1
|
Ma Q, Li X, Jiang H, Fu X, You L, You F, Ren Y. Mechanisms underlying the effects, and clinical applications, of oral microbiota in lung cancer: current challenges and prospects. Crit Rev Microbiol 2024; 50:631-652. [PMID: 37694585 DOI: 10.1080/1040841x.2023.2247493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The oral cavity contains a site-specific microbiota that interacts with host cells to regulate many physiological processes in the human body. Emerging evidence has suggested that changes in the oral microbiota can increase the risk of lung cancer (LC), and the oral microbiota is also altered in patients with LC. Human and animal studies have shown that oral microecological disorders and/or specific oral bacteria may play an active role in the occurrence and development of LC through direct and/or indirect mechanisms. These studies support the potential of oral microbiota in the clinical treatment of LC. Oral microbiota may therefore be used in the prevention and treatment of LC and to improve the side effects of anticancer therapy by regulating the balance of the oral microbiome. Specific oral microbiota in LC may also be used as screening or predictive biomarkers. This review summarizes the main findings in research on oral microbiome-related LC and discusses current challenges and future research directions.
Collapse
Affiliation(s)
- Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hua Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
2
|
Li W, Liu W, Yang H, Wang X, Wang Z, Liu Z. Oral infection with periodontal pathogens induced chronic obstructive pulmonary disease-like lung changes in mice. BMC Oral Health 2024; 24:850. [PMID: 39061018 PMCID: PMC11282791 DOI: 10.1186/s12903-024-04635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Epidemiological studies have demonstrated that periodontitis is an independent risk factor for chronic obstructive pulmonary disease (COPD). However, the mechanism underlying the association between these two diseases remains unclear. The lung microbiota shares similarities with the oral microbiota, and there is growing evidence to suggest that the lung microbiome could play a role in the pathogenesis of COPD. This study aimed to investigate whether periodontal pathogens could contribute to the pathogenesis of COPD in a mouse model. METHODS We established mouse models with oral infection by typical periodontal pathogens, porphyromonas gingivalis (Pg group) or fusobacterium nucleatum (Fn group), over a three-month period. Mice that did not receive oral infection were set as the control group (C group). We assessed the level of alveolar bone resorption, lung function, and histological changes in the lungs of the mice. Additionally, we measured the levels of inflammatory factors and tissue damage associated factors in the lung tissues. RESULTS Lung function indices, including airway resistance, peak inspiratory/expiratory flow and expiratory flow-50%, were significantly reduced in the Fn group compared to the C group. Additionally, histological examination revealed an increased number of inflammatory cells and bullae formation in the lung tissue sections of the Fn group. Meanwhile, levels of inflammatory factors such as IL-1β, IL-6, IFN-γ, and TNF-α, as well as tissue damage associated factors like matrix metalloproteinase-8 and neutrophil elastase, were significantly elevated in the lung tissue of the Fn group in comparison to the C group. The Pg group also showed similar but milder lung changes compared to the Fn group. Pg or Fn could be detected in the lungs of both oral infected groups. CONCLUSION The results indicated that oral periodontal pathogens infection could induce COPD-like lung changes in mice, and they may play a biological role in the association between periodontitis and COPD.
Collapse
Affiliation(s)
- Wenyue Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Wenyan Liu
- Department of Stomatology, Beijing Lu He Hospital, Capital Medical University, Beijing, China
| | - Hongjia Yang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Xueyuan Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China.
