1
|
Geesala R, Gongloor P, Recharla N, Shi XZ. Mechanisms of Action of Exclusive Enteral Nutrition and Other Nutritional Therapies in Crohn's Disease. Nutrients 2024; 16:3581. [PMID: 39519414 PMCID: PMC11547457 DOI: 10.3390/nu16213581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Crohn's disease (CD) is an inflammatory bowel disease (IBD) characterized by transmural inflammation and intestinal fibrosis involving mostly the small intestine and colon. The pathogenic mechanisms of CD remain incompletely understood and cures are unavailable. Current medical therapies are aimed at inducing prolonged remission. Most of the medical therapies such as corticosteroids have substantial adverse effects. Consequently, many dietary therapies have been explored for the management of CD. Up to now, exclusive enteral nutrition (EEN) has been considered the only established dietary treatment for IBD, especially CD. In this article, we aim to give a concise review about the current therapeutic options and challenges in the management of CD and aim to compare the efficacy of EEN with other dietary therapies and update on the possible mechanisms of the benefits of EEN and other nutritional therapies. METHODS We searched the literature up to August 2024 through PubMed, Web of Science, and other sources using search terms such as EEN, nutritional therapy, IBD, Crohn's disease, ulcerative colitis. Clinical studies in patients and preclinical studies in rodent models of IBD were included in the summary of the therapeutic benefits. RESULTS AND CONCLUSIONS EEN involves oral or nasogastric tube feeding of a complete liquid diet with exclusion of normal foods for a defined period (usually 6 to 8 weeks). EEN treatment is demonstrated to have anti-inflammatory and healing effects in CD through various potential pathways, including altering gut bacteria and their metabolites, restoring the barrier function, direct anti-inflammatory action, and indirect anti-inflammatory action by eliminating mechanical stress in the bowel. However, efficacy of other nutritional therapies is not well established in CD, and mechanisms of action are largely unknown.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA; (R.G.); (N.R.)
| | - Pratik Gongloor
- John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Neeraja Recharla
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA; (R.G.); (N.R.)
| | - Xuan-Zheng Shi
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA; (R.G.); (N.R.)
| |
Collapse
|
2
|
Saadah OI, AlAmeel T, Al Sarkhy A, Hasosah M, Al-Hussaini A, Almadi MA, Al-Bawardy B, Altuwaijri TA, AlEdreesi M, Bakkari SA, Alharbi OR, Azzam NA, Almutairdi A, Alenzi KA, Al-Omari BA, Almudaiheem HY, Al-Jedai AH, Mosli MH. Saudi consensus guidance for the diagnosis and management of inflammatory bowel disease in children and adolescents. Saudi J Gastroenterol 2024:00936815-990000000-00101. [PMID: 39215473 DOI: 10.4103/sjg.sjg_171_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT The management of inflammatory bowel disease (IBD) in children and adolescents is challenging. Clear evidence-based guidelines are required for this population. This article provides recommendations for managing IBD in Saudi children and adolescents aged 6-19 years, developed by the Saudi Ministry of Health in collaboration with the Saudi Society of Clinical Pharmacy and the Saudi Gastroenterology Association. All 57 guideline statements are based on the most up-to-date information for the diagnosis and management of pediatric IBD.
