202101337. [PMID: 35487695 PMCID: PMC9058260 DOI: 10.26508/lsa.202101337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Radiation therapy generates extensive cancer cell death capable of promoting tumor-specific immunity. Within the tumor, conventional dendritic cells (cDCs) are known to carry tumor-associated antigens to the draining lymph node (TdLN) where they initiate T-cell priming. How radiation influences cDC migration is poorly understood. Here, we show that immunological efficacy of radiation therapy is dependent on cDC migration in radioimmunogenic tumors. Using photoconvertible mice, we demonstrate that radiation impairs cDC migration to the TdLN in poorly radioimmunogenic tumors. Comparative transcriptional analysis revealed that cDCs in radioimmunogenic tumors express genes associated with activation of endogenous adjuvant signaling pathways when compared with poorly radioimmunogenic tumors. Moreover, an exogenous adjuvant combined with radiation increased the number of migrating cDCs in these poorly radioimmunogenic tumors. Taken together, our data demonstrate that cDC migration play a critical role in the response to radiation therapy.
Collapse
Affiliation(s)
- Tiffany C Blair
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Shelly Bambina
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Gwen F Kramer
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Alexa K Dowdell
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Alejandro F Alice
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Jason R Baird
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Amanda W Lund
- Ronald O Perelman Department of Dermatology, Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Brian D Piening
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| | - Marka R Crittenden
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
- The Oregon Clinic, Portland, OR, USA
| | - Michael J Gough
- Earle A Chiles Research Institute, Robert W Franz Cancer Center, Providence Portland Medical Center, Portland, OR, USA
| |
Collapse
|
6
|
Shi Y, Wu H, Hu W, Jin Y, Kong M, Wang Y, Chen B, Li Q, Huang K, Yang Z, Li F, Wu Y, Ying T. An antigen-strengthened dye-modified fully-human-nanobody-based immunoprobe for second near infrared bioimaging of metastatic tumors. Biomaterials 2022; 287:121637. [PMID: 35728407 DOI: 10.1016/j.biomaterials.2022.121637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Conventional immunoprobes have absorption capabilities across the visible to near infrared (NIR-I, 650-900 nm) region. Recently, second near infrared (NIR-II, 1000-1700 nm) window have gained much attention due to their deeper penetration depth and improved visualization. Here, we describe the design and synthesis of a fully human nanobody-based fluorescent immunoprobe (ICGM-n501) for NIR-II bioimaging with strengthened fluorescent emission by antigen for the first time. By site-directed conjugation of an FDA-approved dye analogue, indocyanine green decorated with maleimide (ICGM), into a tumor-specific n501, ICGM-n501 provides real-time monitoring of abdominal transportation pathway of antibody-based bioagents with high resolution (0.21 mm), presents better accuracy and lower dosage (0.21 μmol kg-1) in bioimaging of peritoneal metastatic tumors than bioluminescence agent D-luciferin. In this work, ICGM-n501 demonstrates its potential in clinical surgery guidance, provide an expanded category of available NIR-II fluorophores and a template for next-generation immunoassay bioagents.