| | - Zhiqiang Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
3
|
Ren Y, Ma Q, Zeng X, Huang C, Tan S, Fu X, Zheng C, You F, Li X. Saliva‑microbiome‑derived signatures: expected to become a potential biomarker for pulmonary nodules (MCEPN-1). BMC Microbiol 2024; 24:132. [PMID: 38643115 PMCID: PMC11031921 DOI: 10.1186/s12866-024-03280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/27/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Oral microbiota imbalance is associated with the progression of various lung diseases, including lung cancer. Pulmonary nodules (PNs) are often considered a critical stage for the early detection of lung cancer; however, the relationship between oral microbiota and PNs remains unknown. METHODS We conducted a 'Microbiome with pulmonary nodule series study 1' (MCEPN-1) where we compared PN patients and healthy controls (HCs), aiming to identify differences in oral microbiota characteristics and discover potential microbiota biomarkers for non-invasive, radiation-free PNs diagnosis and warning in the future. We performed 16 S rRNA amplicon sequencing on saliva samples from 173 PN patients and 40 HCs to compare the characteristics and functional changes in oral microbiota between the two groups. The random forest algorithm was used to identify PN salivary microbial markers. Biological functions and potential mechanisms of differential genes in saliva samples were preliminarily explored using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups (COG) analyses. RESULTS The diversity of salivary microorganisms was higher in the PN group than in the HC group. Significant differences were noted in community composition and abundance of oral microorganisms between the two groups. Neisseria, Prevotella, Haemophilus and Actinomyces, Porphyromonas, Fusobacterium, 7M7x, Granulicatella and Selenomonas were the main differential genera between the PN and HC groups. Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus and Haemophilus constituted the optimal marker sets (area under curve, AUC = 0.80), which can distinguish between patients with PNs and HCs. Further, the salivary microbiota composition was significantly correlated with age, sex, and smoking history (P < 0.001), but not with personal history of cancer (P > 0.05). Bioinformatics analysis of differential genes showed that patients with PN showed significant enrichment in protein/molecular functions related to immune deficiency and energy metabolisms, such as the cytoskeleton protein RodZ, nicotinamide adenine dinucleotide phosphate dehydrogenase (NADPH) dehydrogenase, major facilitator superfamily transporters and AraC family transcription regulators. CONCLUSIONS Our study provides the first evidence that the salivary microbiota can serve as potential biomarkers for identifying PN. We observed a significant association between changes in the oral microbiota and PNs, indicating the potential of salivary microbiota as a new non-invasive biomarker for PNs. TRIAL REGISTRATION Clinical trial registration number: ChiCTR2200062140; Date of registration: 07/25/2022.
Collapse
Affiliation(s)
- Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xiao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chunxia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Shiyan Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| |
Collapse
|
4
|
Wang L, Hao K, Yang T, Wang C. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Chin Med J (Engl) 2018; 130:2107-2111. [PMID: 28741603 PMCID: PMC5586181 DOI: 10.4103/0366-6999.211452] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The development of culture-independent techniques for microbiological analysis shows that bronchial tree is not sterile in either healthy or chronic obstructive pulmonary disease (COPD) individuals. With the advance of sequencing technologies, lung microbiome has become a new frontier for pulmonary disease research, and such advance has led to better understanding of the lung microbiome in COPD. This review aimed to summarize the recent advances in lung microbiome, its relationships with COPD, and the possible mechanisms that microbiome contributed to COPD pathogenesis. DATA SOURCES Literature search was conducted using PubMed to collect all available studies concerning lung microbiome in COPD. The search terms were "microbiome" and "chronic obstructive pulmonary disease", or "microbiome" and "lung/pulmonary". STUDY SELECTION The papers in English about lung microbiome or lung microbiome in COPD were selected, and the type of articles was not limited. RESULTS The lung is a complex microbial ecosystem; the microbiome in lung is a collection of viable and nonviable microbiota (bacteria, viruses, and fungi) residing in the bronchial tree and parenchymal tissues, which is important for health. The following types of respiratory samples are often used to detect the lung microbiome: sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa. Disordered bacterial microbiome is participated in pathogenesis of COPD; there are also dynamic changes in microbiota during COPD exacerbations. Lung microbiome may contribute to the pathogenesis of COPD by manipulating inflammatory and/or immune process. CONCLUSIONS Normal lung microbiome could be useful for prophylactic or therapeutic management in COPD, and the changes of lung microbiome could also serve as biomarkers for the evaluation of COPD.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10001, USA
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
5
|
Zhang S, Cao X, Huang H. Sampling Strategies for Three-Dimensional Spatial Community Structures in IBD Microbiota Research. Front Cell Infect Microbiol 2017; 7:51. [PMID: 28286741 PMCID: PMC5323387 DOI: 10.3389/fcimb.2017.00051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 12/12/2022] Open
Abstract
Identifying intestinal microbiota is arguably an important task that is performed to determine the pathogenesis of inflammatory bowel diseases (IBD); thus, it is crucial to collect and analyze intestinally-associated microbiota. Analyzing a single niche to categorize individuals does not enable researchers to comprehensively study the spatial variations of the microbiota. Therefore, characterizing the spatial community structures of the inflammatory bowel disease microbiome is critical for advancing our understanding of the inflammatory landscape of IBD. However, at present there is no universally accepted consensus regarding the use of specific sampling strategies in different biogeographic locations. In this review, we discuss the spatial distribution when screening sample collections in IBD microbiota research. Here, we propose a novel model, a three-dimensional spatial community structure, which encompasses the x-, y-, and z-axis distributions; it can be used in some sampling sites, such as feces, colonoscopic biopsy, the mucus gel layer, and oral cavity. On the basis of this spatial model, this article also summarizes various sampling and processing strategies prior to and after DNA extraction and recommends guidelines for practical application in future research.
