1
|
Zhang J, Teng P, Sun B, Zhang J, Zhou X, Chen W. Down-regulated TAB1 suppresses the replication of Coxsackievirus B5 via activating the NF-κB pathways through interaction with viral 3D polymerase. Virol J 2023; 20:291. [PMID: 38072991 PMCID: PMC10712077 DOI: 10.1186/s12985-023-02259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Coxsackievirus Group B type 5 (CVB5), an important pathogen of hand-foot-mouth disease, is also associated with neurological complications and poses a public health threat to young infants. Among the CVB5 proteins, the nonstructural protein 3D, known as the Enteroviral RNA-dependent RNA polymerase, is mainly involved in viral genome replication and transcription. In this study, we performed immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify host proteins that interacted with CVB5 3D polymerase. A total of 116 differentially expressed proteins were obtained. Gene Ontology analysis identified that the proteins were involved in cell development and cell adhesion, distributed in the desmosome and envelope, and participated in GTPase binding. Kyoto Encyclopedia of Genes and Genomes analysis further revealed they participated in nerve diseases, such as Parkinson disease. Among them, 35 proteins were significantly differentially expressed and the cellular protein TGF-BATA-activated kinase1 binding protein 1 (TAB1) was found to be specifically interacting with the 3D polymerase. 3D polymerase facilitated the entry of TAB1 into the nucleus and down-regulated TAB1 expression via the lysosomal pathway. In addition, TAB1 inhibited CVB5 replication via inducing inflammatory factors and activated the NF-κB pathway through IκBα phosphorylation. Moreover, the 90-96aa domain of TAB1 was an important structure for the function. Collectively, our findings demonstrate the mechanism by which cellular TAB1 inhibits the CVB5 replication via activation of the host innate immune response, providing a novel insight into the virus-host innate immunity.
Collapse
Affiliation(s)
- Jiayu Zhang
- Medical School, Kunming University of Science and Technology, No. 727, Southern Jingming Road, Chenggong District, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Peiying Teng
- Medical School, Kunming University of Science and Technology, No. 727, Southern Jingming Road, Chenggong District, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Bo Sun
- Medical School, Kunming University of Science and Technology, No. 727, Southern Jingming Road, Chenggong District, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Jihong Zhang
- Medical School, Kunming University of Science and Technology, No. 727, Southern Jingming Road, Chenggong District, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Xiaoshuang Zhou
- Medical School, Kunming University of Science and Technology, No. 727, Southern Jingming Road, Chenggong District, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Wei Chen
- Medical School, Kunming University of Science and Technology, No. 727, Southern Jingming Road, Chenggong District, Kunming, 650500, Yunnan Province, People's Republic of China.
| |
Collapse
|
2
|
Chen J, Chu Z, Zhang M, Liu Y, Feng C, Li L, Yang Z, Ma S. Molecular characterization of a novel clade echovirus 3 isolated from patients with hand-foot-and-mouth disease in southwest China. J Med Virol 2023; 95:e29202. [PMID: 37909741 DOI: 10.1002/jmv.29202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Echovirus 3 (E3) belongs to the species Enterovirus B. Currently, three nearly whole-genome sequences of E3 are available in GenBank in China. In this study, we determined the whole genomic sequences of six E3 strains isolated from the stools of patients with hand-foot-and-mouth disease in Southwest China in 2022. Their nucleotide and amino acid sequences shared 82.1%-86.4% and 96.6%-97.2% identity with the prototype Morrisey strain, respectively, and showed 87.1% and 97.2% mutual identity. The six E3 strains are not clustered with other Chinese strains and formed a novel subgenotype (C6) with the recent American and British strains. Recombination analyses revealed that intertype recombination had occurred in the 2 C and 3D regions of the six E3 strains with coxsackieviruses B5 and B4, respectively. This study augments the nearly whole-genome sequences of E3 in the GenBank database and extends the molecular characterization of this virus in China.
Collapse
Affiliation(s)
- Junwei Chen
- School of Life Sciences, Yunnan University, Kunming, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Zhaoyang Chu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Yuhan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Li Li
- Department of Clinical Laboratory Kunming Maternal and Child Health hospital, Kunming, China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming, People's Republic of China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, People's Republic of China
| |
Collapse
|
3
|
Huang S, Zhang Y, Zhang W, Chen M, Li C, Guo X, Zhu S, Zeng H, Fang L, Ke B, Li H, Yoshida H, Xu W, Deng X, Zheng H. Prevalence of Non-Polio Enteroviruses in the Sewage of Guangzhou City, China, from 2013 to 2021. Microbiol Spectr 2023; 11:e0363222. [PMID: 36995241 PMCID: PMC10269821 DOI: 10.1128/spectrum.03632-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Continuous surveillance of enteroviruses (EVs) in urban domestic sewage can timely reflect the circulation of EVs in the environment and crowds, and play a predictive and early warning role in EV-related diseases. To better understand the long-term epidemiological trends of circulating EVs and EV-related diseases, we conducted a 9-year (2013 to 2021) surveillance study of non-polio EVs (NPEVs) in urban sewage in Guangzhou city, China. After concentrating and isolating the viruses from the sewage samples, NPEVs were detected and molecular typing was performed. Twenty-one different NPEV serotypes were identified. The most isolated EVs were echovirus 11 (E11), followed by coxsackievirus (CV) B5, E6, and CVB3. EV species B prevailed in sewage samples, but variations in the annual frequency of different serotypes were also observed in different seasons, due to spatial and temporal factors. E11 and E6 were detected continuously before 2017, and the number of isolates was relatively stable during the surveillance period. However, after their explosive growth in 2018 and 2019, their numbers suddenly decreased significantly. CVB3 and CVB5 had alternating trends; CVB5 was most frequently detected in 2013 to 2014 and 2017 to 2018, while CVB3 was most frequently detected in 2015 to 2016 and 2020 to 2021. Phylogenetic analysis showed that at least two different transmission chains of CVB3 and CVB5 were prevalent in Guangzhou City. Our results show that in the absence of a comprehensive and systematic EV-related disease surveillance system in China, environmental surveillance is a powerful and effective tool to strengthen and further investigate the invisible transmission of EVs in the population. IMPORTANCE This study surveilled urban sewage samples from north China for 9 years to monitor enteroviruses. Samples were collected, processed, and viral identification and molecular typing were performed. We detected 21 different non-polio enteroviruses (NPEVs) with yearly variations in prevalence and peak seasons. In addition, this study is very important for understanding the epidemiology of EVs during the COVID-19 pandemic, as the detection frequency and serotypes of EVs in sewage changed considerably around 2020. We believe that our study makes a significant contribution to the literature because our results strongly suggest that environmental surveillance is an exceptionally important tool, which can be employed to detect and monitor organisms of public health concern, which would otherwise be missed and under-reported by case-based surveillance systems alone.
