1
|
Ciurtin C. Potential relevance of type I interferon-related biomarkers for the management of polygenic autoimmune rheumatic diseases with childhood onset. Clin Rheumatol 2023; 42:1733-1736. [PMID: 37246197 DOI: 10.1007/s10067-023-06645-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Affiliation(s)
- Coziana Ciurtin
- Centre for Adolescent Rheumatology, Division of Medicine, University College London, Rayne Building, London, WC1E 6JF, UK.
| |
Collapse
|
2
|
Shao TY, Kakade P, Witchley JN, Frazer C, Murray KL, Ene IV, Haslam DB, Hagan T, Noble SM, Bennett RJ, Way SS. Candida albicans oscillating UME6 expression during intestinal colonization primes systemic Th17 protective immunity. Cell Rep 2022; 39:110837. [PMID: 35584674 PMCID: PMC9196946 DOI: 10.1016/j.celrep.2022.110837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 01/09/2023] Open
Abstract
Systemic immunity is stringently regulated by commensal intestinal microbes, including the pathobiont Candida albicans. This fungus utilizes various transcriptional and morphological programs for host adaptation, but how this heterogeneity affects immunogenicity remains uncertain. We show that UME6, a transcriptional regulator of filamentation, is essential for intestinal C. albicans-primed systemic Th17 immunity. UME6 deletion and constitutive overexpression strains are non-immunogenic during commensal colonization, whereas immunogenicity is restored by C. albicans undergoing oscillating UME6 expression linked with β-glucan and mannan production. In turn, intestinal reconstitution with these fungal cell wall components restores protective Th17 immunity to mice colonized with UME6-locked variants. These fungal cell wall ligands and commensal C. albicans stimulate Th17 immunity through multiple host pattern recognition receptors, including Toll-like receptor 2 (TLR2), TLR4, Dectin-1, and Dectin-2, which work synergistically for colonization-induced protection. Thus, dynamic gene expression fluctuations by C. albicans during symbiotic colonization are essential for priming host immunity against disseminated infection.
Collapse
Affiliation(s)
- Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Immunobiology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Pallavi Kakade
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Jessica N Witchley
- Department of Microbiology and Immunology, University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Corey Frazer
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Kathryn L Murray
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Iuliana V Ene
- Fungal Heterogeneity Lab, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - David B Haslam
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Thomas Hagan
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Suzanne M Noble
- Department of Microbiology and Immunology, University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Richard J Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI 02912, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
3
|
Jiang H, Courau T, Borison J, Ritchie AJ, Mayer AT, Krummel MF, Collisson EA. Activating Immune Recognition in Pancreatic Ductal Adenocarcinoma via Autophagy Inhibition, MEK Blockade, and CD40 Agonism. Gastroenterology 2022; 162:590-603.e14. [PMID: 34627860 DOI: 10.1053/j.gastro.2021.09.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/27/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Patients with pancreatic ductal adenocarcinoma (PDA) have not yet benefitted from the revolution in cancer immunotherapy due in large part to a dominantly immunosuppressive tumor microenvironment. MEK inhibition combined with autophagy inhibition leads to transient tumor responses in some patients with PDA. We examined the functional effects of combined MEK and autophagy inhibition on the PDA immune microenvironment and the synergy of combined inhibition of MEK and autophagy with CD40 agonism (aCD40) against PDA using immunocompetent model systems. METHODS We implanted immunologically "cold" murine PDA cells orthotopically in wide type C57BL/6J mice. We administered combinations of inhibitors of MEK1/2, inhibitors of autophagy, and aCD40 and measured anticancer efficacy and immune sequelae using mass cytometry and multiplexed immunofluorescence imaging analysis to characterize the tumor microenvironment. We also used human and mouse PDA cell lines and human macrophages in vitro to perform functional assays to elucidate the cellular effects induced by the treatments. RESULTS We find that coinhibition of MEK (using cobimetinib) and autophagy (using mefloquine), but not either treatment alone, activates the STING/type I interferon pathway in tumor cells that in turn activates paracrine tumor associated macrophages toward an immunogenic M1-like phenotype. This switch is further augmented by aCD40. Triple therapy (cobimetinib + mefloquine + aCD40) achieved cytotoxic T-cell activation in an immunologically "cold" mouse PDA model, leading to enhanced antitumor immunity. CONCLUSIONS MEK and autophagy coinhibition coupled with aCD40 invokes immune repolarization and is an attractive therapeutic approach for PDA immunotherapy development.