Collapse
Affiliation(s)
- Shaocun Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital; Tianjin Medical University Tianjin, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin UniversityTianjin, China; Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| |
Collapse
|
6
|
Fourie NH, Wang D, Abey SK, Sherwin LB, Joseph PV, Rahim-Williams B, Ferguson EG, Henderson WA. The microbiome of the oral mucosa in irritable bowel syndrome. Gut Microbes 2016; 7:286-301. [PMID: 26963804 PMCID: PMC4988452 DOI: 10.1080/19490976.2016.1162363] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a poorly understood disorder characterized by persistent symptoms, including visceral pain. Studies have demonstrated oral microbiome differences in inflammatory bowel diseases suggesting the potential of the oral microbiome in the study of non-oral conditions. In this exploratory study we examine whether differences exist in the oral microbiome of IBS participants and healthy controls, and whether the oral microbiome relates to symptom severity. The oral buccal mucosal microbiome of 38 participants was characterized using PhyloChip microarrays. The severity of visceral pain was assessed by orally administering a gastrointestinal test solution. Participants self-reported their induced visceral pain. Pain severity was highest in IBS participants (P = 0.0002), particularly IBS-overweight participants (P = 0.02), and was robustly correlated to the abundance of 60 OTUs, 4 genera, 5 families and 4 orders of bacteria (r2 > 0.4, P < 0.001). IBS-overweight participants showed decreased richness in the phylum Bacteroidetes (P = 0.007) and the genus Bacillus (P = 0.008). Analysis of β-diversity found significant separation of the IBS-overweight group (P < 0.05). Our oral microbial results are concordant with described fecal and colonic microbiome-IBS and -weight associations. Having IBS and being overweight, rather than IBS-subtypes, was the most important factor in describing the severity of visceral pain and variation in the microbiome. Pain severity was strongly correlated to the abundance of many taxa, suggesting the potential of the oral microbiome in diagnosis and patient phenotyping. The oral microbiome has potential as a source of microbial information in IBS.
Collapse
Affiliation(s)
- Nicolaas H. Fourie
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Dan Wang
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Sarah K. Abey
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - LeeAnne B. Sherwin
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Paule V. Joseph
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Bridgett Rahim-Williams
- National Institute on Minority Health and Health Disparities, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Eric G. Ferguson
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Wendy A. Henderson
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, DHHS, Bethesda, MD, USA
| |
Collapse
|
7
|
Bernasconi L, Ramenzoni LL, Al-Majid A, Tini GM, Graber SM, Schmidlin PR, Irani S. Elevated Matrix Metalloproteinase Levels in Bronchi Infected with Periodontopathogenic Bacteria. PLoS One 2015; 10:e0144461. [PMID: 26656474 PMCID: PMC4681451 DOI: 10.1371/journal.pone.0144461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022] Open
Abstract
Objectives To determine whether bronchial colonisations/infections with periodontopathogenic bacteria are associated with elevated inflammatory markers such as MMPs, interleukins and Tumor necrosis factor alpha in the bronchial fluid. Methods Periodontal status was assessed in consecutive outpatients planned for elective bronchoscopies, and PCR for periodontopathogenic bacteria was performed from a protected specimen brush sample taken from the bronchial mucosa. Additionally, MMPs, interleukins and Tumor necrosis factor alpha were measured in the bronchial fluid. Results Out of the four species assessed, one species was found in 13 of 91 (14%) patients, and two in 12 (13%), three in 13 (14%) and all four in 1 (1%) patient, respectively. In multiple linear regression models the presence of Treponema denticola showed a consistent pattern of positive effects in bronchial fluid (Bonferroni adjusted p-values) on the levels of MMP9 (p adj.: 0.028) and MMP12 (p adj.: 0.029). Active smoking was independently associated with increased levels of aMMP8 (p adj.: 0.005) and MMP9 (p adj.: 0.009). Levels of IL-1 ß, IL-8 and Tumor necrosis factor alpha measured in the bronchial fluid were not affected by the presence of periodontopathogenic bacteria. Conclusions Bronchial colonisation/infection with Treponema denticola and smoking are independently associated with elevated MMPs (MMP9/MMP12 and MMP8/MMP9, respectively) in the bronchial fluid.