Collapse
Affiliation(s)
- Shufen Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
- School of Public Health, Southern Medical University, Baiyun District, Guangzhou, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Wei Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Meizhong Chen
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
- School of Public Health, Southern Medical University, Baiyun District, Guangzhou, China
| | - Caixia Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Xue Guo
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Hanri Zeng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Ling Fang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Hui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Hiromu Yoshida
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Xiaoling Deng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| |
Collapse
|
4
|
He Y, Wei H, Wei L, Fan H, Yan D, Zhao H, Zhu S, Ji T, Xiao J, Lu H, Wang W, Guo Q, Yang Q, Xing W, Zhang Y. Molecular Epidemiology Reveals the Co-Circulation of Two Genotypes of Coxsackievirus B5 in China. Viruses 2022; 14:v14122693. [PMID: 36560696 PMCID: PMC9785520 DOI: 10.3390/v14122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Coxsackievirus B5 (CVB5) is an important enterovirus B species (EV-Bs) type. We used the full-length genomic sequences of 53 viral sequences from the national hand, foot, and mouth disease surveillance network in the Chinese mainland (2001-2021). Among them, 69 entire VP1 coding region nucleotide sequences were used for CVB5 genotyping and genetic evolution analysis. Phylogenetic analysis based on a data set of 448 complete VP1 sequences showed that CVB5 could be divided into four genotypes (A-D) worldwide. Sequences from this study belonged to genotypes B and D, which dominated transmission in the Chinese mainland. Two transmission lineages of CVB5 have been discovered in the Chinese mainland, lineage 2 was predominant. Markov chain Monte Carlo analysis indicated that the tMRCA of CVB5 in the Chinese mainland could be traced to 1955, while the global trend could be traced to 1862, 93 years earlier than China. The evolution rate of CVB5 was higher in the Chinese mainland than worldwide. The spatiotemporal dynamics analysis of CVB5 assessed that virus transportation events were relatively active in Central, Northeast, North and Northwest China. Recombination analysis revealed frequent intertypic recombination in the non-structural region of CVB5 genotypes B and D with the other EV-Bs, revealing eight recombination lineages. Our study showed the molecular evolution and phylogeography of CVB5 that could provide valuable information for disease prevention.
Collapse
Affiliation(s)
- Yun He
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- School of Public Health and Management, Shandong First Medical University, Shandong Academy of Medical Sciences, 6699 Qindao Road, Jinan 250117, China
| | - Haiyan Wei
- Henan Center for Disease Control and Prevention, Zhengzhou 450016, China
| | - Leilei Wei
- Jilin Center for Disease Control and Prevention, Jilin Institute of Public Health, Changchun 130062, China
| | - Huan Fan
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, China
| | - Dongmei Yan
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hua Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Shuangli Zhu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Tianjiao Ji
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jinbo Xiao
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Huanhuan Lu
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wenhui Wang
- School of Public Health and Management, Shandong First Medical University, Shandong Academy of Medical Sciences, 6699 Qindao Road, Jinan 250117, China
| | - Qin Guo
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qian Yang
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Correspondence: (Q.Y.); (W.X.); (Y.Z.); Tel.: +86-10-58900185 (Q.Y.); +86-531-59567833 (W.X.); +86-10-58900183 (Y.Z.)
| | - Weijia Xing
- School of Public Health and Management, Shandong First Medical University, Shandong Academy of Medical Sciences, 6699 Qindao Road, Jinan 250117, China
- Correspondence: (Q.Y.); (W.X.); (Y.Z.); Tel.: +86-10-58900185 (Q.Y.); +86-531-59567833 (W.X.); +86-10-58900183 (Y.Z.)
| | - Yong Zhang
- National Polio Laboratory, WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (Q.Y.); (W.X.); (Y.Z.); Tel.: +86-10-58900185 (Q.Y.); +86-531-59567833 (W.X.); +86-10-58900183 (Y.Z.)
