1
|
Bolat Kucukzeybek B, Dere Y, Akder Sari A, Ocal I, Avcu E, Dere O, Orgen Calli A, Dinckal C, Tunakan M, Kucukzeybek Y. The prognostic significance of CD117-positive mast cells and microvessel density in colorectal cancer. Medicine (Baltimore) 2024; 103:e38997. [PMID: 39029054 PMCID: PMC11398830 DOI: 10.1097/md.0000000000038997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
The prognostic significance of angiogenesis has been demonstrated in various types of cancer. However, in colorectal cancer (CRC), there are conflicting results regarding the relationship between angiogenesis and clinical-histopathological prognostic factors. Mast cells are immune system cells found in the inflammatory microenvironment; their role in carcinogenesis and prognosis remains unclear although they are considered to cause cancer development and progression. The present study aims to evaluate the prognostic significance of mast cell accumulation and angiogenesis assessed by microvessel density (MVD) in patients with CRC. Patients who underwent curative resection and who were not treated with neoadjuvant chemotherapy were included. The anti-CD34 antibody and anti-CD117 antibody were utilized for the immunohistochemical assessment of MVD and the mast cell count (MCC) in the tissue samples, respectively. The relationship between MCC, MVD, survival and clinical-histopathological prognostic factors were evaluated. A total of 94 patients were enrolled to the study. In a median 49-month follow-up, 65 patients (69.1%) died. The 5-year disease-free survival was 61.1% and 31.3% for the group with CD34 < 18.3% and CD34 > 18.3%, respectively (P = .001). The same groups presented 5-year overall survival rates of 77, 1% and 51, 4%, respectively (P, .012). The MVD was found to be associated with the pathological T stage, lymph node metastasis and distant metastasis (P < .05). Although the MCC was positively correlated with MVD, there was no association between the MCC and clinical-histopathological prognostic factors. MVD-assessed angiogenesis was significantly related to survival and the clinical-histopathological prognostic factors in patients diagnosed with CRC.
Collapse
Affiliation(s)
- Betul Bolat Kucukzeybek
- Department of Pathology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Yelda Dere
- Department of Pathology, Mugla Sitki Kocman University, Faculty of Medicine, Mugla, Turkey
| | - Aysegul Akder Sari
- Department of Pathology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Irfan Ocal
- Department of Pathology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Emel Avcu
- Department of Pathology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Ozcan Dere
- Department of Surgery, Mugla Sitki Kocman University, Faculty of Medicine, Mugla, Turkey
| | - Aylin Orgen Calli
- Department of Pathology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Cigdem Dinckal
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Mine Tunakan
- Department of Pathology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| | - Yuksel Kucukzeybek
- Department of Medical Oncology, Izmir Katip Celebi University Ataturk Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
2
|
Mao QQ, Ji XC, Zhang JN, Teng WF, Zhou SC. A novel approach for transforming breast cancer stem cells into endothelial cells. Exp Ther Med 2024; 27:74. [PMID: 38264426 PMCID: PMC10804376 DOI: 10.3892/etm.2023.12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
Tumor vascular endothelial cells play a pivotal in the tumor microenvironment, influencing the proliferation, invasion, and metastasis of tumor progression. The present study investigated a novel method for inducing the transformation of breast cancer stem cells into endothelial cells, providing a cellular model investigating anti-angiogenic mechanisms in vitro. The breast cancer cell line MCF-7 was used, and the expression of CD133 was initially detected using flow cytometry. CD133+ breast cancer cells were purified using immunomagnetic bead sorting technology, yielding an MCF-7CD133+ subpopulation. The proliferation ability of these cells was assessed using an MTT assay, while their microsphere formation ability was evaluated using a microsphere formation assay. Post-transformation in an optimized endothelial cell culture medium, expression of endothelial cell markers CD31 and CD105 were detected using flow cytometry. Endothelial cell tube formation assays and DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL) assays were employed to analyze the endothelial cell function of the MCF-7CD133+ cells. MDM2/CEN12 gene amplification was detected through fluorescence in situ hybridization (FISH). The MCF-7 breast cancer cell line exhibited 1.7±0.3% trace cells expressing the stem cell surface marker CD133. After anti-CD133 immunomagnetic bead sorting, MCF-7CD133+ and MCF-7CD133- subpopulation cells were obtained, with CD133 expression rates of 85.6±2.8 and 0.18±0.08%, respectively. MTT assay results demonstrated that, after 7 days, the proliferation rate of MCF-7CD133+ cells was significantly higher compared with MCF-7CD133- cells. MCF-7CD133+ subpopulation cells displayed strong stem cell characteristics, growing in suspension in serum-free media and forming tumor cell spheres. In contrast, MCF-7CD133- cells failed to form microspheres. After culturing cells in endothelial cell differentiation and maintenance media, the percentage of MCF-7CD133+ cells before and after endothelial cell culture was 0.3±0.16 and 81.4±8.37% for CD31+ cells and 0.2±0.08 and 83.8±7.24% for CD105+ cells, respectively. Vascular-like structure formation and Ac-LDL phagocytosis with red fluorescence in the tube formation assays confirmed endothelial cell function in the MCF-7CD133+ cells. FISH was used to verify MDM2/CEN12 gene amplification in the induced MCF-7CD133+ cells, indicating tumor cell characteristics. The modified endothelial cell transformation medium effectively induced differentiated tumor stem cells to express vascular endothelial cell markers and exhibit endothelial functions, ideal for in vitro anti-angiogenesis research.
