1
|
Xiang Y, Zhao Z, Yao EJ, Balayan A, Fiering SN, Steinmetz NF, Chen S. Multifaceted cancer alleviation by cowpea mosaic virus in a bioprinted ovarian cancer peritoneal spheroid model. Biomaterials 2024; 311:122663. [PMID: 38878481 DOI: 10.1016/j.biomaterials.2024.122663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 08/06/2024]
Abstract
Ovarian cancer (OvCa) is a leading cause of mortality among gynecological malignancies and usually manifests as intraperitoneal spheroids that generate metastases, ascites, and an immunosuppressive tumor microenvironment. In this study, we explore the immunomodulatory properties of cowpea mosaic virus (CPMV) as an adjuvant immunotherapeutic agent using an in vitro model of OvCa peritoneal spheroids. Previous findings highlighted the potent efficacy of intratumoral CPMV against OvCa in mouse tumor models. Leveraging the precision control over material deposition and cell patterning afforded by digital-light-processing (DLP) based bioprinting, we constructed OvCa-macrophage spheroids to mimic peritoneal spheroids using gelatin methacrylate (GelMA), a collagen-derived photopolymerizable biomaterial to mimic the extracellular matrix. Following CPMV treatment, bioprinted spheroids exhibited inhibited OvCa progression mediated by macrophage activation. Our analysis indicates that CPMV regulates and activates macrophage to both induce OvCa cell killing and restore normal cell-cell junctions. This study deepened our understanding of the mechanism of CPMV intratumoral immunotherapy in the setting of OvCa. This study also highlights the potential of studying immunotherapies using high throughput tissue models via DLP bioprinting.
Collapse
Affiliation(s)
- Yi Xiang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Emmie J Yao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Alis Balayan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Steven N Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth Health, Lebanon, NH, 03756, USA
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Moores Cancer Center, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Institute for Materials Discovery and Design, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Center for Engineering in Cancer, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| | - Shaochen Chen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Center for Nano-ImmunoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Institute for Materials Discovery and Design, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Li L, Alsema E, Beijer NRM, Gumuscu B. Magnetically Driven Hydrogel Surfaces for Modulating Macrophage Behavior. ACS Biomater Sci Eng 2024. [PMID: 39383333 DOI: 10.1021/acsbiomaterials.4c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
During the host response toward implanted biomaterials, macrophages can shift phenotypes rapidly upon changes in their microenvironment within the host tissue. Exploration of this phenomenon can benefit significantly from the development of adequate tools. Creating cell microenvironment alterations on classical hydrogel substrates presents challenges, particularly when integrating them with cell cultivation and monitoring processes. However, having the capability to dynamically manipulate the cell microenvironment on biomaterial surfaces holds significant potential. We introduce magnetically actuated hydrogels (MadSurface) tailored to induce reversible stiffness changes on polyacrylamide hydrogel substrates with embedded magnetic microparticles in a time-controllable manner. Our investigation focused on exploring the potential of magnetic fields and MadSurfaces in dynamically modulating macrophage behavior in a programmable manner. We achieved a consistent modulation by subjecting the MadSurface to a pulsed magnetic field with a frequency of 0.1 Hz and a magnetic field flux density of 50 mT and analyzed exposed cells using flow cytometry and ELISA. At the single-cell level, we identified a subpopulation for which the dynamic stiffness conditions in conjunction with the pulsed magnetic field increased the expression of CD206 in M1-activated THP-1 cells, indicating a consistent shift toward the M2 anti-inflammatory phenotype on MadSurface. At the population level, this effect was mostly hindered in the culture period utilized in this work. The MadSurface approach advances our understanding of the interplay between magnetic field, cell microenvironment alterations, and macrophage behavior.