| |
Collapse
|
5
|
Guo W, Xu D, Cong S, Du Z, Li L, Zhang M, Feng C, Bao G, Sun H, Yang Z, Ma S. Co-infection and enterovirus B: post EV-A71 mass vaccination scenario in China. BMC Infect Dis 2022; 22:671. [PMID: 35927711 PMCID: PMC9354358 DOI: 10.1186/s12879-022-07661-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a common child infectious disease caused by more than 20 enterovirus (EV) serotypes. In recent years, enterovirus A71 (EV-A71) has been replaced by Coxsackievirus A6 (CV-A6) to become the predominant serotype. Multiple EV serotypes co-circulate in HFMD epidemics, and this study aimed to investigate the etiological epidemic characteristics of an HFMD outbreak in Kunming, China in 2019. METHODS The clinical samples of 459 EV-associated HFMD patients in 2019 were used to amplify the VP1 gene region by the three sets of primers and identify serotypes using the molecular biology method. Phylogenetic analyses were performed based on the VP1 gene. RESULTS Three hundred and forty-eight cases out of 459 HFMD patients were confirmed as EV infection. Of these 191 (41.61%) were single EV infections and 34.20% had co-infections. The EVs were assigned to 18 EV serotypes, of which CV-A6 was predominant (11.33%), followed by CV-B1 (8.93%), CV-A4 (5.23%), CV-A9 (4.58%), CV-A 16 (3.49%) and CV-A10 and CVA5 both 1.96%. Co-infection of CV-A6 with other EVs was present in 15.25% of these cases, followed by co-infection with CV-A16 and other EVs. The VP1 sequences used in the phylogenetic analyses showed that the CV-A6, CV-B1 and CV-A4 sequences belonged to the sub-genogroup D3 and genogroups F and E, respectively. CONCLUSION Co-circulation and co-infection of multiple serotypes were the etiological characteristic of the HFMD epidemic in Kunming China in 2019 with CV-A-6, CV-B1 and CV-A4 as the predominant serotypes. This is the first report of CV-B1 as a predominant serotype in China and may provide valuable information for the diagnosis, prevention and control of HFMD.
Collapse
Affiliation(s)
- Wei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Zengqing Du
- Department of Infectious Diseases, Kunming Children's Hospital, Kunming, China
| | - Li Li
- Department of Clinical Laboratory, Kunming Maternal and Child Health Hospital, Kunming, 650031, China
| | - Ming Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Guohong Bao
- First People's Hospital of Yunnan Province, Kunming, 650032, People's Republic of China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College (CAMS & PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan Province, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China.
| |
Collapse
|
6
|
Yang Y, Liu G, Jia J, Zhong J, Yan R, Lin X, Zheng K, Zhu Q. In-vitro antiviral activity of doxepin hydrochloride against group B coxsackievirus. Virus Res 2022; 317:198816. [DOI: 10.1016/j.virusres.2022.198816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
|
7
|
Li W, Wang J, Zhou K, Tian Y, Wei F, Zhang M, Wang X. Association of PM 2.5 and its components with lengths of hospital stay for hand foot and mouth disease in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50598-50607. [PMID: 35237913 DOI: 10.1007/s11356-022-19448-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Hand foot and mouth disease (HFMD) is a widespread public health concern but the studies on air pollution and the lengths of hospital stay (LOS) of HFMD are scarce nevertheless. Clinic demographic features among 5135 hospitalized HFMD cases in Nanjing, China, had been characterized from 2012 to 2017. Then, we had analyzed the association between PM2.5 short-term exposure as well as its components (OM, BC, SO42-, NH4+, NIT, SOIL, and SS) and the LOS of HFMD. Among these cases that were involved in our study, 98.62% were aged 0-6 years old, and 3772 (73.46%) were hospitalized within 1 week or less. The LOS of HFMD patients was different in various age ranges, illness onset years, and illness onset seasons (P < 0.01). For per IQR increase in PM2.5 concentrations, LOS of HFMD increased by 0.52 (0.33, 0.71), 0.50 (95% CI, 0.31-0.69) and 0.46 (95% CI, 0.28-0.65) day in adjusted models at lag 3 days, lag 7 days, and lag 14 days, respectively. In addition, per IQR increase of BC, SO42-, NH4+, NIT, and SOIL was also significantly associated with the LOS of HFMD. Our findings corroborated that short-term PM2.5 exposure was associated with the increased LOS of HFMD, and its components (BC, SO42-, NH4+, NIT, and SOIL) of PM2.5 might play a key role in prolonged LOS of HFMD.
Collapse
Affiliation(s)
- Wei Li
- Department of Quality Management, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Jieguo Wang
- Department of Emergency, Pediatric Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Kai Zhou
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Ye Tian
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Feiran Wei
- Division of Rheumatology, Zhongda Hospital Southeast University, Nanjing, 210008, China
| | - Mingzhi Zhang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xu Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
8
|
Teng P, Yang H, Li J, Yang F, Chen W. Analysis of the long noncoding RNA profiles of RD and SH-SY5Y cells infected with coxsackievirus B5, using RNA sequencing. Arch Virol 2021; 167:367-376. [PMID: 34839420 DOI: 10.1007/s00705-021-05313-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 01/10/2023]
Abstract
Hand, foot, and mouth disease caused by coxsackievirus B5 (CV-B5) is a considerable threat to infant health, especially with regard to neurological damage. Long noncoding RNAs (lncRNAs) are known to play pivotal roles in virus-host interactions. However, the roles of lncRNAs in CV-B5-host interactions have not yet been elucidated. In the current study, we used RNA sequencing to determine the expression profiles of lncRNAs in CV-B5-infected human rhabdomyosarcoma (RD) and SH-SY5Y cells. Our results showed that, of the differentially expressed lncRNAs, 508 were upregulated and 760 were downregulated in RD cells. Of these, 46.2% were long noncoding intergenic RNAs (lincRNAs), 28.6% were antisense lncRNAs, 24.1% were sense overlapping lncRNAs, and 1.0% were sense intronic lncRNAs. Moreover, 792 lncRNAs were upregulated and 811 lncRNAs were downregulated in SH-SY5Y cells, 48.6% of which were lincRNAs, 34.7% were antisense lncRNAs, 16.0% were sense overlapping lncRNAs, and 0.8% were sense intronic lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that lncRNAs that were differentially expressed in CV-B5-infected RD cells were associated with disease, and those differentially expressed in SH-SY5Y cells were involved in signaling pathways. RT-qPCR analysis of seven lncRNAs supported these results. Moreover, our study revealed that lncRNA-IL12A inhibits viral replication. We conclude that lncRNAs constitute potential novel molecular targets for the prevention and treatment of CV-B5 infection and also may serve to distinguish neurogenic diseases caused by CV-B5 infection.