Collapse
Affiliation(s)
- Omar I Saadah
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Inflammatory Bowel Disease Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Turki AlAmeel
- Department of Medicine, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ahmed Al Sarkhy
- Gastroenterology Unit, Pediatrics Department, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Hasosah
- Department of Pediatrics, Gastroenterology Unit, King Abdulaziz Medical City, National Guard Hospital, Jeddah, Saudi Arabia
- Department of Pediatric Gastroenterology, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- Department of Pediatric Gastroenterology, King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman Al-Hussaini
- Children's Specialized Hospital, King Fahad Medical City, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Majid A Almadi
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Badr Al-Bawardy
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia, Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Talal A Altuwaijri
- Department of Surgery, Division of Vascular Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed AlEdreesi
- Gastroenterology Unit, Pediatric Department, Al Habib Medical Group, Khobar, Saudi Arabia
| | - Shakir A Bakkari
- Department of Gastroenterology, King Saud Medical City, Riyadh, Saudi Arabia
| | - Othman R Alharbi
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Nahla A Azzam
- Division of Gastroenterology, Department of Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Abdulelah Almutairdi
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Khalidah A Alenzi
- Executive Management of Transformation, Planning, and Business Development, Tabuk Health Cluster, Tabuk, Saudi Arabia
| | - Bedor A Al-Omari
- Department of Pharmaceutical Care Services, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Ahmed H Al-Jedai
- Deputyship of Therapeutic Affairs, Ministry of Health, Riyadh, Saudi Arabia
- Colleges of Medicine and Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahmoud H Mosli
- Department of Internal Medicine, King Abdulaziz University, Inflammatory Bowel Disease Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Fehily SR, Basnayake C, Wright EK, Yao CK, Godsell J, Gibson PR, Kamm MA. Probiotics: are they beneficial? Intern Med J 2024; 54:861-870. [PMID: 38717051 DOI: 10.1111/imj.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 06/18/2024]
Abstract
There are wide-ranging probiotic choices in Australasia. We reviewed the efficacy of probiotics for the management of gastrointestinal (GI) conditions in adults and assessed relevance to clinical practice. The benefits of probiotics were inconsistent, with a strong consensus reached for only a few of the indications. As different species/strains and combinations differ in efficacy, results cannot be extrapolated from one to another. This review endorses specific probiotics for limited indications. Efficacy of most marketed probiotic formulations remains unstudied and unproven, warranting further research.
Collapse
Affiliation(s)
- Sasha R Fehily
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Chamara Basnayake
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Emily K Wright
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - C K Yao
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Jack Godsell
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Central Clinical School, Monash University and Alfred Health, Melbourne, Victoria, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Zhang Z, Zhang HL, Yang DH, Hao Q, Yang HW, Meng DL, Meindert de Vos W, Guan LL, Liu SB, Teame T, Gao CC, Ran C, Yang YL, Yao YY, Ding QW, Zhou ZG. Lactobacillus rhamnosus GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects. IMETA 2024; 3:e181. [PMID: 38882496 PMCID: PMC11170971 DOI: 10.1002/imt2.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/18/2024]
Abstract
Lactobacillus rhamnosus GG (LGG), the well-characterized human-derived probiotic strain, possesses excellent properties in the maintenance of intestinal homeostasis, immunoregulation and defense against gastrointestinal pathogens in mammals. Here, we demonstrate that the SpaC pilin of LGG causes intestinal epithelium injury by inducing cell pyroptosis and gut microbial dysbiosis in zebrafish. Dietary SpaC activates Caspase-3-GSDMEa pathways in the intestinal epithelium, promotes intestinal pyroptosis and increases lipopolysaccharide (LPS)-producing gut microbes in zebrafish. The increased LPS subsequently activates Gaspy2-GSDMEb pyroptosis pathway. Further analysis reveals the Caspase-3-GSDMEa pyroptosis is initiated by the species-specific recognition of SpaC by TLR4ba, which accounts for the species-specificity of the SpaC-inducing intestinal pyroptosis in zebrafish. The observed pyroptosis-driven gut injury and microbial dysbiosis by LGG in zebrafish suggest that host-specific beneficial/harmful mechanisms are critical safety issues when applying probiotics derived from other host species and need more attention.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Hong-Ling Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Da-Hai Yang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Hong-Wei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - De-Long Meng
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Willem Meindert de Vos
- Laboratory of Microbiology Wageningen University and Research Wageningen Netherlands
- Human Microbiome Research Program, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Le-Luo Guan
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Shu-Bin Liu
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Tigray Agricultural Research Institute Mekelle Ethiopia
| | - Chen-Chen Gao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Ya-Lin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Yuan-Yuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Qian-Wen Ding
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Zhi-Gang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
5
|
Teigen L, Hamilton M, Hoeg A, Chen L, Lopez S, Kabage A, Shah P, Shmidt E, Vaughn B. A Short-Term Enteral Nutrition Protocol for Management of Adult Crohn's Disease-A Pilot Trial. J Clin Med 2024; 13:1663. [PMID: 38541888 PMCID: PMC10971121 DOI: 10.3390/jcm13061663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 01/06/2025] Open
Abstract
Crohn's disease (CD) is often treated with either exclusive or supplemental enteral nutrition (EN) in pediatrics, but adult practice guidelines primarily focus on medications. Here, we demonstrate the feasibility of a 4-week semi-elemental-formula-based oral nutrition delivery program for managing adult CD (n = 4). Patients consumed ~66% of calories from the formula, a finding that might provide an improved calorie target for future trials. We identified Flavinofractor as the only differentially abundant genus, distinguishing post-intervention samples from pre-intervention samples. Findings from this pilot trial demonstrate the feasibility of a partial enteral nutrition protocol in adult CD management and contribute to the growing body of literature on the potential role of EN therapy in adults with CD.