Collapse
Affiliation(s)
- Yibing Shi
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Huifang Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiqiang Hu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China
| | - Yujia Jin
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mengya Kong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yulu Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Binfan Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Quanxiao Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Keke Huang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhenlin Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fuyou Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Shi L, Wang L, Wu C, Wei Y, Zhang Y, Chen J. Preoperative Prediction of Lymph Node Metastasis of Pancreatic Ductal Adenocarcinoma Based on a Radiomics Nomogram of Dual-Parametric MRI Imaging. Front Oncol 2022; 12:927077. [PMID: 35875061 PMCID: PMC9298539 DOI: 10.3389/fonc.2022.927077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
PurposeThis study aims to uncover and validate an MRI-based radiomics nomogram for detecting lymph node metastasis (LNM) in pancreatic ductal adenocarcinoma (PDAC) patients prior to surgery.Materials and MethodsWe retrospectively collected 141 patients with pathologically confirmed PDAC who underwent preoperative T2-weighted imaging (T2WI) and portal venous phase (PVP) contrast-enhanced T1-weighted imaging (T1WI) scans between January 2017 and December 2021. The patients were randomly divided into training (n = 98) and validation (n = 43) cohorts at a ratio of 7:3. For each sequence, 1037 radiomics features were extracted and analyzed. After applying the gradient-boosting decision tree (GBDT), the key MRI radiomics features were selected. Three radiomics scores (rad-score 1 for PVP, rad-score 2 for T2WI, and rad-score 3 for T2WI combined with PVP) were calculated. Rad-score 3 and clinical independent risk factors were combined to construct a nomogram for the prediction of LNM of PDAC by multivariable logistic regression analysis. The predictive performances of the rad-scores and the nomogram were assessed by the area under the operating characteristic curve (AUC), and the clinical utility of the radiomics nomogram was assessed by decision curve analysis (DCA).ResultsSix radiomics features of T2WI, eight radiomics features of PVP and ten radiomics features of T2WI combined with PVP were found to be associated with LNM. Multivariate logistic regression analysis showed that rad-score 3 and MRI-reported LN status were independent predictors. In the training and validation cohorts, the AUCs of rad-score 1, rad-score 2 and rad-score 3 were 0.769 and 0.751, 0.807 and 0.784, and 0.834 and 0.807, respectively. The predictive value of rad-score 3 was similar to that of rad-score 1 and rad-score 2 in both the training and validation cohorts (P > 0.05). The radiomics nomogram constructed by rad-score 3 and MRI-reported LN status showed encouraging clinical benefit, with an AUC of 0.845 for the training cohort and 0.816 for the validation cohort.ConclusionsThe radiomics nomogram derived from the rad-score based on MRI features and MRI-reported lymph status showed outstanding performance for the preoperative prediction of LNM of PDAC.
Collapse
Affiliation(s)
- Lin Shi
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ling Wang
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Cuiyun Wu
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yuguo Wei
- Precision Health Institution, General Electric Healthcare, Hangzhou, China
| | - Yang Zhang
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junfa Chen
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Junfa Chen,
| |
Collapse
|
8
|
Ozawa M, Nakajima S, Kobayashi D, Tomii K, Li NJ, Watarai T, Suzuki R, Watanabe S, Kanda Y, Takeuchi A, Katakai T. Micro- and Macro-Anatomical Frameworks of Lymph Nodes Indispensable for the Lymphatic System Filtering Function. Front Cell Dev Biol 2022; 10:902601. [PMID: 35794860 PMCID: PMC9251010 DOI: 10.3389/fcell.2022.902601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2022] [Indexed: 01/01/2023] Open
Abstract
In the lymphatic vascular system, lymph nodes (LNs) play a pivotal role in filtering and removing lymph-borne substances. The filtering function of LNs involves resident macrophages tightly associated with unique lymphatic sinus structures. Moreover, an intermittently arranged LN in the lymphatic pathway is considered to cooperatively prevent lymph-borne substances from entering blood circulation. However, the functional significance of tissue microarchitecture, cellular composition, and individual LNs in the “LN chain” system is not fully understood. To explore the mechanistic and histo-anatomical significance of LNs as lymph fluid filters, we subcutaneously injected fluorescent tracers into mice and examined the details of lymphatic transport to the LNs qualitatively and quantitatively. Lymph-borne tracers were selectively accumulated in the MARCO+ subcapsular-medullary sinus border (SMB) region of the LN, in which reticular lymphatic endothelial cells and CD169+F4/80+ medullary sinus macrophages construct a dense meshwork of the physical barrier, forming the main body to capture the tracers. We also demonstrated stepwise filtration via the LN chain in the lymphatic basin, which prevented tracer leakage into the blood. Furthermore, inflammatory responses that induce the remodeling of LN tissue as well as the lymphatic pathway reinforce the overall filtering capacity of the lymphatic basin. Taken together, specialized tissue infrastructure in the LNs and their systematic orchestration constitute an integrated filtering system for lymphatic recirculation.