Collapse
Affiliation(s)
- Peiying Teng
- Medical School, Kunming University of Science and Technology, No. 727, Southern Jingming Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Heng Yang
- College of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan, People's Republic of China
| | - Jing Li
- Medical School, Kunming University of Science and Technology, No. 727, Southern Jingming Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Fan Yang
- Medical School, Kunming University of Science and Technology, No. 727, Southern Jingming Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Wei Chen
- Medical School, Kunming University of Science and Technology, No. 727, Southern Jingming Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China.
| |
Collapse
|
9
|
Zhang N, Zheng T, Chen Y, Zhu H, Qu Y, Zheng H, Liu H, Liu Q. Coxsackievirus B5 virus-like particle vaccine exhibits greater immunogenicity and immunoprotection than its inactivated counterpart in mice. Vaccine 2021; 39:5699-5705. [PMID: 34420787 DOI: 10.1016/j.vaccine.2021.07.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/02/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Coxsackievirus B group 5 (CVB5) represents one of the major pathogens that cause diseases such as hand, foot and mouth disease (HFMD) and aseptic meningitis et al. Currently, no specific drugs and vaccines are available, and a safe and effective CVB5 vaccine is of great value for control of the diseases. In this study, CVB5 P1 precursor and 3CD protease were co-expressed in Sf9 cells by using a baculovirus expression system. The P1 was processed by 3CD and self-assembled into CVB5 virus-like particles (VLPs). VP1 and VP3 capsid proteins of CVB5 could be detected by SDS-PAGE and Western blotting. Transmission electron microscopy revealed that the CVB5 VLPs were spherical particles with a diameter of about 30 nm, mimicking wild-type CVB5 virus. Our study showed that the total IgG and neutralizing antibodies induced by CVB5 VLPs were higher than those induced by inactivated vaccine. More importantly, the CVB5 VLPs conferred full protection to the CVB5-challenged suckling mice via passive immunity while protection efficiency of the inactivated vaccine was only 80%. The CVB5 VLPs vaccine could protect the limb muscles, brain, and heart tissues of suckling mice from CVB5-induced damage. These results demonstrated that the CVB5 VLPs vaccine possessed stronger immunogenicity and provided more robust immunoprotection than the inactivated CVB5 vaccine, suggesting that the CVB5 VLPs promise to be a CVB5 vaccine candidate in future.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Tianpeng Zheng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yongbei Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Hanyu Zhu
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi, China
| | - Ying Qu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Huanying Zheng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, Guangxi, China.
| | - Qiliang Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China; College of Biotechnology, Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
10
|
Ji H, Fan H, Lu PX, Zhang XF, Ai J, Shi C, Huo X, Bao CJ, Shan J, Jin Y. Surveillance for severe hand, foot, and mouth disease from 2009 to 2015 in Jiangsu province: epidemiology, etiology, and disease burden. BMC Infect Dis 2019; 19:79. [PMID: 30669973 PMCID: PMC6341624 DOI: 10.1186/s12879-018-3659-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022] Open
Abstract
Background Severe hand, foot, and mouth disease (HFMD) is a common childhood illness caused by various enteroviruses. The disease has imposed increased burden on children younger than 5 years old. We aimed to determine the epidemiology, CNS complication, and etiology among severe HFMD patients, in Jiangsu, China. Methods Epidemiological, clinical, and laboratory data of severe HFMD cases were extracted from 2009 to 2015. The CNS complication, annually severe illness rates, mortality rates, severity-PICU admission rates, severity-hospitalization rates, and so on were analyzed to assess the disease burden of severe HFMD. All analyses were stratified by time, region, population, CNS involvement and serotypes. The VP1 gene from EV-A71, CV-A16, CV-A6, CV-A10 and other enteroviruses isolates was amplified. Phylogenetic analysis was performed using MEGA5.0. Results Seven thousand nine hundred ninety-four severe HFMD cases were reported, of them, 7224 cases were inpatients, 611 were PICU inpatients, and 68 were fatal. The average severe illness rate, mortality rate, severity−fatality rate, severity-PICU admission rate, and severity-hospitalization rate were 14.54, 0.12,8506, 76,430, and 903,700 per 1 million, respectively. The severe illness rate was the highest in the 12–23 months age group, and the greatest mortality rate was in the 6–11 months age group. Geographical difference in severe illness rate and mortality were found. Patients infected with EV-A71 were at a higher proportion in different CNS involvement even death. EV-A71, CV-A16 and other enteroviruses accounted for 79.14, 6.49, and 14.47%, respectively. A total of 14 non-EV-A71/ CV-A16 genotypes including CV-A2, CV-A4, CV-A 6, CV-A9, CV-A10, CV-B1, CV-B2, CV-B3, CV-B4, CV-B5, E-6, E-7, E-18, and EV-C96 were identified. Phylogentic analyses demonstrated that EV-A71 strains belonged to subgenotype C4a, while CV-A16 strains belonged to sub-genotype B1a and sub-genotype B1b of genotype B1. CV-A6 strains were assigned to genogroup F, and CV-A10 strains belonged to genogroup D. Conclusions Future mitigation policies should take into account the age, region heterogeneities, CNS conditions and serotype of disease. Additional a more rigorous study between the mild and severe HFMD should be warranted to elucidate the difference epidemiology, pathogen spectrum and immunity patterns and to optimize interventions in the following study. Electronic supplementary material The online version of this article (10.1186/s12879-018-3659-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Ji
- Medical School of Nanjing University, Nanjing, 210093, China.,Department of Acute Infectious Disease Control and Prevention, Jiangsu Province Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Huan Fan
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Province Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Peng-Xiao Lu
- Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xue-Feng Zhang
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Province Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Jing Ai
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Province Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Chao Shi
- Wuxi Municipal Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Xiang Huo
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Province Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Chang-Jun Bao
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Province Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Jun Shan
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Province Center for Disease Control and Prevention, Nanjing, 210009, China.