Collapse
Affiliation(s)
- Qi-Qi Mao
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zheijiang 315040, P.R. China
| | - Xiao-Chun Ji
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zheijiang 315040, P.R. China
| | - Jia-Nan Zhang
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zheijiang 315040, P.R. China
| | - Wei-Feng Teng
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zheijiang 315040, P.R. China
| | - Shao-Cheng Zhou
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zheijiang 315040, P.R. China
| |
Collapse
|
3
|
Wang Y, Huang M, Zhou X, Li H, Ma X, Sun C. Potential of natural flavonoids to target breast cancer angiogenesis (review). Br J Pharmacol 2023. [PMID: 37940117 DOI: 10.1111/bph.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Angiogenesis is the process by which new blood vessels form and is required for tumour growth and metastasis. It helps in supplying oxygen and nutrients to tumour cells and plays a crucial role in the local progression and distant metastasis of, and development of treatment resistance in, breast cancer. Tumour angiogenesis is currently regarded as a critical therapeutic target; however, anti-angiogenic therapy for breast cancer fails to produce satisfactory results, owing to issues such as inconsistent efficacy and significant adverse reactions. As a result, new anti-angiogenic drugs are urgently needed. Flavonoids, a class of natural compounds found in many foods, are inexpensive, widely available, and exhibit a broad range of biological activities, low toxicity, and favourable safety profiles. Several studies find that various flavonoids inhibit angiogenesis in breast cancer, indicating great therapeutic potential. In this review, we summarize the role of angiogenesis in breast cancer and the potential of natural flavonoids as anti-angiogenic agents for breast cancer treatment. We discuss the value and significance of nanotechnology for improving flavonoid absorption and utilization and anti-angiogenic effects, as well as the challenges of using natural flavonoids as drugs.
Collapse
Affiliation(s)
- Yuetong Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengge Huang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xintong Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Xiaoran Ma
- Department of Oncology, Linyi People's Hospital, Linyi, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
4
|
Petruk N, Sousa S, Croset M, Polari L, Zlatev H, Selander K, Mönkkönen J, Clézardin P, Määttä J. Liposome-encapsulated zoledronate increases inflammatory macrophage population in TNBC tumours. Eur J Pharm Sci 2023; 190:106571. [PMID: 37652236 DOI: 10.1016/j.ejps.2023.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Tumour associated macrophages (TAMs) are important players in breast tumour progression and metastasis. Clinical and preclinical evidence suggests a role for zoledronate (ZOL) in breast cancer metastasis prevention. Further, zoledronate is able to induce inflammatory activation of monocytes and macrophages, which can be favourable in cancer treatments. The inherent bone tropism of zoledronate limits its availability in soft tissues and tumours. In this study we utilised an orthotopic murine breast cancer model to evaluate the possibility to use liposomes (EMP-LIP) to target zoledronate to tumours to modify TAM activation. METHODS Triple-negative breast cancer 4T1 cells were inoculated in the 4th mammary fat pad of female Balb/c mice. Animals were divided according to the treatment: vehicle, ZOL, EMP-LIP and liposome encapsulated zoledronate (ZOL-LIP). Treatment was done intravenously (with tumour resection) and intraperitoneally (without tumour resection). Tumour growth was followed by bioluminescence in vivo imaging (IVIS) and calliper measurements. Tumour-infiltrating macrophages were assessed by immunohistochemical and immunofluorescence staining. Protein and RNA expression levels of inflammatory transcription factors and cytokines were measured by Western Blotting and Taqman RT-qPCR. RESULTS Liposome encapsulated zoledronate (ZOL-LIP) treatment suppressed migration of 4T1 cell in vitro. Tumour growth and expression of the angiogenic marker CD34 were reduced upon both ZOL and ZOL-LIP treatment in vivo. Long-term ZOL-LIP treatment resulted in shift towards M1-type macrophage polarization, increased CD4 T cell infiltration and activation of NF-κB indicating changes in intratumoural inflammation, whereas ZOL treatment showed similar but non-significant trends. Moreover, ZOL-LIP had a lower bisphosphonate accumulation in bone compared to free ZOL. CONCLUSION Results show that the decreased bisphosphonate accumulation in bone promotes the systemic anti-tumour effect of ZOL-LIP by increasing inflammatory response in TNBC tumours via M1-type macrophage activation.
Collapse
Affiliation(s)
- Nataliia Petruk
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sofia Sousa
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Lauri Polari
- Institute of Biomedicine, University of Turku, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Hristo Zlatev
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Katri Selander
- Department of Oncology and Radiation Therapy, Oulu University Hospital, Oulu, Finland
| | - Jukka Mönkkönen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
5
|
Lahooti B, Akwii RG, Zahra FT, Sajib MS, Lamprou M, Alobaida A, Lionakis MS, Mattheolabakis G, Mikelis CM. Targeting endothelial permeability in the EPR effect. J Control Release 2023; 361:212-235. [PMID: 37517543 DOI: 10.1016/j.jconrel.2023.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece.
