1
|
Emergence of a Reassortant 2.3.4.4b Highly Pathogenic H5N1 Avian Influenza Virus Containing H9N2 PA Gene in Burkina Faso, West Africa, in 2021. Viruses 2022; 14:v14091901. [PMID: 36146708 PMCID: PMC9504354 DOI: 10.3390/v14091901] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 12/30/2022] Open
Abstract
Since 2006, the poultry population in Burkina Faso has been seriously hit by different waves of Highly Pathogenic Avian Influenza (HPAI) H5N1 epizootics. In December 2021, three distinct regions of Burkina Faso, namely, Gomboussougou, Bonyollo, and Koubri, detected HPAI H5N1 viruses in poultry. Whole genome characterization and statistical phylogenetic approaches were applied to shed light on the potential origin of these viruses and estimate the time of virus emergence. Our results revealed that the HPAI H5N1 viruses reported in the three affected regions of Burkina Faso cluster together within clade 2.3.4.4b, and are closely related to HPAI H5N1 viruses identified in Nigeria and Niger in the period 2021–2022, except for the PA gene, which clusters with H9N2 viruses of the zoonotic G1 lineage collected in West Africa between 2017 and 2020. These reassortant viruses possess several mutations that may be associated with an increased zoonotic potential. Although it is difficult to ascertain where and when the reassortment event occurred, the emergence of a H5N1/H9N2 reassortant virus in a vulnerable region, such as West Africa, raises concerns about its possible impact on animal and human health. These findings also highlight the risk that West Africa may become a new hotspot for the emergence of new genotypes of HPAI viruses.
Collapse
|
2
|
Live poultry feeding and trading network and the transmission of avian influenza A(H5N6) virus in a large city in China, 2014-2015. Int J Infect Dis 2021; 108:72-80. [PMID: 34000420 DOI: 10.1016/j.ijid.2021.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES To understand the transmission mechanisms of the avian influenza A(H5N6) virus. METHODS This study explored the live poultry feeding and trading network (LPFTN) around Changsha city, China. Field epidemiological investigations were performed in Changsha to investigate the LPFTN with the environmental samples systematically collected during 2014-2015 to monitor and analyze the spread of the A(H5N6) virus. Two surveillance systems were also applied to find possible human cases of A(H5N6) infection. RESULT The information of all the 665 live poultry farming sites, five wholesale markets, and 223 retail markets in Changsha was collected to investigate the LPFTN. Moreover, about 840 environmental samples were systematically collected from the LPFTN during 2014-2015 to monitor the spread of the A(H5N6) virus, with 8.45% (71/840) positive for the N6 subtype. Furthermore, the full genome sequences of 10 A(H5N6) viruses detected from the environmental samples were obtained, which were then characterized and phylogenetically analyzed with the corresponding gene segments of the A(H5N6) virus obtained from GenBank, to determine the source of human infection. CONCLUSION It was demonstrated that the LPFTN provided a platform for the H5N6 transmission, and formed an infectious pool for the spread of the virus to humans.
Collapse
|
3
|
Hu Z, Peng F, Xiong Z, Zhang W, Li T, Shi Y, Xie J, Jin X, Huang J, Xiao H, Bi D, Song N, Li Z. Genetic and Molecular Characterization of H9N2 Avian Influenza Viruses Isolated from Live Poultry Markets in Hubei Province, Central China, 2013-2017. Virol Sin 2020; 36:291-299. [PMID: 32926330 DOI: 10.1007/s12250-020-00260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/24/2020] [Indexed: 10/23/2022] Open
Abstract
H9N2 subtype avian influenza virus (AIV) is an influenza A virus that is widely spread throughout Asia, where it jeopardizes the poultry industry and provides genetic material for emerging human pathogens. To better understand the epidemicity and genetics of H9 subtype AIVs, we conducted active surveillance in live poultry markets (LPMs) in Hubei Province from 2013 to 2017. A total of 4798 samples were collected from apparent healthy poultry and environment. Real-time RT-PCR revealed that the positivity rate of influenza A was 26.6% (1275/4798), of which the H9 subtype accounted for 50.3% (641/1275) of the positive samples. Of the 132 H9N2 viral strains isolated, 48 representative strains were subjected to evolutionary analysis and genotyping. Phylogenetic analysis revealed that all H9N2 viral genes had 91.1%-100% nucleotide homology, clustered with genotype 57, and had high homology with human H9N2 viruses isolated from 2013 to 2017 in China. Using a nucleotide divergence cutoff of 95%, we identified ten distinct H9N2 genotypes that continued to change over time. Molecular analysis demonstrated that six H9N2 isolates had additional potential glycosylation sites at position 218 in the hemagglutinin protein, and all isolates had I155T and Q226L mutations. Moreover, 44 strains had A558V mutations in the PB2 protein and four had E627V mutations, along with H9N2 human infection strains A/Beijing/1/2016 and A/Beijing/1/2017. These results emphasize that the H9N2 influenza virus in Hubei continues to mutate and undergo mammalian adaptation changes, indicating the necessity of strengthening the surveillance of the AIV H9N2 subtype in LPMs.