| | - Yu Jin
- Medical School of Nanjing University, Nanjing, 210093, China. .,Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
11
|
Pu X, Qian Y, Yu Y, Shen H. Echovirus plays a major role in natural recombination in the coxsackievirus B group. Arch Virol 2019; 164:853-860. [DOI: 10.1007/s00705-018-4114-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022]
|
12
|
Mao Q, Hao X, Hu Y, Du R, Lang S, Bian L, Gao F, Yang C, Cui B, Zhu F, Shen L, Liang Z. A neonatal mouse model of central nervous system infections caused by Coxsackievirus B5. Emerg Microbes Infect 2018; 7:185. [PMID: 30459302 PMCID: PMC6246558 DOI: 10.1038/s41426-018-0186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 01/02/2023]
Abstract
As one of the key members of the coxsackievirus B group, coxsackievirus B5 (CV-B5) can cause many central nervous system diseases, such as viral encephalitis, aseptic meningitis, and acute flaccid paralysis. Notably, epidemiological data indicate that outbreaks of CV-B5-associated central nervous system (CNS) diseases have been reported worldwide throughout history. In this study, which was conducted to promote CV-B5 vaccine and anti-virus drug research, a 3-day-old BALB/c mouse model was established using a CV-B5 clinical isolate (CV-B5/JS417) as the challenge strain. Mice challenged with CV-B5/JS417 exhibited a series of neural clinical symptoms and death with necrosis of neuronal cells in the cerebral cortex and the entire spinal cord, hindlimb muscles, and cardiomyocytes. The viral load of each tissue at various post-challenge time points suggested that CV-B5 replicated in the small intestine and was subsequently transmitted to various organs via viremia; the virus potentially entered the brain through the spinal axons, causing neuronal cell necrosis. In addition, this mouse model was used to evaluate the protective effect of a CV-B5 vaccine. The results indicated that both the inactivated CV-B5 vaccine and anti-CVB5 serum significantly protected mice from a lethal infection of CV-B5/JS417 by producing neutralizing antibodies. In summary, the first CV-B5 neonatal mouse model has been established and can sustain CNS infections in a manner similar to that observed in humans. This model will be a useful tool for studies on pathogenesis, vaccines, and anti-viral drug evaluations.
Collapse
Affiliation(s)
- Qunying Mao
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaotian Hao
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Yalin Hu
- Quality Control Department, Hualan Biological Engineering Inc., Henan, China
| | - Ruixiao Du
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Shuhui Lang
- Shandong Xinbo Pharmaceutical Co. Ltd., Dezhou, China
| | - Lianlian Bian
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Ce Yang
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Bopei Cui
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China
| | - Fengcai Zhu
- Vaccine Clinical Evaluation Department, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | | | - Zhenglun Liang
- Institute for Biological Products Control, National Institutes for Food and Drug Control, Beijing, China.
| |
Collapse
|
13
|
Zhu R, Cheng T, Yin Z, Liu D, Xu L, Li Y, Wang W, Liu J, Que Y, Ye X, Tang Q, Zhao Q, Ge S, He S, Xia N. Serological survey of neutralizing antibodies to eight major enteroviruses among healthy population. Emerg Microbes Infect 2018; 7:2. [PMID: 29323107 PMCID: PMC5837151 DOI: 10.1038/s41426-017-0003-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/03/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
Human enteroviruses (EVs) are the most common causative agents infecting human, causing many harmful diseases, such as hand, foot, and mouth disease (HFMD), herpangina (HA), myocarditis, encephalitis, and aseptic meningitis. EV-related diseases pose a serious worldwide threat to public health. To gain comprehensive insight into the seroepidemiology of major prevalent EVs in humans, we firstly performed a serological survey for neutralizing antibodies (nAbs) against Enterovirus A71 (EV-A71), Coxsackie virus A16 (CV-A16), Coxsackie virus A6 (CV-A6), Coxsackie virus A10 (CV-A10), Coxsackie virus B3 (CV-B3), Coxsackie virus B5 (CV-B5), Echovirus 25 (ECHO25), and Echovirus 30 (ECHO30) among the healthy population in Xiamen City in 2016, using micro-neutralization assay. A total of 515 subjects aged 5 months to 83 years were recruited by stratified random sampling. Most major human EVs are widely circulated in Xiamen City and usually infect infants and children. The overall seroprevalence of these eight EVs were ranged from 14.4% to 42.7%, and most of them increased with age and subsequently reached a plateau. The co-existence of nAbs against various EVs are common among people ≥ 7 years of age, due to the alternate infections or co-infections with different serotypes of EVs, while most children were negative for nAb against EVs, especially those < 1 year of age. This is the first report detailing the seroepidemiology of eight prevalent EVs in the same population, which provides scientific data supporting further studies on the improvement of EV-related disease prevention and control.