| |
Collapse
|
6
|
Wang YW, Liu C, Chen YD, Yang B, Chen X, Ma G, Tian YR, Bo X, Zhang K. An angiogenesis-related lncRNA signature predicts the immune microenvironment and prognosis of breast cancer. Aging (Albany NY) 2023; 15:7616-7636. [PMID: 37543427 PMCID: PMC10457060 DOI: 10.18632/aging.204930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Both angiogenesis and lncRNAs play crucial roles in the development and progression of breast cancer. Considering the unknown association of angiogenesis and lncRNAs in breast cancer, we aim to identify angiogenesis-related lncRNAs (ARLs) and explore their prognostic value. Here, based on analysis of The Cancer Genome Atlas database, the correlation between ARL and the prognosis and immune infiltration landscape of breast cancer were investigated. Eight ARLs (MAFG-DT, AC097478.1, AL357054.4, AL118556.1, SNHG10, MED14OS, OTUD6B-AS1, and CYTOR) were selected to construct the risk model as a prognostic signature. The survival rate of the patients in the high-risk group was lower than that in the low-risk group. The ARL signature was an independent prognostic predictor, and areas under the curve of 1-, 3-, and 5-year survival were 0.745, 0.695, and 0.699, respectively. The prognostic ARLs were associated with the immune infiltration landscape and could indicate the immune status, immune response, tumor mutational burden, and drug sensitivity of patients with breast cancer. Furthermore, qRT-PCR of clinical samples revealed that OTUD6B-AS1 was correlated with prognostic pathological parameters. OTUD6B-AS1 promoted breast cancer cell proliferation, wound healing, migration, invasion, and human umbilical vein endothelial cells tube formation. Mechanistically, OTUD6B-AS1 regulated EMT- and angiogenesis-related molecules. Taken together, we constructed and verified a robust signature of eight ARLs for the prediction of survival in patients with breast cancer, and the characterization of the immune infiltration landscape. Our findings suggest that OTUD6B-AS1 could be a therapeutic target for patients with breast cancer.
Collapse
Affiliation(s)
- Ya-Wen Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Can Liu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Yan-Duo Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Bin Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Xu Chen
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Guangxin Ma
- Hematology and Oncology Unit, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Ya-Ru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, People’s Republic of China
| | - Xiangkun Bo
- Department of General Surgery, Affiliated Haian Hospital of Nantong University, Nantong, People’s Republic of China
| | - Kai Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Mesenchymal-endothelial nexus in breast cancer spheroids induces vasculogenesis and local invasion in a CAM model. Commun Biol 2022; 5:1303. [PMID: 36435836 PMCID: PMC9701219 DOI: 10.1038/s42003-022-04236-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/08/2022] [Indexed: 11/28/2022] Open
Abstract
Interplay between non-cancerous cells (immune, fibroblasts, mesenchymal stromal cells (MSC), and endothelial cells (EC)) has been identified as vital in driving tumor progression. As studying such interactions in vivo is challenging, ex vivo systems that can recapitulate in vivo scenarios can aid in unraveling the factors impacting tumorigenesis and metastasis. Using the synthetic tumor microenvironment mimics (STEMs)-a spheroid system composed of breast cancer cells (BCC) with defined human MSC and EC fractions, here we show that EC organization into vascular structures is BC phenotype dependent, and independent of ERα expression in epithelial cancer cells, and involves MSC-mediated Notch1 signaling. In a 3D-bioprinted model system to mimic local invasion, MDA STEMs collectively respond to serum gradient and form invading cell clusters. STEMs grown on chick chorioallantoic membrane undergo local invasion to form CAM tumors that can anastomose with host vasculature and bear the typical hallmarks of human BC and this process requires both EC and MSC. This study provides a framework for developing well-defined in vitro systems, including patient-derived xenografts that recapitulate in vivo events, to investigate heterotypic cell interactions in tumors, to identify factors promoting tumor metastasis-related events, and possibly drug screening in the context of personalized medicine.
Collapse
|
8
|
The effect of dual-frequency sonication in the presence of thalidomide angiogenesis inhibitor and nanomicelles containing doxorubicin on inhibiting the growth and angiogenesis of breast adenocarcinoma in vivo. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:20. [PMID: 36434467 DOI: 10.1007/s12032-022-01898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022]
Abstract
This study aimed to evaluate the effect of dual-frequency sonication in the presence of thalidomide angiogenesis inhibitor and nanomicelles containing doxorubicin on inhibiting the growth and angiogenesis of breast adenocarcinoma in BALB/c female mice. Sixty mice carrying the tumor were divided into 12 groups: (A) control, (B) 28 kHz and 3 MHz sonication, (C) thalidomide, (D) thalidomide and 28 kHz, (E) thalidomide and 3 MHz, (F) thalidomide and dual-frequency sonication, (G) doxorubicin, (H) nanomicelles containing doxorubicin, (I) nanomicelles containing doxorubicin and dual-frequency sonication, (J) thalidomide and doxorubicin, (K) thalidomide and nanomicelles containing doxorubicin, and (L) thalidomide and nanomicelles containing doxorubicin and dual-frequency sonication. The delay in the tumor growth and angiogenesis percent were extracted. Pathological and immunohistochemical studies were performed to confirm the treatment. The findings of tumor growth retardation parameters and animal survival were significantly different in group L from all groups (P < 0.05). The highest rate of inhibition was in group L with a 46% inhibition. In group L, 100% of the animals survived until day 49. In groups F, C, G, B, and A, all the animals survived 45, 42, 39, 32, and 30 days, respectively. Pathological results showed a decrease in tumor grade in groups K and L. Histopathological results demonstrate a decrease in group L angiogenesis compared to group C. These findings were consistent with the results of color Doppler ultrasound imaging. Dual-frequency sonication in the presence of thalidomide and doxorubicin-containing nanomicelles inhibits tumor growth and angiogenesis.