Collapse
Affiliation(s)
- Zhibin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Center for Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Fuhu Peng
- Hubei Center for Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Zhenghui Xiong
- Hubei Center for Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Li
- Hubei Center for Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Yuejun Shi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Xie
- Hubei Center for Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Xin Jin
- Hubei Center for Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jingjing Huang
- Hubei Center for Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Hongde Xiao
- Hubei Center for Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Dingren Bi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nianhua Song
- Hubei Center for Animal Disease Control and Prevention, Wuhan, 430070, China.
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Bi Y, Tan S, Yang Y, Wong G, Zhao M, Zhang Q, Wang Q, Zhao X, Li L, Yuan J, Li H, Li H, Xu W, Shi W, Quan C, Zou R, Li J, Zheng H, Yang L, Liu WJ, Liu D, Wang H, Qin Y, Liu L, Jiang C, Liu W, Lu L, Gao GF, Liu Y. Clinical and Immunological Characteristics of Human Infections With H5N6 Avian Influenza Virus. Clin Infect Dis 2020; 68:1100-1109. [PMID: 30124826 DOI: 10.1093/cid/ciy681] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/12/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND H5N6 avian influenza virus (AIV) has caused sporadic, recurring outbreaks in China and Southeast Asia since 2013, with 19 human infections and 13 deaths. Seventeen of these infections occurred since December 2015, indicating a recent rise in the frequency of H5N6 cases. METHODS To assess the relative threat of H5N6 virus to humans, we summarized and compared clinical data from patients infected with H5N6 (n = 19) against data from 2 subtypes of major public health concern, H5N1 (n = 53) and H7N9 (n = 160). To assess immune responses indicative of prognosis, we compared concentrations of serum cytokines/chemokines in patients infected with H5N6, H5N1, H7N9, and 2009 pandemic H1N1 and characterized specific immune responses from 1 surviving and 2 nonsurviving H5N6 patients. RESULTS H5N6 patients were found to have higher incidences of lymphopenia and elevated alanine aminotransferase and lactate dehydrogenase levels compared with H5N1 and H7N9 patients. Hypercytokinemia was detected at substantially higher frequencies from H5N6 patients compared to those infected with other AIV subtypes. Evaluation of adaptive immunity showed that both humoral and cellular responses could be detected in the H5N6-infected survivor, but cellular responses were absent in the nonsurvivors. In addition, the surviving patient had lower concentrations of both pro- and anti-inflammatory cytokines/chemokines compared to the nonsurvivors. CONCLUSIONS Our results support that H5N6 virus could potentially be a major public health threat, and suggest it is possible that the earlier acquisition of cellular immunity and lower concentrations of cytokines/chemokines contributed to survival in our patient. Analysis of more patient samples will be needed to draw concrete conclusions.
Collapse
Affiliation(s)
- Yuhai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing.,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Shuguang Tan
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing.,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Gary Wong
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Min Zhao
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing
| | - Qingchao Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing
| | - Qiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Xiaonan Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, Shenzhen
| | | | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Hao Li
- Intensive Care Unit, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen
| | - Hong Li
- Yunnan Center for Disease Control and Prevention, Kunming, Shenzhen
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, Shenzhen
| | - Weifeng Shi
- Institute of Pathogen Biology, Taishan Medical College, Taian
| | - Chuansong Quan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Jianming Li
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Haixia Zheng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Liuqing Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing
| | - Di Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing
| | - Huijun Wang
- Diqing Tibetan Autonomous Prefecture Centers for Disease Control and Prevention, Shangri-la
| | - Yantao Qin
- Diqing Tibetan Autonomous Prefecture Centers for Disease Control and Prevention, Shangri-la
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing
| | - Wenjun Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing
| | - Lin Lu
- Yunnan Center for Disease Control and Prevention, Kunming, Shenzhen
| | - George F Gao
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing.,Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing.,University of Chinese Academy of Sciences Medical School, Beijing, People's Republic of China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen
| |
Collapse
|
5
|
Thornton AC, Parry-Ford F, Tessier E, Oppilamany N, Zhao H, Dunning J, Pebody R, Dabrera G. Human Exposures to H5N6 Avian Influenza, England, 2018. J Infect Dis 2020; 220:20-22. [PMID: 30788504 DOI: 10.1093/infdis/jiz080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/14/2019] [Indexed: 01/09/2023] Open
Abstract
The human risk following exposure to the European reassortant avian influenza A(H5N6) is unknown. We used routine data collected as part of public health follow-up to assess outcomes of individuals exposed to H5N6-infected wild birds in England. There were 19 separate incidents of confirmed H5N6 among wild birds in the first quarter of 2018 in England and 69 individuals exposed to infected birds during these incidents. Five exposed individuals developed respiratory symptoms. However, no H5N6 infection was detected among those individuals with respiratory symptoms who underwent diagnostic testing, indicating that the human risk from this strain remains low.