Collapse
Affiliation(s)
- Lanhui Li
- Biosensors and Devices Lab, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Biointerface Science Group, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB Eindhoven, The Netherlands
| | - Els Alsema
- Biointerface Science Group, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB Eindhoven, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands
| | - Nick R M Beijer
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), 3720BA Bilthoven, The Netherlands
| | - Burcu Gumuscu
- Biosensors and Devices Lab, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Yu M, Yu H, Wang H, Xu X, Sun Z, Chen W, Yu M, Liu C, Jiang M, Zhang X. Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review). Int J Oncol 2024; 65:100. [PMID: 39239752 PMCID: PMC11387121 DOI: 10.3892/ijo.2024.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) tissue is rich in dendritic cells, T cells, B cells, macrophages, natural killer cells and cellular stroma. Together they form the tumor microenvironment (TME), which is also rich in numerous cytokines. Tumor‑associated macrophages (TAMs) are involved in the regulation of tumor development. TAMs in HCC receive stimuli in different directions, polarize in different directions and release different cytokines to regulate the development of HCC. TAMs are mostly divided into two cell phenotypes: M1 and M2. M1 TAMs secrete pro‑inflammatory mediators, and M2 TAMs secrete a variety of anti‑inflammatory and pro‑tumorigenic substances. The TAM polarization in HCC tumors is M2. Both direct and indirect methods for TAMs to regulate the development of HCC are discussed. TAMs indirectly support HCC development by promoting peripheral angiogenesis and regulating the immune microenvironment of the TME. In terms of the direct regulation between TAMs and HCC cells, the present review mainly focuses on the molecular mechanism. TAMs are involved in both the proliferation and apoptosis of HCC cells to regulate the quantitative changes of HCC, and stimulate the related invasive migratory ability and cell stemness of HCC cells. The present review aims to identify immunotherapeutic options based on the mechanisms of TAMs in the TME of HCC.
Collapse
Affiliation(s)
- Mingkai Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Haixia Yu
- Pharmacy College, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoya Xu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Zhaoqing Sun
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Wenshuai Chen
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Miaomiao Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Mingchun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
4
|
Kulakova K, Lawal TR, Mccarthy E, Floudas A. The Contribution of Macrophage Plasticity to Inflammatory Arthritis and Their Potential as Therapeutic Targets. Cells 2024; 13:1586. [PMID: 39329767 PMCID: PMC11430612 DOI: 10.3390/cells13181586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammatory arthritis are common chronic inflammatory autoimmune diseases characterised by progressive, destructive inflammation of the joints leading to a loss of function and significant comorbidities; importantly, there are no cures and only 20% of patients achieve drug-free remission for over 2 years. Macrophages play a vital role in maintaining homeostasis, however, under the wrong environmental cues, become drivers of chronic synovial inflammation. Based on the current "dogma", M1 macrophages secrete pro-inflammatory cytokines and chemokines, promoting tissue degradation and joint and bone erosion which over time lead to accelerated disease progression. On the other hand, M2 macrophages secrete anti-inflammatory mediators associated with wound healing, tissue remodelling and the resolution of inflammation. Currently, four subtypes of M2 macrophages have been identified, namely M2a, M2b, M2c and M2d. However, more subtypes may exist due to macrophage plasticity and the ability for repolarisation. Macrophages are highly plastic, and polarisation exists as a continuum with diverse intermediate phenotypes. This plasticity is achieved by a highly amenable epigenome in response to environmental stimuli and shifts in metabolism. Initiating treatment during the early stages of disease is important for improved prognosis and patient outcomes. Currently, no treatment targeting macrophages specifically is available. Such therapeutics are being investigated in ongoing clinical trials. The repolarisation of pro-inflammatory macrophages towards the anti-inflammatory phenotype has been proposed as an effective approach in targeting the M1/M2 imbalance, and in turn is a potential therapeutic strategy for IA diseases. Therefore, elucidating the mechanisms that govern macrophage plasticity is fundamental for the success of novel macrophage targeting therapeutics.