Collapse
|
9
|
Ao F, Yan Y, Zhang ZL, Li S, Li WJ, Chen GB. The value of dynamic contrast-enhanced magnetic resonance imaging combined with apparent diffusion coefficient in the differentiation of benign and malignant diseases of the breast. Acta Radiol 2022; 63:891-900. [PMID: 34134527 DOI: 10.1177/02841851211024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The value of combined dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and apparent diffusion coefficient (ADC) histogram analysis for the diagnosis of breast cancer has not been evaluated in previous studies. PURPOSE To investigate the diagnostic value of DCE-MRI combined with ADC in benign and malignant breast lesions. MATERIAL AND METHODS The clinicopathological imaging data included 168 patients (177 lesions) with breast lesions who underwent convention breast MRI, DCE-MRI, and diffusion-weighted imaging (DWI); they were divided into the benign lesion group (n = 39) and malignant lesion group (n = 129) based on pathology. RESULTS Using the type III outflow curve as a diagnostic criterion for malignant breast lesions, the diagnostic sensitivity was 76.9%, the specificity was 80%, the correct rate was 72.2%, and its area under the curve (AUC) was 0.823. Using an enhancement ratio > 100% as a diagnostic criterion for malignant breast lesions, the sensitivity was 61.5%, specificity was 80%, and AUC was 0.723. Using > 3 ipsilateral vessels as a diagnostic criterion for malignant lesions in the breast resulted in a diagnostic sensitivity of 81.6%, a specificity of 80.8%, and an AUC of 0.805. CONCLUSION The type of time intensity curve DCE-MRI, the early enhancement rate in the first phase, the number of ipsilateral vessels, and the ADC full volume histogram of the blood supply score and DWI are valuable in the diagnosis of benign and malignant breast lesions.
Collapse
Affiliation(s)
- Feng Ao
- Department of Medical Imaging Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Yi Yan
- Institute of Ophthalmology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Zi-Li Zhang
- Department of Medical Imaging Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Sheng Li
- Department of Medical Imaging Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Wen-Jing Li
- Department of Medical Imaging Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Guang-Bin Chen
- Department of Medical Imaging Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| |
Collapse
|
10
|
Frankhouser DE, Dietze E, Mahabal A, Seewaldt VL. Vascularity and Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging. FRONTIERS IN RADIOLOGY 2021; 1:735567. [PMID: 37492179 PMCID: PMC10364989 DOI: 10.3389/fradi.2021.735567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/11/2021] [Indexed: 07/27/2023]
Abstract
Angiogenesis is a key step in the initiation and progression of an invasive breast cancer. High microvessel density by morphological characterization predicts metastasis and poor survival in women with invasive breast cancers. However, morphologic characterization is subject to variability and only can evaluate a limited portion of an invasive breast cancer. Consequently, breast Magnetic Resonance Imaging (MRI) is currently being evaluated to assess vascularity. Recently, through the new field of radiomics, dynamic contrast enhanced (DCE)-MRI is being used to evaluate vascular density, vascular morphology, and detection of aggressive breast cancer biology. While DCE-MRI is a highly sensitive tool, there are specific features that limit computational evaluation of blood vessels. These include (1) DCE-MRI evaluates gadolinium contrast and does not directly evaluate biology, (2) the resolution of DCE-MRI is insufficient for imaging small blood vessels, and (3) DCE-MRI images are very difficult to co-register. Here we review computational approaches for detection and analysis of blood vessels in DCE-MRI images and present some of the strategies we have developed for co-registry of DCE-MRI images and early detection of vascularization.
Collapse
Affiliation(s)
- David E. Frankhouser
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Eric Dietze
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| | - Ashish Mahabal
- Department of Astronomy, Division of Physics, Mathematics, and Astronomy, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Victoria L. Seewaldt
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
11
|
Une N, Takano-Kasuya M, Kitamura N, Ohta M, Inose T, Kato C, Nishimura R, Tada H, Miyagi S, Ishida T, Unno M, Kamei T, Gonda K. The anti-angiogenic agent lenvatinib induces tumor vessel normalization and enhances radiosensitivity in hepatocellular tumors. Med Oncol 2021; 38:60. [PMID: 33881631 DOI: 10.1007/s12032-021-01503-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/23/2021] [Indexed: 12/30/2022]
Abstract
The evaluation of angiogenesis inhibitors requires the analysis of the precise structure and function of tumor vessels. The anti-angiogenic agents lenvatinib and sorafenib are multi-target tyrosine kinase inhibitors that have been approved for the treatment of hepatocellular carcinoma (HCC). However, the different effects on tumor vasculature between lenvatinib and sorafenib are not well understood. In this study, we analyzed the effects of both drugs on vascular structure and function, including vascular normalization, and investigated whether the normalization had a positive effect on a combination therapy with the drugs and radiation using micro X-ray computed tomography with gold nanoparticles as a contrast agent, as well as immunohistochemical analysis and interstitial fluid pressure (IFP) measurement. In mice subcutaneously transplanted with mouse HCC cells, treatment with lenvatinib or sorafenib for 14 days inhibited tumor growth and reduced the tumor vessel volume density. However, analysis of integrated data on vessel density, rates of pericyte-covering and perfused vessels, tumor hypoxia, and IFP measured 4 days after drug treatment showed that treatment with 3 mg/kg of lenvatinib significantly reduced the microvessel density and normalized tumor vessels compared to treatment with 50 mg/kg of sorafenib. These results showed that lenvatinib induced vascular normalization and improved the intratumoral microenvironment in HCC tumors earlier and more effectively than sorafenib. Moreover, such changes increased the radiosensitivity of tumors and enhanced the effect of lenvatinib and radiation combination therapy, suggesting that this combination therapy is a powerful potential application against HCC.