Collapse
Affiliation(s)
| | | | | | - Nisha Oppilamany
- Respiratory Diseases Department, Immunisations and Countermeasures Division
| | | | - Jake Dunning
- Virus Reference Department, National Infection Service
| | - Richard Pebody
- National Infection Service, Public Health England, London, United Kingdom
| | - Gavin Dabrera
- National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
6
|
Genetic, Molecular, and Pathogenic Characterization of the H9N2 Avian Influenza Viruses Currently Circulating in South China. Viruses 2019; 11:v11111040. [PMID: 31717393 PMCID: PMC6893773 DOI: 10.3390/v11111040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/02/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
The prevalence and variation of the H9N2 avian influenza virus (AIV) pose a threat to public health. A total of eight viruses isolated from farmed poultry in South China during 2017–2018 were selected as representative strains for further systematic study. Phylogenetic analyses indicated that these prevalent viruses belong to the Y280-like lineage and that the internal genes are highly similar to those of recently circulating human H7N9 viruses. The receptor-binding assay showed that most of the H9N2 isolates preferentially bound to the human-like receptor, increasing the risk of them crossing the species barrier and causing human infection. Our in vitro, multi-step growth curve results indicate these viruses can effectively replicate in mammalian cells. Infection in mice showed that three viruses effectively replicated in the lung of mice. Infection in swine revealed that the viruses readily replicated in the upper respiratory tract of pig and effectively induced viral shedding. Our findings suggested that the H9N2 AIVs circulating in poultry recently acquired an enhanced ability to transmit from avian to mammalians, including humans. Based on our findings, we propose that it is essential to strengthen the efforts to surveil and test the pathogenicity of H9N2 AIVs.
Collapse
|
7
|
Guo F, Luo T, Pu Z, Xiang D, Shen X, Irwin DM, Liao M, Shen Y. Increasing the potential ability of human infections in H5N6 avian influenza A viruses. J Infect 2018; 77:349-356. [PMID: 30077579 DOI: 10.1016/j.jinf.2018.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/30/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Fucheng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Tingting Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zhiqing Pu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Dan Xiang
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto M5S 1A8, Canada
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China; Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou 515041, China .
| |
Collapse
|
8
|
Li Z, Li L, Zhao S, Li J, Zhou H, Zhang Y, Yang Z, Yuan B. Re-understanding anti-influenza strategy: attach equal importance to antiviral and anti-inflammatory therapies. J Thorac Dis 2018; 10:S2248-S2259. [PMID: 30116604 DOI: 10.21037/jtd.2018.03.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The direct replication of influenza virus is not the only cause of harm to human health; influenza infection leading to a hyper-inflammatory immune response can also result in serious conditions. So, the treatment strategy for influenza needs to keep balance between antivirus and anti-inflammation. Herein, we review the treatment strategies of anti-influenza drugs and traditional Chinese medicines.