Collapse
Affiliation(s)
- Rui Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhichao Yin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dongxiao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yongchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jian Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiangzhong Ye
- Beijing Wantai Biological Pharmacy Enterprise, Beijing, 102206, China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shuizhen He
- Xiamen Center for Disease Control and Prevention, Xiamen, 361012, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
14
|
Gao F, Bian L, Hao X, Hu Y, Yao X, Sun S, Chen P, Yang C, Du R, Li J, Zhu F, Mao Q, Liang Z. Seroepidemiology of coxsackievirus B5 in infants and children in Jiangsu province, China. Hum Vaccin Immunother 2017; 14:74-80. [PMID: 29049009 DOI: 10.1080/21645515.2017.1384107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coxsackievirus B5 (CV-B5) is associated with various human diseases such as viral encephalitis, aseptic meningitis, paralysis, herpangina, and hand, foot and mouth disease (HFMD). However, there is currently no effective vaccine against CV-B5.The seroepidemiologic characteristics of CV-B5 remained unknown. A cohort study was carried out in 176 participants aged 6-35 months from January 2012 to January 2014. The serum samples were collected and tested for CV-B5 neutralizing antibodies (NtAbs) four times during these two years. The confirmed enterovirus cases were recorded through the surveillance system, and their throat or rectal swabs were collected for pathogen detection. According to the changes of CV-B5 NtAbs, two CV-B5 epidemics were detected among these participants during the two-year follow-up. Sixty-seven cases out of all participants had seroconversion in CV-B5 NtAbs. During the first epidemic from March 2012 to September 2012, CV-B5 seropositivity rate increased significantly (6.8%, 12/176 vs. 21.6%, 38/176, P = 0.000). The seroconversion rate and geometric mean fold-increase (GMFI) were 18.2% (32/176) and 55.7, respectively; During the second epidemic from September 2012 to January 2014, CV-B5 seropositivity rate also increased (21.6%, 38/176 vs. 38.6%, 68/176, P = 0.000), and the seroconversion rate and GMFI were 19.9% (35/176) and 46.5, respectively. Only one case had CV-B5 associated HFMD during the two-year follow-up, and CV-B5 from the throat swab isolate was GI.D3 subtype, which belonged to the major pandemic strain in mainland China. CV-B5 infection was common in infants and children in Jiangsu province, China. Therefore, it's necessary to strengthen the surveillance on CV-B5 and to understand the epidemic characteristics of CV-B5 infection.
Collapse
Affiliation(s)
- Fan Gao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Lianlian Bian
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Xiaotian Hao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Yalin Hu
- b Hualan Biological Engineering Inc , Xinxiang , Henan , P. R. China
| | - Xin Yao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Shiyang Sun
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Pan Chen
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Ce Yang
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Ruixiao Du
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Jingxin Li
- c Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , Jiangsu , P. R. China
| | - Fengcai Zhu
- c Jiangsu Provincial Center for Disease Control and Prevention , Nanjing , Jiangsu , P. R. China
| | - Qunying Mao
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| | - Zhenglun Liang
- a Division Hepatitis Virus Vaccines , National Institutes for Food and Drug Control , Beijing , P. R. China
| |
Collapse
|
15
|
Andreoni AR, Colton AS. Coxsackievirus B5 associated with hand-foot-mouth disease in a healthy adult. JAAD Case Rep 2017; 3:165-168. [PMID: 28413820 PMCID: PMC5376252 DOI: 10.1016/j.jdcr.2017.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Anthony R Andreoni
- Florida Atlantic University's Charles E. Schmidt College of Medicine, Boca Raton, Florida
| | - Andrea S Colton
- Florida Atlantic University's Charles E. Schmidt College of Medicine, Boca Raton, Florida.,ClearlyDerm Center for Dermatology, Boca Raton, Florida
| |
Collapse
|
16
|
Wang CR. Role and evolution trend of multiple enteroviruses in epidemic of hand, foot and mouth disease. Shijie Huaren Xiaohua Zazhi 2016; 24:4029-4039. [DOI: 10.11569/wcjd.v24.i29.4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There are a variety of enteroviruses (EV) that can cause hand, foot and mouth disease (HFMD), and the major pathogens include enterovirus 71 (EV71) and coxasckievirus A16 (CVA16). EV71 and CVA16 have attracted much attention for their high prevalence and pathogenicity, and disease surveillance and vaccine development are mainly concentrated on them. EV71 can cause serious harm to children with HFMD, especially the damage to the nervous system such as aseptic meningitis, brain stem encephalitis and paralytic disease, or even lead to death. However, in recent years, due to the epidemic of EV71 and CVA16, people have established an immune barrier through natural infection in a certain degree. Although there is no cross protection between types, the immune protection against the relevant type can persist for a long time. Thus, the number of HFMD cases caused by EV71 and CVA16 shows a decreasing trend, while the epidemic of HFMD caused by other EV exhibits an upward trend. Further studies found that non-EV71 and non-CVA16 EV are very complex, and there are also differences in EV prevalence each year, which makes the development, evolution and control of HFMD become complicated. At present, there is no enough attention paid to the sporadic virus in the HFMD epidemic, and a complete research system for non-EV71 and non-CVA16 EV has not formed. Therefore, it is necessary to strengthen the monitoring of multiple non-EV71 and non-CVA16 EV, further investigate their pathogenicity and genetic characteristics, and evaluate the relative frequency and biological hazard of infection. In this review, we summarize a variety of EV changes, molecular evolution, as well as typical epidemics, which may provide clues to the development of antiviral drugs and vaccines, and prevention and control of HFMD.
Collapse
|
17
|
Ma S, Du Z, Feng M, Che Y, Li Q. A severe case of co-infection with Enterovirus 71 and vaccine-derived Poliovirus type II. J Clin Virol 2015; 72:25-9. [PMID: 26361010 DOI: 10.1016/j.jcv.2015.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 01/16/2023]
Abstract
Enterovirus 71 (EV71) is often identified as the primary pathogen that directly leads to severe cases of HFMD, whereas the association between other enteroviruses and EV71 infection remains largely unclear. Here we report a rare case of a 5-year-old boy co-infected with EV71 and vaccine-derived Poliovirus (VDPV) type II, which were identified based on PCR and sequence analysis results and clinical symptoms and were characterized on CT. We determined that the EV71 strain belongs to the C4 subtype, and the VDPV II strain was closely genetically related to the reference Sabin type II strain. This report may improved our understanding of the clinical significance of the associations between clinical signs and the infectious properties of the involved pathogens.