Collapse
Affiliation(s)
- Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shihori Nakajima
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daichi Kobayashi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tomii
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nan-Jun Li
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoya Watarai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Suzuki
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- *Correspondence: Tomoya Katakai,
| |
Collapse
|
9
|
An C, Li D, Li S, Li W, Tong T, Liu L, Jiang D, Jiang L, Ruan G, Hai N, Fu Y, Wang K, Zhuo S, Tian J. Deep learning radiomics of dual-energy computed tomography for predicting lymph node metastases of pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 2022; 49:1187-1199. [PMID: 34651229 DOI: 10.1007/s00259-021-05573-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Diagnosis of lymph node metastasis (LNM) is critical for patients with pancreatic ductal adenocarcinoma (PDAC). We aimed to build deep learning radiomics (DLR) models of dual-energy computed tomography (DECT) to classify LNM status of PDAC and to stratify the overall survival before treatment. METHODS From August 2016 to October 2020, 148 PDAC patients underwent regional lymph node dissection and scanned preoperatively DECT were enrolled. The virtual monoenergetic image at 40 keV was reconstructed from 100 and 150 keV of DECT. By setting January 1, 2021, as the cut-off date, 113 patients were assigned into the primary set, and 35 were in the test set. DLR models using VMI 40 keV, 100 keV, 150 keV, and 100 + 150 keV images were developed and compared. The best model was integrated with key clinical features selected by multivariate Cox regression analysis to achieve the most accurate prediction. RESULTS DLR based on 100 + 150 keV DECT yields the best performance in predicting LNM status with the AUC of 0.87 (95% confidence interval [CI]: 0.85-0.89) in the test cohort. After integrating key clinical features (CT-reported T stage, LN status, glutamyl transpeptadase, and glucose), the AUC was improved to 0.92 (95% CI: 0.91-0.94). Patients at high risk of LNM portended significantly worse overall survival than those at low risk after surgery (P = 0.012). CONCLUSIONS The DLR model showed outstanding performance for predicting LNM in PADC and hold promise of improving clinical decision-making.
Collapse
Affiliation(s)
- Chao An
- Department of Minimal Invasive Intervention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Dongyang Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sheng Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wangzhong Li
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Tong Tong
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhi Liu
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dongping Jiang
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Linling Jiang
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Guangying Ruan
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ning Hai
- Department of Ultrasound, Beijing Chao Yang Hospital, Capital Medical University, Beijing, 100010, China
| | - Yan Fu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Kun Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shuiqing Zhuo
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Giantesio G, Girelli A, Musesti A. A Mathematical Description of the Flow in a Spherical Lymph Node. Bull Math Biol 2022; 84:142. [PMID: 36318334 PMCID: PMC9626437 DOI: 10.1007/s11538-022-01103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
The motion of the lymph has a very important role in the immune system, and it is influenced by the porosity of the lymph nodes: more than 90% takes the peripheral path without entering the lymphoid compartment. In this paper, we construct a mathematical model of a lymph node assumed to have a spherical geometry, where the subcapsular sinus is a thin spherical shell near the external wall of the lymph node and the core is a porous material describing the lymphoid compartment. For the mathematical formulation, we assume incompressibility and we use Stokes together with Darcy-Brinkman equation for the flow of the lymph. Thanks to the hypothesis of axisymmetric flow with respect to the azimuthal angle and the use of the stream function approach, we find an explicit solution for the fully developed pulsatile flow in terms of Gegenbauer polynomials. A selected set of plots is provided to show the trend of motion in the case of physiological parameters. Then, a finite element simulation is performed and it is compared with the explicit solution.
