1
|
Ahmadzadeh M, Mohit E. Therapeutic potential of a novel IP-10-(anti-HER2 scFv) fusion protein for the treatment of HER2-positive breast cancer. Biotechnol Lett 2023; 45:371-385. [PMID: 36650341 DOI: 10.1007/s10529-022-03342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Interferon-γ-inducible protein 10 (IP-10) is a potent antitumor agent and acts by its angiostatic and immunomodulatory properties. IP-10 can target to tumor site by linking with single chain variable fragment (scFv) that recognized specific tumor antigen. In this study, we evaluated biological activity of the fusion protein including IP-10 and anti-HER2 scFv (IP-10-(anti-HER2 scFv)). RESULTS The HER2- and cell-based ELISA as well as the flow cytometry analysis demonstrated that the fusion protein specifically binds to HER2 antigen. In addition, competitive ELISA demonstrated that the fusion protein recognized the same epitope of HER2 antigen as trastuzumab. The results of MTT assay demonstrated that the growth of HER2-enriched SK-BR3 cells was inhibited in the presence of the fusion protein. Moreover, the cytotoxic effect of the fusion protein was not significantly different from that of trastuzumab. However, no significant cytotoxic effect compared to trastuzumab and anti-HER2 scFv was observed in HER2-low-expressing MDA-MB-231 cells. The obtained findings demonstrated that IP-10-(anti-HER2 scFv) can selectively reduce the cell viability in HER2+ cells. Moreover, similar inhibitory effect on growth of both SK-BR-3 and MDA-MB-231 cell lines was observed in the presence of anti-HER2 scFv protein even at high concentration after 72 h. The chemotaxis properties of the fusion protein were also analyzed by a chemotaxis assay. It was demonstrated that the fusion protein induced migration of activated T cell similar to recombinant IP-10 protein. CONCLUSIONS Our findings suggested that IP-10-(anti-HER2 scFv) fusion protein can specifically direct IP-10 to the HER2-expressing tumor cells and may act as an adjuvant along with HER2-based vaccine to gather the elicited immune response at the site of HER2-overexpressimg tumors.
Collapse
Affiliation(s)
- Maryam Ahmadzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, Tehran, 1991953381, Iran
- Food and Drug Administration, The Ministry of Health and Medical Education, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, Tehran, 1991953381, Iran.
| |
Collapse
|
2
|
Kumada Y, Miyamura Y, Tanibata R, Takahashi K, Ogasawara S, Gondaira F, Horiuchi JI. Design and site-directed immobilization of single-chain Fv antibody to polystyrene latex beads via material-binding peptides and application to latex turbidimetric assay. J Biosci Bioeng 2020; 131:84-89. [PMID: 33023860 DOI: 10.1016/j.jbiosc.2020.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
In this study, immobilization of single-chain Fv (scFv) antibodies on the surfaces of polystyrene (PS) latex beads via material-binding peptides was investigated for sensitive immuno-turbidimetric assay of C-reactive protein (CRP). Anti-CRP scFvs fused with polystyrene-binding peptide (PS-tag) and poly(methylmethacrylate)-binding peptide (PMMA-tag) were over-expressed in Escherichia coli cells and recovered in the active form following refolding. The beads with PMMA-tag-fused scFv (scFv-PM) were successfully suspended with sufficient dispersion at pH 8.0. Three types of alternative scFv-PMs with a penta-asparatic acid tag (D5-tag) introduced at different positions were then designed. All of the D5-tagged scFv-PMs were successfully immobilized on the surfaces of beads with no significant change in the diameter of the latex beads at pH levels ranging from 6.0 to 8.0. According to the results of turbidimetric assay for the detection of CRP, 13 ng/ml of CRP was detectable using beads with D5-tagged scFv-PMs at 400 ng/cm3, and no turbidity change was observed in the absence of antigen. When the density of scFv-PM was 250 ng/cm2, which was 63% of the maximum density, the beads were dispersed well and reactive with the antigen at a concentration range comparable to those with D5-tagged scFv-PMs. These results indicate that controlling charge density on the surface of beads after site-directed immobilization is definitely important in order to maintain high levels of dispersion and reactivity. Thus, the usefulness of the scFv-PM as well as D5-tagged scFv-PMs developed in the present study should be significant when used as ligand antibodies in the preparation of immuno-latex beads.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-0951, Japan.