Collapse
Affiliation(s)
- Karina Kulakova
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
| | - Tope Remilekun Lawal
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
| | - Eoghan Mccarthy
- Department of Rheumatology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
- Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Achilleas Floudas
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
- Medical School, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
5
|
Nadeem A, Lyons S, Kindopp A, Jamieson A, Roxbury D. Machine Learning-Assisted Near-Infrared Spectral Fingerprinting for Macrophage Phenotyping. ACS NANO 2024; 18:22874-22887. [PMID: 39148286 DOI: 10.1021/acsnano.4c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Spectral fingerprinting has emerged as a powerful tool that is adept at identifying chemical compounds and deciphering complex interactions within cells and engineered nanomaterials. Using near-infrared (NIR) fluorescence spectral fingerprinting coupled with machine learning techniques, we uncover complex interactions between DNA-functionalized single-walled carbon nanotubes (DNA-SWCNTs) and live macrophage cells, enabling in situ phenotype discrimination. Utilizing Raman microscopy, we showcase statistically higher DNA-SWCNT uptake and a significantly lower defect ratio in M1 macrophages compared to M2 and naive phenotypes. NIR fluorescence data also indicate that distinctive intraendosomal environments of these cell types give rise to significant differences in many optical features, such as emission peak intensities, center wavelengths, and peak intensity ratios. Such features serve as distinctive markers for identifying different macrophage phenotypes. We further use a support vector machine (SVM) model trained on SWCNT fluorescence data to identify M1 and M2 macrophages, achieving an impressive accuracy of >95%. Finally, we observe that the stability of DNA-SWCNT complexes, influenced by DNA sequence length, is a crucial consideration for applications, such as cell phenotyping or mapping intraendosomal microenvironments using AI techniques. Our findings suggest that shorter DNA-sequences like GT6 give rise to more improved model accuracy (>87%) due to increased active interactions of SWCNTs with biomolecules in the endosomal microenvironment. Implications of this research extend to the development of nanomaterial-based platforms for cellular identification, holding promise for potential applications in real time monitoring of in vivo cellular differentiation.
Collapse
Affiliation(s)
- Aceer Nadeem
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sarah Lyons
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Aidan Kindopp
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Amanda Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
6
|
Wu S, Guo P, Zhou Q, Yang X, Dai J. M1 Macrophage-Targeted Curcumin Nanocrystals with l-Arginine-Modified for Acute Lung Injury by Inhalation. J Pharm Sci 2024; 113:2492-2505. [PMID: 38772450 DOI: 10.1016/j.xphs.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) with clinical manifestations of respiratory distress and hypoxemia remains a significant cause of respiratory failure, boasting a persistently high incidence and mortality rate. Given the central role of M1 macrophages in the pathogenesis of acute lung injury (ALI), this study utilized the anti-inflammatory agent curcumin as a model drug. l-arginine (L-Arg) was employed as a targeting ligand, and chitosan was initially modified with l-arginine. Subsequently, it was utilized as a surface modifier to prepare inhalable nano-crystals loaded with curcumin (Arg-CS-Cur), aiming for specific targeting of pulmonary M1 macrophages. Compared with unmodified chitosan-curcumin nanocrystals (CS-Cur), Arg-CS-Cur exhibited higher uptake in vitro by M1 macrophages, as evidenced by flow cytometry showing the highest fluorescence intensity in the Arg-CS-Cur group (P < 0.01). In vivo accumulation was greater in inflamed lung tissues, as indicated by small animal imaging demonstrating higher lung fluorescence intensity in the DiR-Arg-CS-Cur group compared to the DiR-CS-Cur group in the rat ALI model (P < 0.05), peaking at 12 h. Moreover, Arg-CS-Cur demonstrated enhanced therapeutic effects in both LPS-induced RAW264.7 cells and ALI rat models. Specifically, treatment with Arg-CS-Cur significantly suppressed NO release and levels of TNF-α and IL-6 in RAW264.7 cells (p < 0.01), while in ALI rat models, expression levels of TNF-α and IL-6 in lung tissues were significantly lower than those in the model group (P < 0.01). Furthermore, lung tissue damage was significantly reduced, with histological scores significantly lower than those in the CS-Cur group (P < 0.01). In conclusion, these findings underscore the targeting potential of l-arginine-modified nanocrystals, which effectively enhance curcumin concentration in inflammatory environments by selectively targeting M1 macrophages. This study thus introduces novel perspectives and theoretical support for the development of targeted therapeutic interventions for acute inflammatory lung diseases, including ALI/ARDS.