Collapse
Affiliation(s)
- Giulia Giantesio
- grid.8142.f0000 0001 0941 3192Dipartimento di Matematica e Fisica “N. Tartaglia”, Università Cattolica del Sacro Cuore, Brescia, Italy
| | - Alberto Girelli
- grid.7563.70000 0001 2174 1754Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Alessandro Musesti
- grid.8142.f0000 0001 0941 3192Dipartimento di Matematica e Fisica “N. Tartaglia”, Università Cattolica del Sacro Cuore, Brescia, Italy
| |
Collapse
|
11
|
Majidi SS, Su Y, Jørgensen ML, Müller C, Forooghi P, Nie G, Chen M. Rayleigh Instability-Driven Coaxial Spinning of Knotted Cell-Laden Alginate Fibers as Artificial Lymph Vessels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22142-22149. [PMID: 33960773 DOI: 10.1021/acsami.1c00798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Constructing artificial lymph vessels, which play a key role in the immune response, can provide new insights into immunology and disease pathologies. An immune tissue is a highly complex network that consists of lymph vessels, with a "beads-on-a-string" knotted structure. Herein, we present the facile and rapid fabrication of beads-on-a-string knotted cell-laden fibers using coaxial spinning of alginate by exploiting the Plateau-Rayleigh instability. It is shown how alterations in the flow rate and alginate concentration greatly affect the beads-on-a-string structure, rooted in the Plateau-Rayleigh instability theory. Biocompatibility was confirmed by the lactate dehydrogenase (LDH) assay and live/dead staining of the encapsulated human white blood cells. Finally, the encapsulated white blood cells were still functional as indicated by their anti-CD3 activation to secrete interleukin 2. The rapid fabrication of a cell-laden beads-on-a-string three-dimensional (3D) culture platform enables a crude mimicry of the lymph vessel structure. With joint expertise in immunology, microfluidics, and bioreactors, the technology may contribute to the mechanistic assay of human immune response in vitro and functional replacement.
Collapse
Affiliation(s)
- Sara Seidelin Majidi
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing 101400, China
| | - Yingchun Su
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Mathias Lindh Jørgensen
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Christoph Müller
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Pourya Forooghi
- Department of Mechanical and Production Engineering, Aarhus University, 8000 Aarhus C, Denmark
| | - Guangjun Nie
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Menglin Chen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Rothe R, Xu Y, Thomas AK, Meister S, Zhang Y, Pietzsch J, Hauser S. A modular, injectable, non-covalently assembled hydrogel system features widescale tunable degradability for controlled release and tissue integration. Biomaterials 2020; 269:120637. [PMID: 33450583 DOI: 10.1016/j.biomaterials.2020.120637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022]
Abstract
Biomaterials with attenuated adverse host tissue reactions, and meanwhile, combining biocompatibility with mimicry of mechanical and biochemical cues of native extracellular matrices (ECM) to promote integration and regeneration of tissues are important for many biomedical applications. Further, the materials should also be tailorable to feature desired application-related functions, like tunable degradability, injectability, or controlled release of bioactive molecules. Herein, a non-covalently assembled, injectable hydrogel system based on oligopeptides interacting with sulphated polysaccharides is reported, showing high tolerability and biocompatibility in immunocompetent hairless mice. Altering the peptide or polysaccharide component considerably varies the in vivo degradation rate of the hydrogels, ranging from a half-life of three weeks to no detectable degradation after three months. The hydrogel with sulphated low molecular weight hyaluronic acid exhibits sustained degradation-mediated release of heparin-binding molecules in vivo, as shown by small animal magnetic resonance imaging and fluorescence imaging, and enhances the expression of vascular endothelial growth factor in hydrogel surrounding. In vitro investigations indicate that M2-macrophages could be responsible for the moderate difference in pro-angiogenic effects. The ECM-mimetic and injectable hydrogels represent tunable bioactive scaffolds for tissue engineering, also enabling controlled release of heparin-binding signalling molecules including many growth factors.
Collapse
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstraße 400, 01328, Dresden, Germany; Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Mommsenstraße 66, 01062, Dresden, Germany
| | - Yong Xu
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Alvin Kuriakose Thomas
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany.
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstraße 400, 01328, Dresden, Germany; Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, School of Science, Mommsenstraße 66, 01062, Dresden, Germany.
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstraße 400, 01328, Dresden, Germany.