Collapse
Affiliation(s)
- Luca Bernasconi
- Centre for Laboratory Medicine, Cantonal Hospital Aarau, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Liza L. Ramenzoni
- Clinic of Preventive Dentistry, Periodontology, and Cariology, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Ahmed Al-Majid
- Clinic of Preventive Dentistry, Periodontology, and Cariology, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Gabrielo M. Tini
- Clinic of Pulmonary and Sleep Medicine, Cantonal Hospital Aarau, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Sereina M. Graber
- Anthropological Institute and Museum, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick R. Schmidlin
- Clinic of Preventive Dentistry, Periodontology, and Cariology, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| | - Sarosh Irani
- Clinic of Pulmonary and Sleep Medicine, Cantonal Hospital Aarau, Tellstrasse, CH-5001 Aarau, Switzerland
- * E-mail:
| |
Collapse
|
8
|
Patarčić I, Gelemanović A, Kirin M, Kolčić I, Theodoratou E, Baillie KJ, de Jong MD, Rudan I, Campbell H, Polašek O. The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta-analyses and field synopsis. Sci Rep 2015; 5:16119. [PMID: 26524966 PMCID: PMC4630784 DOI: 10.1038/srep16119] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022] Open
Abstract
Host genetic factors have frequently been implicated in respiratory infectious diseases, often with inconsistent results in replication studies. We identified 386 studies from the total of 24,823 studies identified in a systematic search of four bibliographic databases. We performed meta-analyses of studies on tuberculosis, influenza, respiratory syncytial virus, SARS-Coronavirus and pneumonia. One single-nucleotide polymorphism from IL4 gene was significant for pooled respiratory infections (rs2070874; 1.66 [1.29–2.14]). We also detected an association of TLR2 gene with tuberculosis (rs5743708; 3.19 [2.03–5.02]). Subset analyses identified CCL2 as an additional risk factor for tuberculosis (rs1024611; OR = 0.79 [0.72–0.88]). The IL4-TLR2-CCL2 axis could be a highly interesting target for translation towards clinical use. However, this conclusion is based on low credibility of evidence - almost 95% of all identified studies had strong risk of bias or confounding. Future studies must build upon larger-scale collaborations, but also strictly adhere to the highest evidence-based principles in study design, in order to reduce research waste and provide clinically translatable evidence.
Collapse
Affiliation(s)
- Inga Patarčić
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Andrea Gelemanović
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Mirna Kirin
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Ivana Kolčić
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Kenneth J Baillie
- Roslin Institute, University of Edinburgh, Midlothian, UK.,Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, Split, Croatia.,Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics , University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Atanasova KR, Yilmaz Ö. Prelude to oral microbes and chronic diseases: past, present and future. Microbes Infect 2015; 17:473-83. [PMID: 25813714 DOI: 10.1016/j.micinf.2015.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 02/07/2023]
Abstract
Associations between oral and systemic health are ancient. Oral opportunistic bacteria, particularly, Porphyromonas gingivalis and Fusobacterium nucleatum, have recently been deviated from their traditional roles as periodontal pathogens and arguably ascended to central players based on their participations in complex co-dependent mechanisms of diverse systemic chronic diseases risk and pathogenesis, including cancers, rheumatoid-arthritis, and diabetes.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
| | - Özlem Yilmaz
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|