Collapse
Affiliation(s)
- Norikazu Une
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Mayumi Takano-Kasuya
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Narufumi Kitamura
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Mineto Ohta
- Department of Gastroenterological Surgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tomoya Inose
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Chihiro Kato
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Ryuichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shigehito Miyagi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Michiaki Unno
- Department of Gastroenterological Surgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Takashi Kamei
- Department of Gastroenterological Surgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kohsuke Gonda
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
12
|
Xiao J, Rahbar H, Hippe DS, Rendi MH, Parker EU, Shekar N, Hirano M, Cheung KJ, Partridge SC. Dynamic contrast-enhanced breast MRI features correlate with invasive breast cancer angiogenesis. NPJ Breast Cancer 2021; 7:42. [PMID: 33863924 PMCID: PMC8052427 DOI: 10.1038/s41523-021-00247-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Angiogenesis is a critical component of breast cancer development, and identification of imaging-based angiogenesis assays has prognostic and treatment implications. We evaluated the association of semi-quantitative kinetic and radiomic breast cancer features on dynamic contrast-enhanced (DCE)-MRI with microvessel density (MVD), a marker for angiogenesis. Invasive breast cancer kinetic features (initial peak percent enhancement [PE], signal enhancement ratio [SER], functional tumor volume [FTV], and washout fraction [WF]), radiomics features (108 total features reflecting tumor morphology, signal intensity, and texture), and MVD (by histologic CD31 immunostaining) were measured in 27 patients (1/2016-7/2017). Lesions with high MVD levels demonstrated higher peak SER than lesions with low MVD (mean: 1.94 vs. 1.61, area under the receiver operating characteristic curve [AUC] = 0.79, p = 0.009) and higher WF (mean: 50.6% vs. 22.5%, AUC = 0.87, p = 0.001). Several radiomics texture features were also promising for predicting increased MVD (maximum AUC = 0.84, p = 0.002). Our study suggests DCE-MRI can non-invasively assess breast cancer angiogenesis, which could stratify biology and optimize treatments.
Collapse
Affiliation(s)
- Jennifer Xiao
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Habib Rahbar
- Department of Radiology, University of Washington, Seattle, WA, USA
- Breast Imaging, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Mara H Rendi
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Neal Shekar
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Michael Hirano
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Kevin J Cheung
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Savannah C Partridge
- Department of Radiology, University of Washington, Seattle, WA, USA.
- Breast Imaging, Seattle Cancer Care Alliance, Seattle, WA, USA.
| |
Collapse
|
13
|
Rahman HS, Tan BL, Othman HH, Chartrand MS, Pathak Y, Mohan S, Abdullah R, Alitheen NB. An Overview of In Vitro, In Vivo, and Computational Techniques for Cancer-Associated Angiogenesis Studies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8857428. [PMID: 33381591 PMCID: PMC7748901 DOI: 10.1155/2020/8857428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Angiogenesis is a crucial area in scientific research because it involves many important physiological and pathological processes. Indeed, angiogenesis is critical for normal physiological processes, including wound healing and embryonic development, as well as being a component of many disorders, such as rheumatoid arthritis, obesity, and diabetic retinopathies. Investigations of angiogenic mechanisms require assays that can activate the critical steps of angiogenesis as well as provide a tool for assessing the efficacy of therapeutic agents. Thus, angiogenesis assays are key tools for studying the mechanisms of angiogenesis and identifying the potential therapeutic strategies to modulate neovascularization. However, the regulation of angiogenesis is highly complex and not fully understood. Difficulties in assessing the regulators of angiogenic response have necessitated the development of an alternative approach. In this paper, we review the standard models for the study of tumor angiogenesis on the macroscopic scale that include in vitro, in vivo, and computational models. We also highlight the differences in several modeling approaches and describe key advances in understanding the computational models that contributed to the knowledge base of the field.
Collapse
Affiliation(s)
- Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, 46001 Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, College of Health Sciences, Komar University of Science and Technology, Chaq Chaq Qularaesee, 46001 Sulaymaniyah, Iraq
| | - Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hemn Hassan Othman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, 46001 Sulaymaniyah, Iraq
| | | | - Yashwant Pathak
- College of Pharmacy, University of South Florida, Tampa, USA and Adjunct Professor at Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Rasedee Abdullah
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bio-Molecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Zhang Q, Wu J, Bai X, Liang T. Evaluation of Intra-Tumoral Vascularization in Hepatocellular Carcinomas. Front Med (Lausanne) 2020; 7:584250. [PMID: 33195338 PMCID: PMC7652932 DOI: 10.3389/fmed.2020.584250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Intratumoral neovascularization has intricate effects on tumor growth, metastasis, and treatment. Over the last 30 years, Microvessel density (MVD) has been the standard method for laboratory and clinical evaluation of angiogenesis. Hepatocellular carcinoma (HCC) is a typical hypervascularized tumor, and the predictive value of MVD for prognosis is still controversial. According to previous viewpoints, this has been attributed to the determination of hotspot, counting methods, vascular endothelial markers, and different definitions of high and low vascular density; however, the heterogeneity of tumor angiogenesis patterns should be factored. The breakthroughs in artificial intelligence and algorithm can improve the objectivity and repeatability of MVD measurement, thus saving a lot of manpower. Presently, anti-angiogenesis therapy is the only effective systematic treatment for liver cancer, and the use of imaging technology-assisted MVD measurement is expected to be a reliable index for evaluating the curative effect. MVD in multinodular hepatocellular carcinoma represents a subject area with huge understudied potential, and exploring it might advance our understanding of tumor heterogeneity.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Jiajun Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China.,Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