| |
Collapse
|
13
|
Qiu L, Lai X, Wang JJ, Yeap XY, Han S, Zheng F, Lin C, Zhang Z, Procissi D, Fang D, Li L, Thorp EB, Abecassis MM, Kanwar YS, Zhang ZJ. Kidney-intrinsic factors determine the severity of ischemia/reperfusion injury in a mouse model of delayed graft function. Kidney Int 2020; 98:1489-1501. [PMID: 32822703 PMCID: PMC7814505 DOI: 10.1016/j.kint.2020.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Delayed graft function due to transplant ischemia/reperfusion injury adversely affects up to 50% of deceased-donor kidney transplant recipients. However, key factors contributing to the severity of ischemia/reperfusion injury remain unclear. Here, using a clinically relevant mouse model of delayed graft function, we demonstrated that donor genetic background and kidney-intrinsic MyD88/Trif-dependent innate immunity were key determinants of delayed graft function. Functional deterioration of kidney grafts directly corresponded with the duration of cold ischemia time. The graft dysfunction became irreversible after cold ischemia time exceeded six hours. When cold ischemia time reached four hours, kidney grafts displayed histological features reflective of delayed graft function seen in clinical kidney transplantation. Notably, kidneys of B6 mice exhibited significantly more severe histological and functional impairment than kidneys of C3H or BALB/c mice, regardless of recipient strains or alloreactivities. Furthermore, allografts of B6 mice also showed an upregulation of IL-6, neutrophil gelatinase-associated lipocalin, and endoplasmic reticulum stress genes, as well as an increased influx of host neutrophils and memory CD8 T-cells. In contrast, donor MyD88/Trif deficiency inhibited neutrophil influx and decreased the expression of IL-6 and endoplasmic reticulum stress genes, along with improved graft function and prolonged allograft survival. Thus, kidney-intrinsic factors involving genetic characteristics and innate immunity serve as critical determinants of the severity of delayed graft function. This preclinical murine model allows for further investigations of the mechanisms underlying delayed graft function.
Collapse
Affiliation(s)
- Longhui Qiu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xingqiang Lai
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Organ Transplant Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xin Yi Yeap
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shulin Han
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Feibo Zheng
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Charlie Lin
- Weinberg Art and Science College, Northwestern University, Evanston, Illinois, USA
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniele Procissi
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lin Li
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, West Hollywood, California, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael M Abecassis
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Medicine (Nephrology and Hypertension), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zheng J Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
14
|
Birmingham KG, O'Melia MJ, Bordy S, Reyes Aguilar D, El-Reyas B, Lesinski G, Thomas SN. Lymph Node Subcapsular Sinus Microenvironment-On-A-Chip Modeling Shear Flow Relevant to Lymphatic Metastasis and Immune Cell Homing. iScience 2020; 23:101751. [PMID: 33241198 PMCID: PMC7672279 DOI: 10.1016/j.isci.2020.101751] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
A lymph node sinus-on-a-chip adhesion microfluidic platform that recapitulates the hydrodynamic microenvironment of the lymph node subcapsular sinus was engineered. This device was used to interrogate the effects of lymph node remodeling on cellular adhesion in fluid flow relevant to lymphatic metastasis. Wall shear stress levels analytically estimated and modeled after quiescent and diseased/inflamed lymph nodes were experimentally recapitulated using a flow-based microfluidic perfusion system to assess the effects of physiological flow fields on human metastatic cancer cell adhesion. Results suggest that both altered fluid flow profiles and presentation of adhesive ligands, which are predicted to manifest within the lymph node subcapsular sinus as a result of inflammation-induced remodeling, and the presence of lymph-borne monocytic cells may synergistically contribute to the dynamic extent of cell adhesion in flow relevant to lymph node invasion by cancer and monocytic immune cells during lymphatic metastasis.
Collapse
Affiliation(s)
- Katherine G. Birmingham
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Meghan J. O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Samantha Bordy
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David Reyes Aguilar
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Bassel El-Reyas
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Gregory Lesinski
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Susan N. Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Corresponding author
| |
Collapse
|
15
|
Zhang M, Chen W, Hong Y, Chen H, Wang C. External temperature control of lymphatic drainage of thermo-sensitive nanomaterials. Biomater Sci 2019; 7:750-759. [PMID: 30519699 DOI: 10.1039/c8bm01298a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nano-carrier-facilitated delivery of bioactive molecules into lymph nodes (LNs) has found application in the treatment and diagnosis of numerous immune-related diseases. Much work has focused on optimization of physicochemical properties of the nano-carrier to enhance lymphatic drainage passively, whereas active modulation of the quantity and timing of lymphatic delivery remains a significant challenge. Here, inspired by the success of thermo-modulation of tumor targeting, we have developed a simple external temperature control strategy to regulate the distribution of thermo-sensitive nanomaterials between the injection site and draining LNs. To demonstrate feasibility of this strategy, we injected Rhodamine-B-labeled poly(N-isopropylacrylamide) (RhB-PNIPAm) (2.5 kDa) into the footpad of mice at different initial temperatures - either below or above the lower critical solution temperature (LCST), followed by physical cooling of the injection site. We show that RhB-PNIPAm drained efficiently into the popliteal and inguinal nodes (pLNs, iLNs, respectively) with low levels of accumulation in major internal organs. Within the first two hours post-injection the rate of drainage was primarily dependent on the initial temperature of RhB-PNIPAm. However, over the course of 24 h, temperature gradient due to local cooling affected significantly the draining of the injection site, resulting in differential accumulation of RhB-PNIPAm in the proximal (pLNs) versus the distal (iLNs) nodes. This study provides a new methodology and insights for modulating in vivo lymphatic distribution of thermo-sensitive nanomaterials with implications in immune regulation and immunotherapy.