Collapse
Affiliation(s)
- Honglin Jiang
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Tristan Courau
- Department of Pathology, University of California San Francisco, San Francisco, California; ImmunoX Initiative, University of California San Francisco, San Francisco, California
| | | | - Alexa J Ritchie
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California; ImmunoX Initiative, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Eric A Collisson
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California.
| |
Collapse
|
4
|
Suspitsin EN, Raupov RK, Kuchinskaya EM, Kostik MM. Analysis of interferon type I signature for differential diagnosis of diseases of the immune system ( review of literature). Klin Lab Diagn 2021; 66:279-284. [PMID: 34047513 DOI: 10.51620/0869-2084-2021-66-5-279-284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Type 1 interferons (IFN1) are both key molecules of antiviral defense and potent inflammatory mediators. In 2003, increased expression of a variety of interferon 1-regulated genes was observed in a blood cells of patients with systemic lupus erythematosus (SLE). This phenomenon was called the type 1 interferon signature (IFN1-signature). Since then, expression patterns indicating the presence of an IFN1-signature were consistently detected in a range of monogenic and complex autoimmune and autoinflammatory conditions. A quantitative indicator reflecting the degree of hyperactivation of the IFN1 pathway is known as interferon score. This review discusses the possible causes of upregulated expression of interferon 1-induced genes, the laboratory approaches to the interferon score analysis, as well as the practical use of this indicator for the diagnosis of various conditions.
Collapse
Affiliation(s)
- E N Suspitsin
- St.-Petersburg State Pediatric Medical University.,N.N. Petrov Institute of Oncology
| | - R K Raupov
- St.-Petersburg State Pediatric Medical University
| | | | - M M Kostik
- St.-Petersburg State Pediatric Medical University.,Almazov National Medical Research Centre
| |
Collapse
|
5
|
Marin A, Chowdhury A, Valencia SM, Zacharia A, Kirnbauer R, Roden RBS, Pinto LA, Shoemaker RH, Marshall JD, Andrianov AK. Next generation polyphosphazene immunoadjuvant: Synthesis, self-assembly and in vivo potency with human papillomavirus VLPs-based vaccine. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 33:102359. [PMID: 33476764 PMCID: PMC8184581 DOI: 10.1016/j.nano.2021.102359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Poly[di(carboxylatomethylphenoxy)phosphazene] (PCMP), a new member of polyphosphazene immunoadjuvant family, is synthesized. In vitro assessment of a new macromolecule revealed hydrolytic degradation profile and immunostimulatory activity comparable to its clinical stage homologue PCPP; however, PCMP was characterized by a beneficial reduced sensitivity to the ionic environment. In vivo evaluation of PCMP potency was conducted with human papillomavirus (HPV) virus-like particles (VLPs) based RG1-VLPs vaccine. In contrast with previously reported self-assembly of polyphosphazene adjuvants with proteins, which typically results in the formation of complexes with multimeric display of antigens, PCMP surface modified VLPs in a composition dependent pattern, which at a high polymer-to VLPs ratio led to stabilization of antigenic particles. Immunization experiments in mice demonstrated that PCMP adjuvanted RG1-VLPs vaccine induced potent humoral immune responses, in particular, on the level of highly desirable protective cross-neutralizing antibodies, and outperformed PCPP and Alhydrogel adjuvanted formulations.
Collapse
Affiliation(s)
- Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Ananda Chowdhury
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Sarah M Valencia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Athina Zacharia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, , United States
| | - Ligia A Pinto
- HPV Immunology laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, United States
| | - Jason D Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.
| |
Collapse
|
6
|
Andrianov AK, Marini A, Wang R, Chowdhury A, Agnihotri P, Yunus AS, Pierce BG, Mariuzza RA, Fuerst TR. In Vivo and In Vitro Potency of Polyphosphazene Immunoadjuvants with Hepatitis C Virus Antigen and the Role of Their Supramolecular Assembly. Mol Pharm 2021; 18:726-734. [PMID: 32530637 PMCID: PMC7755742 DOI: 10.1021/acs.molpharmaceut.0c00487] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two well-defined synthetic polyphosphazene immunoadjuvants, PCPP and PCEP, were studied for their ability to potentiate the immune response to the hepatitis C virus (HCV) E2 glycoprotein antigen in vivo. We report that PCEP induced significantly higher serum neutralization and HCV-specific IgG titers in mice compared to other adjuvants used in the study: PCPP, Alum, and Addavax. PCEP also shifted the response toward the desirable balanced Th1/Th2 immunity, as evaluated by the antibody isotype ratio (IgG2a/IgG1). The in vivo results were analyzed in the context of antigen-adjuvant molecular interactions in the system and in vitro immunostimulatory activity of formulations. Asymmetric flow field flow fractionation (AF4) and dynamic light scattering (DLS) analysis showed that both PCPP and PCEP spontaneously self-assemble with the E2 glycoprotein with the formation of multimeric water-soluble complexes, which demonstrates the role of polyphosphazene macromolecules as vaccine delivery vehicles. Intrinsic in vitro immunostimulatory activity of polyphosphazene adjuvants, which was assessed using a mouse macrophage cell line, revealed comparable activities of both polymers and did not provide an explanation of their in vivo performance. However, PCEP complexes with E2 displayed greater stability against agglomeration and improved in vitro immunostimulatory activity compared to those of PCPP, which is in line with superior in vivo performance of PCEP. The results emphasize the importance of often neglected antigen-polyphosphazene self-assembly mechanisms in formulations, which can provide important insights on their in vivo behavior and facilitate the establishment of a structure-activity relationship for this important class of immunoadjuvants.
Collapse
Affiliation(s)
- Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Alexander Marini
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Ruixue Wang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Ananda Chowdhury
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Pragati Agnihotri
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Abdul S. Yunus
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
| | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Roy A. Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| |
Collapse
|