Collapse
Affiliation(s)
- Shiyue Wu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Pengchuan Guo
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Qiren Zhou
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Xiaowen Yang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China.
| |
Collapse
|
7
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
8
|
Choi JY, Byeon HW, Park SO, Uyangaa E, Kim K, Eo SK. Inhibition of NADPH oxidase 2 enhances resistance to viral neuroinflammation by facilitating M1-polarization of macrophages at the extraneural tissues. J Neuroinflammation 2024; 21:115. [PMID: 38698374 PMCID: PMC11067137 DOI: 10.1186/s12974-024-03078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Macrophages play a pivotal role in the regulation of Japanese encephalitis (JE), a severe neuroinflammation in the central nervous system (CNS) following infection with JE virus (JEV). Macrophages are known for their heterogeneity, polarizing into M1 or M2 phenotypes in the context of various immunopathological diseases. A comprehensive understanding of macrophage polarization and its relevance to JE progression holds significant promise for advancing JE control and therapeutic strategies. METHODS To elucidate the role of NADPH oxidase-derived reactive oxygen species (ROS) in JE progression, we assessed viral load, M1 macrophage accumulation, and cytokine production in WT and NADPH oxidase 2 (NOX2)-deficient mice using murine JE model. Additionally, we employed bone marrow (BM) cell-derived macrophages to delineate ROS-mediated regulation of macrophage polarization by ROS following JEV infection. RESULTS NOX2-deficient mice exhibited increased resistance to JE progression rather than heightened susceptibility, driven by the regulation of macrophage polarization. These mice displayed reduced viral loads in peripheral lymphoid tissues and the CNS, along with diminished infiltration of inflammatory cells into the CNS, thereby resulting in attenuated neuroinflammation. Additionally, NOX2-deficient mice exhibited enhanced JEV-specific Th1 CD4 + and CD8 + T cell responses and increased accumulation of M1 macrophages producing IL-12p40 and iNOS in peripheral lymphoid and inflamed extraneural tissues. Mechanistic investigations revealed that NOX2-deficient macrophages displayed a more pronounced differentiation into M1 phenotypes in response to JEV infection, thereby leading to the suppression of viral replication. Importantly, the administration of H2O2 generated by NOX2 was shown to inhibit M1 macrophage polarization. Finally, oral administration of the ROS scavenger, butylated hydroxyanisole (BHA), bolstered resistance to JE progression and reduced viral loads in both extraneural tissues and the CNS, along with facilitated accumulation of M1 macrophages. CONCLUSION In light of our results, it is suggested that ROS generated by NOX2 play a role in undermining the control of JEV replication within peripheral extraneural tissues, primarily by suppressing M1 macrophage polarization. Subsequently, this leads to an augmentation in the viral load invading the CNS, thereby facilitating JE progression. Hence, our findings ultimately underscore the significance of ROS-mediated macrophage polarization in the context of JE progression initiated JEV infection.
Collapse
Affiliation(s)
- Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Hee Won Byeon
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
9
|
Zhuang Q, Li M, Hu D, Li J. Recent advances in potential targets for myocardial ischemia reperfusion injury: Role of macrophages. Mol Immunol 2024; 169:1-9. [PMID: 38447462 DOI: 10.1016/j.molimm.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a complex process that occurs when blood flow is restored after myocardium infarction (MI) with exacerbated tissue damage. Macrophages, essential cell type of the immune response, play an important role in MIRI. Macrophage subpopulations, namely M1 and M2, are distinguished by distinct phenotypes and functions. In MIRI, macrophages infiltrate in infarcted area, shaping the inflammatory response and influencing tissue healing. Resident cardiac macrophages interact with monocyte-derived macrophages in MIRI, and influence injury progression. Key factors including chemokines, cytokines, and toll-like receptors modulate macrophage behavior in MIRI. This review aims to address recent findings on the classification and the roles of macrophages in the myocardium, spanning from MI to subsequent MIRI, and highlights various signaling pathways implicated in macrophage polarization underlining the complexity of MIRI. This article will shed light on developing advanced therapeutic strategies for MIRI management.