| | - Yohei Miyamura
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-0951, Japan
| | - Reina Tanibata
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-0951, Japan
| | - Koichi Takahashi
- Denka Co., Ltd., 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8338, Japan
| | - Shinya Ogasawara
- Denka Co., Ltd., 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8338, Japan
| | - Fumio Gondaira
- Denka Co., Ltd., 2-1-1 Nihonbashi-Muromachi, Chuo-ku, Tokyo 103-8338, Japan
| | - Jun-Ichi Horiuchi
- Department of Functional Chemistry and Engineering, Kyoto Institute of Technology, 1 Matsugasaki-Hashikami-Cho, Sakyo-ku, Kyoto 606-0951, Japan
| |
Collapse
|
3
|
Chitray M, Opperman PA, Rotherham L, Fehrsen J, van Wyngaardt W, Frischmuth J, Rieder E, Maree FF. Diagnostic and Epitope Mapping Potential of Single-Chain Antibody Fragments Against Foot-and-Mouth Disease Virus Serotypes A, SAT1, and SAT3. Front Vet Sci 2020; 7:475. [PMID: 32851044 PMCID: PMC7432252 DOI: 10.3389/fvets.2020.00475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) affects cloven-hoofed domestic and wildlife animals and an outbreak can cause severe losses in milk production, reduction in meat production and death amongst young animals. Several parts of Asia, most of Africa, and the Middle East remain endemic, thus emphasis on improved FMD vaccines, diagnostic assays, and control measures are key research areas. FMD virus (FMDV) populations are quasispecies, which pose serious implications in vaccine design and efficacy where an effective vaccine should include multiple independent neutralizing epitopes to elicit an adequate immune response. Further investigation of the residues that comprise the antigenic determinants of the virus will allow the identification of mutations in outbreak strains that potentially lessen the efficacy of a vaccine. Additionally, of utmost importance in endemic regions, is the accurate diagnosis of FMDV infection for the control and eradication of the disease. To this end, a phage display library was explored to identify FMDV epitopes for recombinant vaccines and for the generation of reagents for improved diagnostic FMD enzyme-linked immunosorbent assays (ELISAs). A naïve semi-synthetic chicken single chain variable fragment (scFv) phage display library i.e., the Nkuku ® library was used for bio-panning against FMD Southern-African Territories (SAT) 1, SAT3, and serotype A viruses. Biopanning yielded one unique scFv against SAT1, two for SAT3, and nine for A22. SAT1 and SAT3 specific scFvs were exploited as capturing and detecting reagents to develop an improved diagnostic ELISA for FMDV. The SAT1 soluble scFv showed potential as a detecting reagent in the liquid phase blocking ELISA (LPBE) as it reacted specifically with a panel of SAT1 viruses, albeit with different ELISA absorbance signals. The SAT1svFv1 had little or no change on its paratope when coated on polystyrene plates whilst the SAT3scFv's paratope may have changed. SAT1 and SAT3 soluble scFvs did not neutralize the SAT1 and SAT3 viruses; however, three of the nine A22 binders i.e., A22scFv1, A22scFv2, and A22scFv8 were able to neutralize A22 virus. Following the generation of virus escape mutants through successive virus passage under scFv pressure, FMDV epitopes were postulated i.e., RGD+3 and +4 positions respectively, proving the epitope mapping potential of scFvs.
Collapse
Affiliation(s)
- Melanie Chitray
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Pamela Anne Opperman
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Lia Rotherham
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa
| | - Jeanni Fehrsen
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Wouter van Wyngaardt
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa
| | - Janine Frischmuth
- Biotechnology Division, National Bioproducts Institute, Pinetown, South Africa
| | - Elizabeth Rieder
- Plum Island Animal Disease Centre, U.S. Department of Agriculture, Agricultural Research Service, Greenport, NY, United States
| | - Francois Frederick Maree
- Agricultural Research Council, Onderstepoort Veterinary Research, Vaccines and Diagnostic Development, Onderstepoort, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Xiao Q, Xu C. Research progress on chemiluminescence immunoassay combined with novel technologies. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115780] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Miura K, Tsuji Y, Mitsui H, Oshima T, Noshi Y, Arisawa Y, Okano K, Okano T. THETA system allows one-step isolation of tagged proteins through temperature-dependent protein-peptide interaction. Commun Biol 2019; 2:207. [PMID: 31240245 PMCID: PMC6572768 DOI: 10.1038/s42003-019-0457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Tools to control protein-protein interactions by external stimuli have been extensively developed. For this purpose, thermal stimulation can be utilized in addition to light. In this study, we identify a monoclonal antibody termed C13 mAb, which shows an approximately 480-fold decrease in the affinity constant at 37 °C compared to that at 4 °C. Next, we apply this temperature-dependent protein-peptide interaction for one-step protein purifications. We term this THermal-Elution-based TAg system as the THETA system, in which gel-immobilized C13 mAb-derived single-chain variable fragment (scFv) (termed THETAL) is able to bind with proteins tagged by C13 mAb-epitope(s) (THETAS) at 4 °C and thermally release at 37-42 °C. Moreover, to reveal the temperature-dependent interaction mechanism, molecular dynamics simulations are performed along with epitope mapping experiments. Overall, the high specificity and reversibility of the temperature-dependent features of the THETA system will support a wide variety of future applications such as thermogenetics.