15
|
Luo A, Xu Y, Li S, Bao J, Lü J, Ding N, Zhao Q, Fu Y, Liu F, Cho WC, Wei X, Wang H, Yu Z. Cancer stem cell property and gene signature in bone-metastatic Breast Cancer cells. Int J Biol Sci 2020; 16:2580-2594. [PMID: 32792858 PMCID: PMC7415422 DOI: 10.7150/ijbs.45693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022] Open
Abstract
The majority of the deaths from breast cancer is due to metastasis. Bone is the most common organ to which breast cancer cells metastasize. The mechanism regulating the bone-metastatic preference remains unclear; there is a lack of a gene signature to distinguish bone-metastatic breast cancer cells. Herein, florescence-labeled MDA-MB-231 cells were transplanted into the fat pads of of the mammary gland in nude mice to generate breast tumors. Tumor cells invaded into the circulation were tracked by in vivo flow cytometry system. Metastatic tumor cells in the bone were isolated using fluorescent-activated cell sorting technique, followed by assays of cell colony formation, migration and invasion, mammosphere formation in vitro, mammary gland tumorigenesis in vivo, and Next-Generation Sequencing analysis as well. Through tumor regeneration and cell sorting, two bone-metastatic cell sublines were derived from MDA-MB-231 cells; which showed higher abilities to proliferate, migrate, invade and epithelial-to-mesenchymal transit in vitro, and stronger ability to regenerate tumors and metastasize to the bone in vivo. Both cell sublines exhibited cancer stem cell-like characteristics including higher expression levels of stem cell markers and stronger ability for mommaspheres formation. Furthermore, a Normal Distribution-like pattern of the bone-metastatic cells invading into circulation was firstly identified. Deep-sequencing analysis indicated upregulation of multiple signaling pathways in regulating EMT, cell membrane budding and morphologic change, lipid metabolism, and protein translation, which are required to provide adequate metabolic enzymes, structural proteins, and energy for the cells undergoing metastasis. In conclusion, we established two bone-metastatic breast cancer cell sublines, carrying higher degree of stemness and malignancy. The gene signature distinguishing the bone-metastatic breast cancer cells holds therapeutic potentials in prevention of breast cancer metastasis to the bone.
Collapse
Affiliation(s)
- An Luo
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.,Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Yue Xu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shujun Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.,The Third Hospital of BaoGang Group, Baotou, China
| | - Jinxia Bao
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Nan Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yuting Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Liu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Biomedical Engineering Department, Peking University, Beijing, China
| | - Haiyun Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| |
Collapse
|
16
|
Zhuang Z, Fan G, Yuan Y, Joseph Raj AN, Qiu S. A fuzzy clustering based color-coded diagram for effective illustration of blood perfusion parameters in contrast-enhanced ultrasound videos. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 190:105233. [PMID: 31796224 DOI: 10.1016/j.cmpb.2019.105233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Early identification and diagnosis of tumors are of great significance to improve the survival rate of patients. Amongst other techniques, contrast-enhanced ultrasound is an important means to help doctors diagnose tumors. Due to the advantages of high efficiency, accuracy and objectivity, more and more computer-aided methods are used in medical diagnosis. Here we propose, a color-coded diagram based on quantitative blood perfusion parameters for contrast-enhanced ultrasound video. The method realizes the static description of the dynamic blood perfusion process in contrast-enhanced ultrasound videos and reveal the blood perfusion characteristics of all regions of the tissue providing assistance to the doctors in their clinical diagnosis. METHODS For effective illustration of the blood perfusion through tissues, we propose (a) an improved block matching algorithm to eliminate the image distortions caused by breathing; (b) compute the time-grayscale intensity curve for each pixel to obtain four different quantitative blood perfusion parameters; and finally (c) employ the fuzzy C-means clustering algorithm to cluster the blood perfusion parameters, where each parameter is associated with a particular color. Thus based on the correspondence between the pixel and the blood perfusion parameters, all the pixels are color-coded to obtain the color-coded diagram. RESULTS To the best of our knowledge, the proposed technique is one-of-its-kind to color code the contrast-enhanced ultrasound videos using blood perfusion parameters in order to understand the hemodynamic characteristics of the benign and malignant lesion. In our experiments, various contrast-enhanced ultrasound videos corresponding to several real-world cases were color-coded and the results of the experiments illustrated that the proposed color-coded diagrams are consistent with the diagnosis presented by the physicians. CONCLUSIONS The experimental results suggested that the proposed method can comprehensively describe the blood perfusion characteristics of tissues during the angiography process thereby effectively assisting the doctors in diagnosis.
Collapse
Affiliation(s)
- Zhemin Zhuang
- Department of Electronic Engineering, Shantou University, Shantou, Guangdong, China; Guangdong Provincial Key Laboratory of Digital Signal and Image Processing, Shantou University, Shantou, Guangdong, China
| | - Guangwen Fan
- Department of Electronic Engineering, Shantou University, Shantou, Guangdong, China
| | - Ye Yuan
- Department of Electronic Engineering, Shantou University, Shantou, Guangdong, China; Guangdong Provincial Key Laboratory of Digital Signal and Image Processing, Shantou University, Shantou, Guangdong, China
| | - Alex Noel Joseph Raj
- Department of Electronic Engineering, Shantou University, Shantou, Guangdong, China; Guangdong Provincial Key Laboratory of Digital Signal and Image Processing, Shantou University, Shantou, Guangdong, China.