Collapse
Affiliation(s)
- Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, (Guangzhou Medical University), Guangzhou 510120, China
| | - Li Li
- Department of Respiration, The First Hospital of Yulin, Yulin 719000, China
| | - Shuai Zhao
- Department of Emergency, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, (Guangzhou Medical University), Guangzhou 510120, China
| | - Hongxia Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, (Guangzhou Medical University), Guangzhou 510120, China
| | - Yunhui Zhang
- Department of Respiration, First People's Hospital of Yunnan Province, Yunnan 650032, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, (Guangzhou Medical University), Guangzhou 510120, China.,Department of Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 519020, China
| | - Bing Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, (Guangzhou Medical University), Guangzhou 510120, China.,Department of Respiration, First People's Hospital of Yunnan Province, Yunnan 650032, China
| |
Collapse
|
9
|
Development and evaluation of a real-time RT-PCR assay for detection of a novel avian influenza A (H5N6) virus. J Virol Methods 2018; 257:79-84. [PMID: 29729298 DOI: 10.1016/j.jviromet.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/22/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
As of Aug 25, 2017, 17 incidences of human infection and 6 deaths due to the novel H5N6 virus have been reported in China. Genetic analysis of the viral genome revealed that this reassortant virus is highly pathogenic to poultry, and that the virus has a risk of transmission to humans. Accordingly, the development of a rapid, sensitive, and specific molecular diagnostic assay is critical for public health. In this study, a real-time reverse-transcription PCR (RT-PCR) assay was developed to specifically detect the novel H5N6 virus, with primer pairs targeting the hemagglutinin and neuraminidase gene sequences of this virus. RNA was extracted from throat swab specimens from patients with influenza-like illness (ILIs), and environmental samples were collected from live poultry markets (LPMs) for H5N6 virus detection by real-time RT-PCR. The method was demonstrated to enable specific detection of the avian H5N6 virus, with no cross-reactivity with seasonal influenza viruses (H1N1, H1N1 pdm09, H3N2 or B); H5N1, H7N9, H9N2 viruses; or other human respiratory viruses. The detection limit of the assay was 1.0 × 101 copies per reaction for N6 and 1.0 × 102 copies per reaction for H5 assays. The assay is a powerful tool for rapid, sensitive, and specific detection of H5N6 virus infection in specimens derived from humans, animals, and the environment.
Collapse
|
10
|
Liu K, Gu M, Hu S, Gao R, Li J, Shi L, Sun W, Liu D, Gao Z, Xu X, Hu J, Wang X, Liu X, Chen S, Peng D, Jiao X, Liu X. Genetic and biological characterization of three poultry-origin H5N6 avian influenza viruses with all internal genes from genotype S H9N2 viruses. Arch Virol 2018; 163:947-960. [PMID: 29307089 DOI: 10.1007/s00705-017-3695-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/17/2017] [Indexed: 01/26/2023]
Abstract
During surveillance for avian influenza viruses, three H5N6 viruses were isolated in chickens obtained from live bird markets in eastern China, between January 2015 and April 2016. Sequence analysis revealed a high genomic homology between these poultry isolates and recent human H5N6 variants whose internal genes were derived from genotype S H9N2 avian influenza viruses. Glycan binding assays revealed that all avian H5N6 viruses were capable of binding to both human-type SAα-2,6Gal receptors and avian-type SAα-2,3Gal receptors. Their biological characteristics were further studied in BALB/c mice, specific-pathogen-free chickens, and mallard ducks. All three isolates had low pathogenicity in mice but were highly pathogenic to chickens, as evidenced by 100% mortality 36-120 hours post infection at a low dose of 103.0EID50 and through effective contact transmission. Moreover, all three poultry H5N6 isolates caused asymptomatic infections in ducks, which may serve as a reservoir host for their maintenance and dissemination; these migrating waterfowl could cause a potential global pandemic. Our study suggests that continuous epidemiological surveillance in poultry should be implemented for the early prevention of future influenza outbreaks.
Collapse
Affiliation(s)
- Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Juan Li
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Liwei Shi
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Wenqi Sun
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Dong Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Zhao Gao
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiulong Xu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
11
|
Zhang C, Zhao Z, Guo Z, Zhang J, Li J, Yang Y, Lu S, Wang Z, Zhi M, Fu Y, Yang X, Liu L, Zhang Y, Hua Y, Liu L, Chai H, Qian J. Amino Acid Substitutions Associated with Avian H5N6 Influenza A Virus Adaptation to Mice. Front Microbiol 2017; 8:1763. [PMID: 28966609 PMCID: PMC5605651 DOI: 10.3389/fmicb.2017.01763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023] Open
Abstract
At least 15 cases of human beings infected with H5N6 have been reported since 2014, of which at least nine were fatal. The highly pathogenic avian H5N6 influenza virus may pose a serious threat to both public health and the poultry industry. However, the molecular features promoting the adaptation of avian H5N6 influenza viruses to mammalian hosts is not well understood. Here, we sequentially passaged an avian H5N6 influenza A virus (A/Northern Shoveler/Ningxia/488-53/2015) 10 times in mice to identify the adaptive amino acid substitutions that confer enhanced virulence to H5N6 in mammals. The 1st and 10th passages of the mouse-adapted H5N6 viruses were named P1 and P10, respectively. P1 and P10 displayed higher pathogenicity in mice than their parent strain. P10 showed significantly higher replication capability in vivo and could be detected in the brains of mice, whereas P1 displayed higher replication efficiency in their lungs but was not detectable in the brain. Similar to its parent strain, P10 remained no transmissible between guinea pigs. Using genome sequencing and alignment, multiple amino acid substitutions, including PB2 E627K, PB2 T23I, PA T97I, and HA R239H, were found in the adaptation of H5N6 to mice. In summary, we identified amino acid changes that are associated with H5N6 adaptation to mice.