Collapse
Affiliation(s)
- Levi Teigen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA;
| | - Matthew Hamilton
- Microbiota Research and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Austin Hoeg
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Lulu Chen
- Division of Gastroenterology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (S.L.); (A.K.); (E.S.); (B.V.)
| | - Sharon Lopez
- Division of Gastroenterology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (S.L.); (A.K.); (E.S.); (B.V.)
| | - Amanda Kabage
- Division of Gastroenterology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (S.L.); (A.K.); (E.S.); (B.V.)
| | - Priyali Shah
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA;
| | - Eugenia Shmidt
- Division of Gastroenterology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (S.L.); (A.K.); (E.S.); (B.V.)
| | - Byron Vaughn
- Division of Gastroenterology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (L.C.); (S.L.); (A.K.); (E.S.); (B.V.)
| |
Collapse
|
6
|
Li S, Meng Y, Wang C, Suonan Z, Zhang X, Wu T, Dai Z, Zhang Y, Sharafeldin S, Zhang Y, Shen Q, Xue Y. Effect of structural characteristics of resistant starch prepared by various methods on microbial community and fermentative products. Int J Biol Macromol 2024; 254:127725. [PMID: 38287585 DOI: 10.1016/j.ijbiomac.2023.127725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Resistant starch (RS) has been extensively studied because of its beneficial effects on gut microbiota. In this study, four RSs obtained through various preparation processes were utilized for in vitro fermentation, and their structural characteristics before and after fermentation were determined using chromatography, Fourier infrared spectroscopy, and scanning electron microscopy (SEM). It was observed that these RSs can be classified into two categories based on their fermentation and structural features. The autoclaving RS (ARS) and extruding RS (ERS) were classified as Class I Microbiome Community (MC-I), characterized by a higher proportion of butyrate and its producers, including unclassified_g_Megasphaera and Megasphaera elsdenii. While microwaving RS (MRS) and ultrasound RS (URS) belonged to Class II Microbiome Community (MC-II), marked by a higher proportion of acetate and its producer, Bifidobacterium pseudocatenulatum DSM 20438. MC-I had a lower molecular weight, shorter chain length, more chains with degree of polymerization (DP) 36-100, and a more ordered structure than MC-II. Furthermore, SEM observations revealed distinct degradation patterns between MC-I and MC-II, which may be attributed to their surface structural characteristics. These findings imply that the preparation methods employed for RS can determine its multilevel structural characteristics, and consequently influence its physiological properties.
Collapse
Affiliation(s)
- Siqi Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yantong Meng
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Chao Wang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zhuoma Suonan
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xinyu Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Tong Wu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Sameh Sharafeldin
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Department of Food and Dairy Sciences and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Yumei Zhang
- School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, PR China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
7
|
González S. New Paradigms in the Diet and Microbiome Relationship. Nutrients 2023; 15:5035. [PMID: 38140294 PMCID: PMC10746077 DOI: 10.3390/nu15245035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023] Open
Abstract
Decades of extensive scientific research have led to a consensus on the modulatory effect of diet in shaping the composition and activity of the gut microbiota [...].