Collapse
Affiliation(s)
- Shaohui Ma
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming 650118, China
| | - Zengqing Du
- Department of Infectious Diseases of Kunming Children's Hospital, Kunming 650,034, China
| | - Min Feng
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming 650118, China
| | - Yanchun Che
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming 650118, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
18
|
Klein M, Chong P. Is a multivalent hand, foot, and mouth disease vaccine feasible? Hum Vaccin Immunother 2015; 11:2688-704. [PMID: 26009802 DOI: 10.1080/21645515.2015.1049780] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Enterovirus A infections are the primary cause of hand, foot and mouth disease (HFMD) in infants and young children. Although enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the predominant causes of HFMD epidemics worldwide, EV-A71 has emerged as a major neurovirulent virus responsible for severe neurological complications and fatal outcomes. HFMD is a serious health threat and economic burden across the Asia-Pacific region. Inactivated EV-A71 vaccines have elicited protection against EV-A71 but not against CV-A16 infections in large efficacy trials. The current development of a bivalent inactivated EV-A71/CV-A16 vaccine is the next step toward that of multivalent HFMD vaccines. These vaccines should ultimately include other prevalent pathogenic coxsackieviruses A (CV-A6 and CV-A10), coxsackieviruses B (B3 and B5) and echovirus 30 that often co-circulate during HFMD epidemics and can cause severe HFMD, aseptic meningitis and acute viral myocarditis. The prospect and challenges for the development of such multivalent vaccines are discussed.
Collapse
Affiliation(s)
| | - Pele Chong
- b Vaccine R&D Center; National Health Research Institutes ; Zhunan Town, Miaoli County , Taiwan.,c Graduate Institute of Immunology; China Medical University ; Taichung , Taiwan
| |
Collapse
|
19
|
Tian X, Zhang Y, Gu S, Fan Y, Sun Q, Zhang B, Yan S, Xu W, Ma X, Wang W. New coxsackievirus B4 genotype circulating in Inner Mongolia Autonomous Region, China. PLoS One 2014; 9:e90379. [PMID: 24595311 PMCID: PMC3940859 DOI: 10.1371/journal.pone.0090379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/28/2014] [Indexed: 11/19/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) surveillance was initiated in the Inner Mongolia Autonomous Region of China in 2007, a crucial scrutiny for monitoring the prevalence of enterovirus serotypes associated with HFMD patients. However, this surveillance mostly focused on enterovirus 71 (EV-A71) and coxsackievirus A16; therefore, information on other enterovirus serotypes is limited. To identify the other circulating enterovirus serotypes in the HFMD outbreaks in Inner Mongolia in 2010, clinical samples from HFMD patients were investigated. Six coxsackievirus B4 (CVB4) strains were isolated and phylogenetic analyses of VP1 sequences were performed. Full-length genome sequences of two representative CVB4 isolates were acquired and similarity plot and bootscanning analyses were performed. The phylogenetic dendrogram indicated that all CVB4 strains could be divided into 5 genotypes (Genotypes I–V) with high bootstrap support (90–100%). The CVB4 prototype strain (JVB) was the sole member of genotype I. CVB4 strains belonging to genotype II, which were once common in Europe and the Americas, seemingly disappeared and gave way to genotype III and IV strains, which appear to be the dominant circulating strains in the world. All Chinese CVB4 strains belonged to Genotype V, a newly identified genotype supported by a high bootstrap value (100%), and are circulating only in mainland of China. Intertypic recombination occurred in the Chinese CVB4 strains with novel unknown serotype EV-B donor sequences. Two Chinese CVB4 strains had a virulent residue at position 129 of VP1, and one strain also had a virulent residue at position 16 of VP4. Increased surveillance is needed to monitor the emergence of new genetic lineages of enteroviruses in areas that are often associated with large-scale outbreaks. In addition, continued monitoring of enteroviruses by clinical surveillance and genetic characterization should be enhanced.
Collapse
Affiliation(s)
- Xiaoling Tian
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Suyi Gu
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
| | - Yaochun Fan
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
| | - Qiang Sun
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Bo Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shaohong Yan
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xueen Ma
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
| | - Wenrui Wang
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Autonomous Region, People's Republic of China
- * E-mail:
| |
Collapse
|
20
|
Hao C, Hao C, Li W, Liu X, Luo J. Phylodynamics of human Coxsackievirus B5. Future Virol 2014. [DOI: 10.2217/fvl.14.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Aim: Coxsackievirus B5 is recognized as an important pathogen in aseptic meningitis and hand, foot and mouth disease of children. A new distinctive sublineage of Coxsackievirus B5 associated with outbreak of neurological hand, foot and mouth disease in China was recently reported. Materials & methods: We employed a molecular evolution method to study the genetic variation and evolutionary history of Coxsackievirus B5 in China. Coxsackievirus B5 isolates from China can be divided into four major groups with obvious temporal evolution routes. Results: A 'mutation box' covering amino acids 75, 85, 90 and 95 of VP1 protein was observed to be unique in the isolates group from Henan and Shandong province. The temporal evolution routes of the amino acids changes in the 'mutation box' were studied. Conclusion: Our results provide primary insight into the relationship between genetic variation and epidemic behavior of Coxsackievirus B5.