Collapse
Affiliation(s)
- Kota Miura
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Yusuke Tsuji
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Hiromasa Mitsui
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Takuya Oshima
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Yosei Noshi
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Yudai Arisawa
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Keiko Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| | - Toshiyuki Okano
- Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Wakamatsucho 2-2, Shinjuku-Ku, Tokyo 162-8480 Japan
| |
Collapse
|
6
|
Fusion of polymeric material-binding peptide to cell-adhesion artificial proteins enhances their biological function. Biointerphases 2017; 12:021002. [DOI: 10.1116/1.4979577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 2017; 116:95-111. [PMID: 27876681 PMCID: PMC5374010 DOI: 10.1016/j.ymeth.2016.11.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/11/2023] Open
Abstract
Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies. Few of these challenges that we have discussed in this review are mainly associated to the site-specific immobilization, appropriate orientation, and activity retention. We have discussed the effect of antibody immobilization approaches on the parameters on the performance of an immunoassay.
Collapse
Affiliation(s)
- Min Shen
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
| | - James Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 060
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| | - Chandra K Dixit
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060
| |
Collapse
|
8
|
Crivianu-Gaita V, Thompson M. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron 2016; 85:32-45. [PMID: 27155114 DOI: 10.1016/j.bios.2016.04.091] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 01/14/2023]
Abstract
The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability).
Collapse
Affiliation(s)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
9
|
Kruis IC, Löwik DWPM, Boelens WC, van Hest JCM, Pruijn GJM. An integrated, peptide-based approach to site-specific protein immobilization for detection of biomolecular interactions. Analyst 2016; 141:5321-8. [DOI: 10.1039/c6an00154h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Site-specific immobilization of proteins on a biosensor surface, based on leucine zipper interactions.
Collapse
Affiliation(s)
- Ilmar C. Kruis
- Radboud University
- Department of Biomolecular Chemistry
- Institute for Molecules and Materials and Radboud Institute for Molecular Life Science
- Nijmegen
- The Netherlands
| | - Dennis W. P. M. Löwik
- Radboud University
- Department of Bio-organic Chemistry
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| | - Wilbert C. Boelens
- Radboud University
- Department of Biomolecular Chemistry
- Institute for Molecules and Materials and Radboud Institute for Molecular Life Science
- Nijmegen
- The Netherlands
| | - Jan C. M. van Hest
- Radboud University
- Department of Bio-organic Chemistry
- Institute for Molecules and Materials
- Nijmegen
- The Netherlands
| | - Ger J. M. Pruijn
- Radboud University
- Department of Biomolecular Chemistry
- Institute for Molecules and Materials and Radboud Institute for Molecular Life Science
- Nijmegen
- The Netherlands
| |
Collapse
|
10
|
Kumada Y, Kang B, Yamakawa K, Kishimoto M, Horiuchi JI. Efficient preparation and site-directed immobilization of VHH antibodies by genetic fusion of poly(methylmethacrylate)-binding peptide (PMMA-Tag). Biotechnol Prog 2015; 31:1563-70. [DOI: 10.1002/btpr.2169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/07/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Yoichi Kumada
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Bongmun Kang
- Venture Laboratory; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Kagenari Yamakawa
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Michimasa Kishimoto
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| | - Jun-Ichi Horiuchi
- Dept. of Biomolecular Engineering; Kyoto Institute of Technology; Hashigami-Cho 1, Matsugasaki, Sakyo-Ku Kyoto 606-8585 Japan
| |
Collapse
|
11
|
de Marco A. Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact 2015; 14:125. [PMID: 26330219 PMCID: PMC4557595 DOI: 10.1186/s12934-015-0320-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/20/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Antibodies have been a pillar of basic research, while their relevance in clinical diagnostics and therapy is constantly growing. Consequently, the production of both conventional and fragment antibodies constantly faces more demanding challenges for the improvement of their quantity and quality. The answer to such an increasing need has been the development of a wide array of formats and alternative production platforms. This review offers a critical comparison and evaluation of the different options to help the researchers interested in expressing recombinant antibodies in their choice. RESULTS Rather than the compilation of an exhaustive list of the recent publications in the field, this review intendeds to analyze the development of the most innovative or fast-growing strategies. These have been illustrated with some significant examples and, when possible, compared with the existing alternatives. Space has also been given to those solutions that might represent interesting opportunities or that investigate critical aspects of the production optimization but for which the available data as yet do not allow for a definitive judgment. CONCLUSIONS The take-home message is that there is a clear process of progressive diversification concerning the antibody expression platforms and an effort to yield directly application-adapted immune-reagents rather than generic naked antibodies that need further in vitro modification steps before becoming usable.
Collapse
Affiliation(s)
- Ario de Marco
- Department of Biomedical Sciences and Engineering, University of Nova Gorica, Glavni Trg 9, 5261, Vipava, Slovenia.
| |
Collapse
|
12
|
Kumada Y. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1960-1969. [PMID: 25119345 DOI: 10.1016/j.bbapap.2014.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/26/2022]
Abstract
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|