Collapse
Affiliation(s)
- Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | | | | | | | | |
Collapse
|
16
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
17
|
Zheng L, Zhang Z, Khazaie K, Saha S, Lewandowski RJ, Zhang G, Larson AC. MRI-monitored intra-tumoral injection of iron-oxide labeled Clostridium novyi-NT anaerobes in pancreatic carcinoma mouse model. PLoS One 2014; 9:e116204. [PMID: 25549324 PMCID: PMC4280207 DOI: 10.1371/journal.pone.0116204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/07/2014] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES To validate the feasibility of labeling Clostridium novyi-NT (C.novyi-NT) anaerobes with iron-oxide nanoparticles for magnetic resonance imaging (MRI) and demonstrate the potential to use MRI to visualize intra-tumoral delivery of these iron-oxide labeled C.novyi-NT during percutaneous injection procedures. MATERIALS AND METHODS All studies were approved by IACUC. C.novyi-NT were labeled with hybrid iron-oxide Texas red nanoparticles. Growth of labeled and control samples were evaluated with optical density. Labeling was confirmed with confocal fluorescence and transmission electron microscopy (TEM). MRI were performed using a 7 Tesla scanner with T2*-weighted (T2*W) sequence. Contrast-to-noise ratio (CNR) measurements were performed for phantoms and signal-to-noise ratio (SNR) measurements performed in C57BL/6 mice (n = 12) with Panc02 xenografts before and after percutaneous injection of iron-oxide labeled C.novyi-NT. MRI was repeated 3 and 7 days post-injection. Hematoxylin-eosin (HE), Prussian blue and Gram staining of tumor specimens were performed for confirmation of intra-tumoral delivery. RESULTS Iron-oxide labeling had no influence upon C.novyi-NT growth. The signal intensity (SI) within T2*W images was significantly decreased for iron-oxide labeled C.novyi-NT phantoms compared to unlabeled controls. Under confocal fluorescence microscopy, the iron-oxide labeled C.novyi-NT exhibited a uniform red fluorescence consistent with observed regions of DAPI staining and overall labeling efficiency was 100% (all DAPI stained C.novyi-NT exhibited red fluorescence). Within TEM images, a large number iron granules were observed within the iron-oxide labeled C.novyi-NT; these were not observed within unlabeled controls. Intra-procedural MRI measurements permitted in vivo visualization of the intra-tumoral distribution of iron-oxide labeled C.novyi-NT following percutaneous injection (depicted as punctate regions of SI reductions within T2*-weighted images); tumor SNR decreased significantly following intra-tumoral injection of C.novyi-NT (p<0.05); these SNR reductions were maintained at 3 and 7 day follow-up intervals. Prussian blue and Gram staining confirmed presence of the iron-oxide labeled anaerobes. CONCLUSIONS C.novyi-NT can be labeled with iron-oxide nanoparticles for MRI visualization of intra-tumoral deposition following percutaneous injection during bacteriolytic therapy.