Collapse
Affiliation(s)
- Qigang Zhuang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingyue Li
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Frodella CM, Liu L, Tan W, Pruett SB, Kaplan BLF. The mechanism by which cannabidiol (CBD) suppresses TNF-α secretion involves inappropriate localization of TNF-α converting enzyme (TACE). Cell Immunol 2024; 397-398:104812. [PMID: 38245915 PMCID: PMC10947891 DOI: 10.1016/j.cellimm.2024.104812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Cannabidiol (CBD) is a phytocannabinoid derived from Cannabis sativa that exerts anti-inflammatory mechanisms. CBD is being examined for its putative effects on the neuroinflammatory disease, multiple sclerosis (MS). One of the major immune mediators that propagates MS and its mouse model experimental autoimmune encephalomyelitis (EAE) are macrophages. Macrophages can polarize into an inflammatory phenotype (M1) or an anti-inflammatory phenotype (M2a). Therefore, elucidating the impact on macrophage polarization with CBD pre-treatment is necessary to understand its anti-inflammatory mechanisms. To study this effect, murine macrophages (RAW 264.7) were pre-treated with CBD (10 µM) or vehicle (ethanol 0.1 %) and were either left untreated (naive; cell media only), or stimulated under M1 (IFN-γ + lipopolysaccharide, LPS) or M2a (IL-4) conditions for 24 hr. Cells were analyzed for macrophage polarization markers, and supernatants were analyzed for cytokines and chemokines. Immunofluorescence staining was performed on M1-polarized cells for the metalloprotease, tumor necrosis factor-α-converting enzyme (TACE), as this enzyme is responsible for the secretion of TNF-α. Overall results showed that CBD decreased several markers associated with the M1 phenotype while exhibiting less effects on the M2a phenotype. Significantly, under M1 conditions, CBD increased the percentage of intracellular and surface TNF-α but decreased secreted TNF-α. This phenomenon might be mediated by TACE as staining showed that CBD sequestered TACE intracellularly. CBD also prevented RelA nuclear translocation. These results suggest that CBD may exert its anti-inflammatory effects by reducing M1 polarization and decreasing TNF-α secretion via inappropriate localization of TACE and RelA.
Collapse
Affiliation(s)
- Christa M Frodella
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Liyuan Liu
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Wei Tan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Stephen B Pruett
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA; Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA; Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
11
|
Chow L, Wheat W, Ramirez D, Impastato R, Dow S. Direct comparison of canine and human immune responses using transcriptomic and functional analyses. Sci Rep 2024; 14:2207. [PMID: 38272935 PMCID: PMC10811214 DOI: 10.1038/s41598-023-50340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The canine spontaneous cancer model is increasingly utilized to evaluate new combined cancer immunotherapy approaches. While the major leukocyte subsets and phenotypes are closely related in dogs and humans, the functionality of T cells and antigen presenting cells in the two species has not been previously compared in detail. Such information would be important in interpreting immune response data and evaluating the potential toxicities of new cancer immunotherapies in dogs. To address this question, we used in vitro assays to compare the transcriptomic, cytokine, and proliferative responses of activated canine and human T cells, and also compared responses in activated macrophages. Transcriptomic analysis following T cell activation revealed shared expression of 515 significantly upregulated genes and 360 significantly downregulated immune genes. Pathway analysis identified 33 immune pathways shared between canine and human activated T cells, along with 34 immune pathways that were unique to each species. Activated human T cells exhibited a marked Th1 bias, whereas canine T cells were transcriptionally less active overall. Despite similar proliferative responses to activation, canine T cells produced significantly less IFN-γ than human T cells. Moreover, canine macrophages were significantly more responsive to activation by IFN-γ than human macrophages, as reflected by co-stimulatory molecule expression and TNF-α production. Thus, these studies revealed overall broad similarity in responses to immune activation between dogs and humans, but also uncovered important key quantitative and qualitative differences, particularly with respect to T cell responses, that should be considered in designing and evaluating cancer immunotherapy studies in dogs.