Collapse
Affiliation(s)
- Sonia González
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
8
|
Wang Y, Zhuo Z, Wang H. Epilepsy, gut microbiota, and circadian rhythm. Front Neurol 2023; 14:1157358. [PMID: 37273718 PMCID: PMC10232836 DOI: 10.3389/fneur.2023.1157358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
In recent years, relevant studies have found changes in gut microbiota (GM) in patients with epilepsy. In addition, impaired sleep and circadian patterns are common symptoms of epilepsy. Moreover, the types of seizures have a circadian rhythm. Numerous reports have indicated that the GM and its metabolites have circadian rhythms. This review will describe changes in the GM in clinical and animal studies under epilepsy and circadian rhythm disorder, respectively. The aim is to determine the commonalities and specificities of alterations in GM and their impact on disease occurrence in the context of epilepsy and circadian disruption. Although clinical studies are influenced by many factors, the results suggest that there are some commonalities in the changes of GM. Finally, we discuss the links among epilepsy, gut microbiome, and circadian rhythms, as well as future research that needs to be conducted.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| |
Collapse
|
9
|
Mu C, Zhao Q, Zhao Q, Yang L, Pang X, Liu T, Li X, Wang B, Fung SY, Cao H. Multi-omics in Crohn's disease: New insights from inside. Comput Struct Biotechnol J 2023; 21:3054-3072. [PMID: 37273853 PMCID: PMC10238466 DOI: 10.1016/j.csbj.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD remains extremely difficult. The rapid development of high-throughput sequencing technology with integrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with heterogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in-depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and discussed the current research and limitations of multi-omics in CD. This review will update and deepen our understanding of CD from integration of broad omics spectra and will provide new evidence for targeted individualized therapeutics.
Collapse
Affiliation(s)
- Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaomeng Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Shan-Yu Fung
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
10
|
Infantino C, Francavilla R, Vella A, Cenni S, Principi N, Strisciuglio C, Esposito S. Role of Vitamin D in Celiac Disease and Inflammatory Bowel Diseases. Nutrients 2022; 14:nu14235154. [PMID: 36501183 PMCID: PMC9735899 DOI: 10.3390/nu14235154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D (VD) is a pro-hormone that has long been known as a key regulator of calcium homeostasis and bone health in both children and adults. In recent years, studies have shown that VD may exert many extra-skeletal functions, mainly through a relevant modulation of the innate and adaptive immune system. This has suggested that VD could play a fundamental role in conditioning development, clinical course, and treatment of several autoimmune disorders, including celiac disease (CD) and inflammatory bowel diseases (IBDs). The main aim of this review is to evaluate the relationships between VD, CD, and IBDs. Literature analysis showed a potential impact of VD on CD and IBDs can be reasonably assumed based on the well-documented in vitro and in vivo VD activities on the gastrointestinal tract and the immune system. The evidence that VD can preserve intestinal mucosa from chemical and immunological damage and that VD modulation of the immune system functions can contrast the mechanisms that lead to the intestinal modifications characteristic of gastrointestinal autoimmune diseases has suggested that VD could play a role in controlling both the development and the course of CD and IBDs. Administration of VD in already diagnosed CD and IBD cases has not always significantly modified disease course. However, despite these relevant problems, most of the experts recommend monitoring of VD levels in patients with CD and IBDs and administration of supplements in patients with hypovitaminosis.
Collapse
Affiliation(s)
- Claudia Infantino
- Department of Medicine and Surgery, Pediatric Clinic, University of Parma, 43126 Parma, Italy
| | - Roberta Francavilla
- Department of Medicine and Surgery, Pediatric Clinic, University of Parma, 43126 Parma, Italy
| | - Adriana Vella
- Department of Medicine and Surgery, Pediatric Clinic, University of Parma, 43126 Parma, Italy
| | - Sabrina Cenni
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, 80138 Naples, Italy
| | | | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, 80138 Naples, Italy
| | - Susanna Esposito
- Department of Medicine and Surgery, Pediatric Clinic, University of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-704-790
| |
Collapse
|
11
|
Ketogenic Diet: A Dietary Intervention via Gut Microbiome Modulation for the Treatment of Neurological and Nutritional Disorders (a Narrative Review). Nutrients 2022; 14:nu14173566. [PMID: 36079829 PMCID: PMC9460077 DOI: 10.3390/nu14173566] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
The ketogenic diet (KD) has been important in treating epilepsy since the 1920s. The benefits of KD further expanded to other neurological diseases, including Alzheimer’s diseases, autism spectrum disorder, and nutritional disorder (obesity). Although the therapeutic efficacy of KD has been generally accepted, there is limited knowledge about its underlying mechanism of action, particularly its effect on our gut microbiome. Gut dysbiosis has been proposed to be involved in those diseases, and KD can promote gut microbiota remodeling that may assist in recovery. This review explores the therapeutic applications of KD, the roles of the gut microbiome in neurological diseases and obesity, as well as the effect of KD on the gut microbiome. The present information suggests that KD has significant roles in altering the gut microbiome to improve disease symptoms, mainly by incrementing Bacteroidetes to Firmicutes (B/F) ratio and reducing Proteobacteria in certain cases. However, current gaps call for continued research to understand better the gut microbiota profile altered by KD.