Collapse
Affiliation(s)
- Linfeng Zheng
- Department of Radiology, First People’s Hospital, Shanghai Jiaotong University, Shanghai, China
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, United States of America
| | - Khashayarsha Khazaie
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Saurabh Saha
- BioMed Valley Discoveries, Kansas City, Missouri, United States of America
| | - Robert J. Lewandowski
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Guixiang Zhang
- Department of Radiology, First People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Andrew C. Larson
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, United States of America
| |
Collapse
|
18
|
Functional dynamic contrast-enhanced magnetic resonance imaging in an animal model of brain metastases: a pilot study. PLoS One 2014; 9:e109308. [PMID: 25280000 PMCID: PMC4184857 DOI: 10.1371/journal.pone.0109308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022] Open
Abstract
Background Brain metastasis is a common disease with a poor prognosis. The purpose of this study is to test feasibility and safety of the animal models for brain metastases and to use dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to enhance detection of brain metastases. Methods With approval from the institutional animal ethics committee, 18 New Zealand rabbits were randomly divided into three groups: Group A received an intra-carotid infusion (ICI) of mannitol followed by VX2 cells; group B received successive ICI of mannitol and heparin followed by VX2 cells; and group C received an ICI of normal saline. The survival rate and clinical symptoms were recorded after inoculation. After two weeks, conventional MRI and DCE-MRI were performed using 3.0 Tesla scanner. The number of tumors and detection rate were analyzed. After MRI measurements, the tumors were stained with hematoxylin-eosin. Results No rabbits died during the procedure. The rabbits had common symptoms, including loss of appetite, lassitude and lethargy, etc. at 10.8±1.8 days and 8.4±1.5 days post-inoculation in group A and B, respectively. Each animal in groups A and B re-gained the lost weight within 14 days. Brain metastases could be detected by MRI at 14 days post-inoculation in both groups A and B, with metastases manifesting as nodules in the brain parenchyma and thickening in the meninges. DCE-MRI increased the total detection of tumors compared to non-contrast MRI (P<0.05). The detection rates of T1-weighted image, T2-weighted image and DCE-MRI were 12%, 32% and 100%, respectively (P<0.05). Necropsy revealed nodules or thickening meninges in the gross samples and VX2 tumor cytomorphologic features in the slides, which were consistent with the MRI results. Conclusions The VX2 rabbit model of brain metastases is feasible, as verified by MRI and pathologic findings, and may be a suitable platform for future studies of brain metastases. Functional DCE-MRI can be used to evaluate brain metastases in a rabbit model.
Collapse
|
19
|
Zhang Z, Li W, Procissi D, Li K, Sheu AY, Gordon AC, Guo Y, Khazaie K, Huan Y, Han G, Larson AC. Antigen-loaded dendritic cell migration: MR imaging in a pancreatic carcinoma model. Radiology 2014; 274:192-200. [PMID: 25222066 DOI: 10.1148/radiol.14132172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes ( LN lymph node s) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. MATERIALS AND METHODS The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LN lymph node s was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio ( SNR signal-to-noise ratio ) of the draining LN lymph node s was measured. One-way analysis of variance ( ANOVA analysis of variance ) was used to compare Prussian blue-positive dendritic cell measurements in LN lymph node s. Repeated-measures ANOVA analysis of variance was used to compare in vivo T2-weighted SNR signal-to-noise ratio LN lymph node measurements between groups over the observation time points. RESULTS Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm(2) ± 16.4 and 109 mm(2) ± 24.3 for the 1-million dendritic cell group, 92.2 mm(2) ± 9.9 and 90.4 mm(2) ± 12.8 for the 2-million dendritic cell group, and 193.7 mm(2) ± 20.9 and 189.4 mm(2) ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNR signal-to-noise ratio decreases in the left popliteal LN lymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). CONCLUSION MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell-based vaccines in draining LN lymph node s. The amount of dendritic cell-based vaccine in draining LN lymph node s correlates well with observed protective effects.
Collapse
Affiliation(s)
- Zhuoli Zhang
- From the Department of Radiology (Z.Z., W.L., D.P., K.L., A.Y.S., A.C.G., Y.G., A.C.L.), Robert H. Lurie Comprehensive Cancer Center (Z.Z., K.K., A.C.L.), and Department of Biomedical Engineering (A.C.L.), Northwestern University, 737 N Michigan Ave, 16th Floor, Chicago, IL 60611; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (Z.Z., Y.H., A.C.L.); and Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, China (G.H.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|