Collapse
Affiliation(s)
- Lyndah Chow
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA.
| | - William Wheat
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
| | - Dominique Ramirez
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Renata Impastato
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
| | - Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences and Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA.
| |
Collapse
|
12
|
Feng H, Zheng R. Cigarette smoke prevents M1 polarization of alveolar macrophages by suppressing NLRP3. Life Sci 2023:121854. [PMID: 37307964 DOI: 10.1016/j.lfs.2023.121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory condition mainly caused by cigarette smoke (CS). Alveolar macrophages (AMs) contribute to its development, although the polarization of AMs is controversial. This study explored the polarization of AMs and mechanisms underlying their involvement in COPD. AM gene expression data from non-smokers, smokers, and COPD patients were downloaded from the GSE13896 and GSE130928 datasets. Macrophage polarization was evaluated by CIBERSORT and gene set enrichment analysis (GSEA). Polarization-related differentially expressed genes (DEGs) were identified in GSE46903. KEGG enrichment analysis and single sample GSEA were performed. M1 polarization levels were decreased in smokers and COPD patients, whereas M2 polarization did not change. In the GSE13896 and GSE130928 datasets, 27 and 19 M1-related DEGs, respectively, showed expression changes opposite to those in M1 macrophages in smokers and COPD patients compared with the control group. These M1-related DEGs were enriched in NOD-like receptor signaling pathway. Next, C57BL/6 mice were divided into control, lipopolysaccharide (LPS), CS, and LPS + CS groups, and cytokine levels in bronchoalveolar lavage fluid (BALF) and AM polarization were determined. The expression of macrophage polarization markers and NLRP3 was determined in AMs treated with CS extract (CSE), LPS, and an NLRP3 inhibitor. Cytokines levels and the percentage of M1 AMs in BALF were lower in the LPS + CS group than in the LPS group. Exposure to CSE downregulated the expression of M1 polarization markers and NLRP3 induced by LPS in AMs. The present results indicate that M1 polarization of AMs is repressed in smokers and COPD patients, and CS may inhibit LPS-induced M1 polarization of AMs by suppressing NLRP3.
Collapse
Affiliation(s)
- Haoshen Feng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
13
|
Yin C, Cai J, Gou Y, Li D, Tang H, Wang L, Liu H, Luo B. Dynamic changes in human THP-1-derived M1-to-M2 macrophage polarization during Thelazia callipaeda MIF induction. Front Immunol 2023; 13:1078880. [PMID: 36713445 PMCID: PMC9876561 DOI: 10.3389/fimmu.2022.1078880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Macrophages are innate immune cells with essential roles in the immune response during helminth infection. Particularly, the direction of macrophage polarization could contribute to pathogen trapping and killing as well as tissue repair and the resolution of type 2 inflammation. This study establishes that the recombinant protein of Thelazia callipaeda macrophage migration inhibitory factor (T.cp-MIF) induces THP-1-derived macrophages to undergo M1 to M2 type dynamic polarization, using the methods of flow cytometry, real-time quantitative PCR, differential transcriptomic analysis and western blot. Interestingly, there was an increase in protein and mRNA expression of M1-type proteins and cytokines after the use of PI3K inhibitors, suggesting that the polarization state tends to favor the M1 type after M2 type inhibition. In conclusion, the dynamic polarization mechanism of T.cp-MIF-induced human THP-1-derived macrophages from M1 to M2 type is related to the binding of TLR4. It can first affect the M1 type polarization of macrophages by activating its downstream NF-κB pathway. Activation of the PI3K/Akt pathway and inhibition of NF-κB phosphorylation affects the M2 type polarization of macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Liu
- *Correspondence: Hui Liu, ; Bo Luo,
| | - Bo Luo
- *Correspondence: Hui Liu, ; Bo Luo,
| |
Collapse
|