| | - Shunmin Qiu
- Imaging Department, First Hospital of Medical College of Shantou University, Shantou, Guangdong, China
| |
Collapse
|
17
|
Liang M, Ou B, Wu J, Xiao X, Ruan J, Tian J, Xu X, Wang B, Yang H, Luo B. Combined use of strain elastography and superb microvascular imaging with grayscale ultrasound according to the BI-RADS classification for differentiating benign from malignant solid breast masses. Clin Hemorheol Microcirc 2020; 74:391-403. [PMID: 31683470 DOI: 10.3233/ch-190693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Ming Liang
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing Ou
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiayi Wu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingliang Ruan
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Tian
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaolin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Wang
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiyun Yang
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Lin JX, Weng XF, Xie XS, Lian NZ, Qiu SL, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Yang YH, Liu SJ, Hu M, Lin YK, Huang CM, Zheng CH, Li P, Xie JW. CDK5RAP3 inhibits angiogenesis in gastric neuroendocrine carcinoma by modulating AKT/HIF-1α/VEGFA signaling. Cancer Cell Int 2019; 19:282. [PMID: 31728130 PMCID: PMC6839262 DOI: 10.1186/s12935-019-0997-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background Angiogenesis plays critical roles in the progression and metastasis of malignant tumors. Gastric neuroendocrine carcinoma is an uncommon stomach cancer that is rich in blood vessels and exhibits highly malignant biological behavior with a poor prognosis. The role of CDK5RAP3 in GNEC has not been reported to date. Methods Immunohistochemistry was used to assess the expression of CDK5RAP3 in GNEC tissues and adjacent non-tumor tissues. Cell lines with stable overexpression or knockdown of CDK5RAP3 were constructed using lentiviral transfection. Wound-healing assays, invasion and metastasis assays, tube formation assays, and tumor xenograft transplantation assays were performed to evaluate the effect of CDK5RAP3 on GNEC angiogenesis in vitro and in vivo. Real-time PCR, ELISA, western blot analysis, and confocal-immunofluorescence staining were used to explore the molecular mechanism of CDK5RAP3′s effect on angiogenesis. Results Compared with their respective adjacent non-tumor tissues, protein levels of CDK5RAP3 were significantly decreased in GNEC tissues. Furthermore, low expression of CDK5RAP3 was correlated with more advanced TNM stage, increased tumor microvessel density, and poor prognosis. Functionally, we found that GNEC cells with CDK5RAP3 knockdown promoted human umbilical vein endothelial cells migration and tube formation via activation of AKT/HIF-1α/VEGFA signaling, resulting in increased levels of VEGFA in GNEC cell supernatant. In addition, CDK5RAP3 overexpression in GNEC cells caused the opposing effect. Consistent with these results, nude mouse tumorigenicity assays showed that CDK5RAP3 expression downregulated angiogenesis in vivo. Lastly, patients with low CDK5RAP3 expression and high VEGFA expression exhibited the worst prognosis. Conclusions This study demonstrated that CDK5RAP3 inhibits angiogenesis by downregulating AKT/HIF-1α/VEGFA signaling in GNEC and improves patient prognosis, suggesting that CDK5RAP3 could be a potential therapeutic target for GNEC.
Collapse
Affiliation(s)
- Jian-Xian Lin
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Xiong-Feng Weng
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Xin-Sheng Xie
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ning-Zi Lian
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Sheng-Liang Qiu
- 4Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Jia-Bin Wang
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Jun Lu
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Qi-Yue Chen
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Long-Long Cao
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Mi Lin
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ru-Hong Tu
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ying-Hong Yang
- 4Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Si-Jia Liu
- 2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Min Hu
- 2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Yi-Ke Lin
- 2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Chang-Ming Huang
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Chao-Hui Zheng
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Ping Li
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| | - Jian-Wei Xie
- 1Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001 Fujian China.,2Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108 Fujian China.,3Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108 Fujian China
| |
Collapse
|
19
|
Chen Y, Tang L, Du Z, Zhong Z, Luo J, Yang L, Shen R, Cheng Y, Zhang Z, Han E, Lv Z, Yuan L, Yang Y, Cheng Y, Yang L, Wang S, Bai B, Chen Q. Factors influencing the performance of a diagnostic model including contrast-enhanced ultrasound in 1023 breast lesions: comparison with histopathology. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:647. [PMID: 31930048 DOI: 10.21037/atm.2019.10.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background We aimed to investigate the influence of patient and lesion characteristics on our diagnostic model for contrast-enhanced ultrasound (CEUS) of the breast, comparing its accuracy with that of histopathology. Methods Conducting a study with eight medical centers, we compared 1,023 breast lesions categorized as BI-RADS 4 or 5 with the score from our newly-established CEUS-based diagnostic model, comparing the results with pathological outcomes. Univariate and multivariate logistic regression analyses were conducted to determine the influence of clinicopathological characteristics on the performance of this CEUS model. Results Logistic regression analysis showed that patients' age, maximum lesion diameter, and distance from the lesion's deep edge to the pectoralis major were significant independent influencing factors. The model's diagnostic accuracy was greater for patients >35 y (P=0.005), for maximum lesion diameter >20 mm, and for distance from the lesion's deep edge to the pectoralis major ≤3.05 mm. There was no significant difference in accuracy between lesions with maximum lesion diameter 10-20 and <10 mm (P=0.393). Conclusions The diagnostic performance of the proposed CEUS model for breast lesions is influenced by patients' age, maximum lesion diameter, and distance from the lesion's deep edge to the pectoralis major. Consideration of influencing factors is required to optimize clinical use of the CEUS model.