Collapse
Affiliation(s)
- Congjun Hao
- Department of Geriatrics, General Hospital of Beijing Military Command, Beijing 100700, PR China
| | - Chunyan Hao
- College of Chemical & Biological Engineering, Taiyuan University of Science & Technology, Taiyuan 030021, PR China
| | - Wenbin Li
- College of Chemical & Biological Engineering, Taiyuan University of Science & Technology, Taiyuan 030021, PR China
| | - Xianjun Liu
- College of Chemical & Biological Engineering, Taiyuan University of Science & Technology, Taiyuan 030021, PR China
| | - Jizheng Luo
- Department of Geriatrics, General Hospital of Beijing Military Command, Beijing 100700, PR China
| |
Collapse
|
21
|
Tian H, Zhang Y, Sun Q, Zhu S, Li X, Pan Z, Xu W, Xu B. Prevalence of multiple enteroviruses associated with hand, foot, and mouth disease in Shijiazhuang City, Hebei province, China: outbreaks of coxsackieviruses a10 and b3. PLoS One 2014; 9:e84233. [PMID: 24392117 PMCID: PMC3879295 DOI: 10.1371/journal.pone.0084233] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) has been one of the most common infectious diseases in Shijiazhuang City, as is the situation in China overall. In the National HFMD surveillance system, the pathogen detection was focused on EV-A71 and CVA16, and therefore, information on the other EVs is very limited. In order to identify the circulating EV serotypes in the HFMD outbreaks in Shijiazhuang City during 2010–2012, 4045 patients presented with HFMD were recruited in the study, and clinical samples were investigated. Typing of EV serotypes was performed using the molecular typing methods, and phylogenetic analyses based on entire VP1 sequences of human enterovirus 71 (EV-A71), coxsackievirus A16 (CVA16), CVA10 and CVB3 was performed. The results revealed that EV-A71 and CVA16 were the 2 most important pathogens but the circulating trends of the 2 viruses showed a shift, the spread of EV-A71 became increasingly weak, whereas the spread of CVA16 became increasingly stronger. CVA10 and CVB3 were the third and fourth most prevalent pathogens, respectively. Co-infection of two viruses at the same time was not found in these samples. Based on entire VP1 region sequences, the phylogenetic analysis revealed that C4a subgenotype EV-A71, B1a and B1b subgenotype CVA16 continued to evolve. The CVA10 strains were assigned to 4 genotypes (A–D), whereas the CVB3 strains were assigned to 5 genotypes (A–E), with clear geographical and temporal-specific distributions. The Shijiazhuang CVA10 sequences belonged to 4 epidemic lineages within genotype C, whereas the Shijiazhuang CVB3 sequences belonged to 2 epidemic lineages within genotype E, which may have the same origins as the strains reported in other part of China. CVA10 and CVB3, 2 pathogens that were previously infrequently detected, were identified as pathogens causing the HFMD outbreaks. This study underscores the need for detailed laboratory-based surveillances of HFMD in mainland China.
Collapse
Affiliation(s)
- Huifang Tian
- Microbiology Laboratory, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, People’s Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Qiang Sun
- WHO WPRO Regional Polio Reference Laboratory, Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiujuan Li
- Microbiology Laboratory, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhuo Pan
- Microbiology Laboratory, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, People’s Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Baohong Xu
- Microbiology Laboratory, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, People’s Republic of China
- * E-mail:
| |
Collapse
|
22
|
Zhang T, Du J, Xue Y, Su H, Yang F, Jin Q. Epidemics and Frequent Recombination within Species in Outbreaks of Human Enterovirus B-Associated Hand, Foot and Mouth Disease in Shandong China in 2010 and 2011. PLoS One 2013; 8:e67157. [PMID: 23840610 PMCID: PMC3686723 DOI: 10.1371/journal.pone.0067157] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
The epidemiology and molecular characteristics of human enterovirus B (HEV-B) associated with hand, foot and mouth disease (HFMD) outbreaks in China are not well known. In the present study, we tested 201 HEV isolates from 233 clinical specimens from patients with severe HFMD during 2010-2011 in Linyi, Shandong, China. Of the 201 isolates, 189 were fully typed and 18 corresponded to HEV-B species (six serotypes CVA9, CVB1, CVB4, Echo 6, Echo 25 and Echo 30) using sensitive semi-nested polymerase chain reaction analysis of VP1 gene sequences. Phylogenetic analysis based on the VP1 region showed that eight E30SD belonged to a novel sub-genogroup D2; E25SD belonged to a novel sub-genogroup D6; E6SD belonged to sub-lineage C6 and five CVB1SD belonged to subgroup 4C; and B4SD belonged sub-lineage D2. The full viral genomes of the CVB1SD, E6SD, E25SD and E30SD isolates were sequenced. Analysis of phylogenetic and similarity plots indicated that E25SD recombined with E25-HN-2, E30FDJS03 and E4AUS250 at noncontiguous P2A-P3D regions, while E30SD, E30FDJ03, E25-HN-2 and E9 DM had shared sequences in discrete regions of P2 and P3. Both E6SD and B1SD shared sequences with E1-HN, B4/GX/10, B5-HN, and A9-Alberta in contiguous regions of most of P2 and P3. Genetic algorithm recombination detection analysis further confirmed the existence of multiple potential recombination points. In conclusion, analysis of the complete genomes of E25SD, E30SD, CVB1SD and E6SD isolated from HFMD patients revealed that they formed novel subgenogroup. Given the prevalence and recombination of these viruses in outbreaks of HFMD, persistent surveillance of HFMD-associated HEV-B pathogens is required to predict potential emerging viruses and related disease outbreaks.
Collapse
Affiliation(s)
- Ting Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Xue
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haoxiang Su
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (FY); (QJ)
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (FY); (QJ)
| |
Collapse
|
23
|
Recombination in human coxsackievirus B5 strains that caused an outbreak of viral encephalitis in Henan, China. Arch Virol 2013; 158:2169-73. [DOI: 10.1007/s00705-013-1709-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/26/2013] [Indexed: 10/26/2022]
|
24
|
Full genome sequence of a novel coxsackievirus B5 strain isolated from neurological hand, foot, and mouth disease patients in China. J Virol 2012; 86:11408-9. [PMID: 22997425 DOI: 10.1128/jvi.01709-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus B5 (CVB5) belongs to the human enterovirus B species within the family Picornaviridae. We report the complete genome sequence of a novel CVB5 strain, CVB5/SD/09, that is associated with neurological hand, foot, and mouth disease in China. The complete genome consists of 7,399 nucleotides, excluding the 3' poly(A) tail, and has an open reading frame that maps between nucleotide positions 744 and 7301 and encodes a 2,185-amino-acid polyprotein. Phylogenetic analysis based on different genome region regions reveals that CVB5/SD/09 belongs to a novel CVB5 lineage, and similarity plotting and bootscanning analysis based on the whole genome of CVB5 in the present study and those available in GenBank indicate that the genome of CVB5/SD/09 has a mosaic-like structure, suggesting that recombination between different CVB5 strains may occur.
Collapse
|