Collapse
Affiliation(s)
- Chunmao Zhang
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Zongzheng Zhao
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Zhendong Guo
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Jiajie Zhang
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Jiaming Li
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical ScienceBeijing, China
| | - Shaoxia Lu
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Zhongyi Wang
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Min Zhi
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Yingying Fu
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Xiaoyu Yang
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Lina Liu
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Yi Zhang
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Yuping Hua
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Linna Liu
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Jun Qian
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| |
Collapse
|
12
|
Human infections with avian influenza viruses in mainland China: A particular risk for southeastern China. J Infect 2017; 75:274-276. [DOI: 10.1016/j.jinf.2017.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
|
13
|
Diversity, evolution and population dynamics of avian influenza viruses circulating in the live poultry markets in China. Virology 2017; 505:33-41. [PMID: 28222327 DOI: 10.1016/j.virol.2017.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Live poultry markets (LPMs) are an important source of novel avian influenza viruses (AIV). During 2015-2016 we surveyed AIV diversity in ten LPMs in Hubei, Zhejiang and Jiangxi provinces, China. A high diversity and prevalence of AIVs (totaling 12 subtypes) was observed in LPMs in these provinces. Strikingly, however, the subtypes discovered during 2015-2016 were markedly different to those reported by us in these same localities one year previously, suggesting a dynamic shift in viral genetic diversity over the course of a single year. Phylogenetic analyses revealed frequent reassortment, including between high and low pathogenic AIV subtypes and among those that circulate in domestic and wild birds. Notably, the novel H5N6 reassortant virus, which contains a set of H9N2-like internal genes, was prevalent in all three regions surveyed. Overall, these data highlight the profound changes in genetic diversity and in patterns of reassortment in those AIVs that circulate in LPMs.
Collapse
|
14
|
Wu Y, Shi W, Lin J, Wang M, Chen X, Liu K, Xie Y, Luo L, Anderson BD, Lednicky JA, Gray GC, Lu J, Wang T. Aerosolized avian influenza A (H5N6) virus isolated from a live poultry market, China. J Infect 2017; 74:89-91. [DOI: 10.1016/j.jinf.2016.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 12/14/2022]
|
15
|
Hao X, Hu J, Wang J, Xu J, Cheng H, Xu Y, Li Q, He D, Liu X, Wang X, Gu M, Hu S, Xu X, Liu H, Chen S, Peng D, Liu X. Reassortant H5N1 avian influenza viruses containing PA or NP gene from an H9N2 virus significantly increase the pathogenicity in mice. Vet Microbiol 2016; 192:95-101. [PMID: 27527770 DOI: 10.1016/j.vetmic.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
Abstract
Reassortment between different influenza viruses is a crucial way to generate novel influenza viruses with unpredictable virulence and transmissibility, which may threaten the public health. As currently in China, avian influenza viruses (AIVs) of H9N2 and H5N1 subtypes are endemic in poultry in many areas, while they are prone to reassort with each other naturally. In order to evaluate the risk of the reassortment to public health, A/Goose/Jiangsu/k0403/2010 [GS/10(H5N1)] virus was used as a backbone to generate a series of reassortants, each contained a single internal gene derived from the predominant S genotype of the A/Chicken/Jiangsu/WJ57/2012 [WJ/57(H9N2)]. We next assessed the biological characteristics of these assortments, including pathogenicity, replication efficiency and polymerase activity. We found that the parental WJ/57(H9N2) and GS/10(H5N1) viruses displayed high genetic compatibility. Notably, the H5N1 reassortants containing the PA or NP gene from WJ/57(H9N2) virus significantly increased virulence and replication ability in mice, as well as markedly enhanced polymerase activity. Our results indicate that the endemicity of H9N2 and H5N1 in domestic poultry greatly increases the possibility of generating new viruses by reassortment that may pose a great threat to poultry industry and public health.
Collapse
Affiliation(s)
- Xiaoli Hao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Jiongjiong Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jing Xu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hao Cheng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yunpeng Xu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qunhui Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dongchang He
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Xiulong Xu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Huimou Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|