Collapse
Affiliation(s)
- Yijie Chen
- Department of Ultrasound, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Lina Tang
- Department of Ultrasound, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Zhongshi Du
- Department of Ultrasound, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Zhaoming Zhong
- Department of Ultrasound, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350014, China
| | - Jun Luo
- Department of Ultrasound, Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Lichun Yang
- Department of Ultrasound, the Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming 650118, China
| | - Ruoxia Shen
- Department of Ultrasound, the Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming 650118, China
| | - Yan Cheng
- Department of Ultrasound, Qujing City First People's Hospital, Qujing 655000, China
| | - Zizhen Zhang
- Department of Ultrasound, Qujing City First People's Hospital, Qujing 655000, China
| | - Ehui Han
- Department of Ultrasound, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi 435000, China
| | - Zhihong Lv
- Department of Ultrasound, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi 435000, China
| | - Lijun Yuan
- Departments of Ultrasound, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yong Yang
- Departments of Ultrasound, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yinrong Cheng
- Department of Ultrasound, Chengdu First People's Hospital, Chengdu 610000, China
| | - Lei Yang
- Department of Ultrasound, Chengdu First People's Hospital, Chengdu 610000, China
| | - Shengli Wang
- Department of Ultrasound, Yanan University Affiliated Hospital, Yan'an 716000, China
| | - Baoyan Bai
- Department of Ultrasound, Yanan University Affiliated Hospital, Yan'an 716000, China
| | - Qin Chen
- Department of Ultrasound, Sichuan Provincial People's Hospital, Chengdu 610072, China
| |
Collapse
|
20
|
Liu T, Qiu C, Ben C, Li H, Zhu S. One-step approach for full-thickness skin defect reconstruction in rats using minced split-thickness skin grafts with Pelnac overlay. BURNS & TRAUMA 2019; 7:19. [PMID: 31413962 PMCID: PMC6691548 DOI: 10.1186/s41038-019-0157-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/24/2019] [Indexed: 11/12/2022]
Abstract
Background Split-thickness skin grafting is the current gold standard for the treatment of traumatic skin loss. However, for patients with extensive burns, split-thickness skin grafting is limited by donor skin availability. Grafting split-thickness skin minced into micrografts increases the expansion ratio but may reduce wound repair quality. Dermal substitutes such as Pelnac can enhance the healing of full-thickness skin wounds, but their application currently requires two surgeries. The present study investigated whether it is possible to repair full-thickness skin defects and improve wound healing quality in a single surgery using Pelnac as an overlay of minced split-thickness skin grafts in a rat model. Methods A full-thickness skin defect model was established using male Sprague-Dawley rats of 10 weeks old. The animals were randomly divided into control and experimental groups in which Vaseline gauze and Pelnac, respectively, were overlaid on minced split-thickness skin grafts to repair the defects. Wound healing rate and quality were compared between the two groups. For better illustration of the quality of wound healing, some results were compared with those obtained for normal skin of rats. Results We found that using Pelnac as an overlay for minced split-thickness skin grafts accelerated wound closure and stimulated cell proliferation and tissue angiogenesis. In addition, this approach enhanced collagen synthesis and increased the formation of basement membrane and dermis as well as the expression of growth factors related to wound healing while reducing scar formation. Conclusions Using minced split-thickness skin grafts overlaid with Pelnac enables the reconstruction of full-thickness skin defects in a single step and can increase the healing rate while improving the quality of wound healing.
Collapse
Affiliation(s)
- Tong Liu
- Department of Burn Surgery, Institute of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, 200433 China
| | - Chao Qiu
- Emergency Department, The First Affiliated Hospital, Naval Medical University, Shanghai, 200433 China
| | - Chi Ben
- Department of Burn Surgery, Institute of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, 200433 China
| | - Haihang Li
- Department of Burn Surgery, Institute of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, 200433 China
| | - Shihui Zhu
- Department of Burn Surgery, Institute of Burns, The First Affiliated Hospital, Naval Medical University, Shanghai, 200433 China
| |
Collapse
|
21
|
Senchukova MA, Makarova EV, Kalinin EA, Tkachev VV. Modern ideas about the origin, features of morphology, prognostic and predictive significance of tumor vessels. RUSSIAN JOURNAL OF BIOTHERAPY 2019; 18:6-15. [DOI: 10.17650/1726-9784-2019-18-1-6-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The review presents modern ideas about the origin of tumor vessels and the features of their morphology. The various approaches to the classification of tumor vessel types and to the assessment of their clinical and prognostic significance are described. Also, the main problems associated with the use of angiogenesis blockers in the treatment of malignancies and their possible solutions are reflected in the review.
Collapse
Affiliation(s)
- M. A. Senchukova
- Orenburg State Medical University of the Ministry of Health of the Russian Federation; Orenburg Regional Clinical Oncology Dispensary
| | - E. V. Makarova
- Orenburg State Medical University of the Ministry of Health of the Russian Federation; Orenburg Regional Clinical Oncology Dispensary
| | | | | |
Collapse
|
22
|
Hiraga T. Hypoxic Microenvironment and Metastatic Bone Disease. Int J Mol Sci 2018; 19:ijms19113523. [PMID: 30423905 PMCID: PMC6274963 DOI: 10.3390/ijms19113523] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
Hypoxia is a common feature of solid tumors and is associated with an increased risk of metastasis and a poor prognosis. Recent imaging techniques revealed that bone marrow contains a quite hypoxic microenvironment. Low oxygen levels activate hypoxia signaling pathways such as hypoxia-inducible factors, which play critical roles in the key stages of metastatic dissemination including angiogenesis, epithelial-mesenchymal transition, invasion, maintenance of cancer stem cells, tumor cell dormancy, release of extracellular vesicles, and generation of pre-metastatic niches. Hypoxia also affects bone cells, such as osteoblasts and osteoclasts, and immune cells, which also act to support the development and progression of bone metastases. Paradoxically, hypoxia and related signaling molecules are recognized as high-priority therapeutic targets and many candidate drugs are currently under preclinical and clinical investigation. The present review focuses on our current knowledge of the potential roles of hypoxia in cancer metastasis to bone by considering the interaction between metastatic cancer cells and the bone microenvironment. Current therapeutic approaches targeting hypoxia are also described.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, 1780 Gobara-Hirooka, Shiojiri, Nagano 399-0781, Japan.
| |
Collapse
|