Collapse
|
12
|
Probiotics Administration in Cystic Fibrosis: What Is the Evidence? Nutrients 2022; 14:nu14153160. [PMID: 35956335 PMCID: PMC9370594 DOI: 10.3390/nu14153160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022] Open
Abstract
In the last 20 years, gut microbiota in patients with cystic fibrosis (CF) has become an object of interest. It was shown that these patients had gut dysbiosis and this could explain not only the intestinal manifestations of the disease but also part of those involving the respiratory tract. The acquisition of previously unknown information about the importance of some bacteria, i.e., those partially or totally disappeared in the gut of CF patients, in the regulation of the activity and function of the gut and the lung was the base to suggest the use of probiotics in CF patients. The main aim of this paper is to discuss the biological basis for probiotic administration to CF patients and which results could be expected. Literature analysis showed that CF intestinal dysbiosis depends on the same genetic mutations that condition the clinical picture of the diseases and is aggravated by a series of therapeutic interventions, such as dietary modifications, the use of antibiotics, and the administration of antacids. All this translates into a significant worsening of the structure and function of organs, including the lung and intestine, already deeply penalized by the genetic alterations of CF. Probiotics can intervene on dysbiosis, reducing the negative effects derived from it. However, the available data cannot be considered sufficient to indicate that these bacteria are essential elements of CF therapy. Further studies that take into account the still unsolved aspects on how to use probiotics are absolutely necessary.
Collapse
|
13
|
Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int 2022; 156:111133. [DOI: 10.1016/j.foodres.2022.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|
14
|
Azimirad M, Jo Y, Kim MS, Jeong M, Shahrokh S, Asadzadeh Aghdaei H, Zali MR, Lee S, Yadegar A, Shin JH. Alterations and Prediction of Functional Profiles of Gut Microbiota After Fecal Microbiota Transplantation for Iranian Recurrent Clostridioides difficile Infection with Underlying Inflammatory Bowel Disease: A Pilot Study. J Inflamm Res 2022; 15:105-116. [PMID: 35023946 PMCID: PMC8747792 DOI: 10.2147/jir.s338212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Fecal microbiota transplantation (FMT) has emerged for the therapeutic treatment of recurrent Clostridioides difficile infection (rCDI) with concurrent inflammatory bowel disease (IBD). As the first Iranian population cohort, we examined how gut microbiota and their functional profiles change in Iranian rCDI patients with underlying IBD before and after FMT. PATIENTS AND METHODS FMT was performed to eight IBD patients via colonoscopy. Profiles of gut microbiota from donors and recipients were investigated using 16S rRNA gene sequence analysis. RESULTS Patients experienced no IBD flare-ups or other adverse effects, and all recovered to full health. Moreover, all rCDI patients lacked the Bacteroidetes present in donor samples. After FMT, the proportion of Bacteroidetes increased until a normal range was achieved. More specifically, the relative abundance of Prevotella was found to increase significantly following FMT. Prevotella was also found to correlate negatively with inflammation metrics, suggesting that Prevotella may be a key factor for resolving CDI and IBD. Gut microbiota diversity was found to increase following FMT, while dysbiosis decreased. However, the similarity of microbial communities of host and recipients did not increase, and wide variation in the extent of donor stool engraftment indicated that the gut bacterial communities of recipients do not shift towards those of donors. CONCLUSION FMT leads to significant alterations of the community structure of gut bacteria in rCDI patients with IBD. The change in relative abundance of Proteobacteria and bacterial diversity indicated that FMT promotes recovery from intestinal permeability and inflammation in rCDI patients. Moreover, strong negative correlation between Prevotella and inflammation index, and decreased dysbiosis index advocate that the improvement of CDI is possibly due to gut microbiome alteration. Collectively, our findings show that FMT would be a promising therapy to help reprogram the gut microbiome of Iranian rCDI patients with IBD.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - YoungJae Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Min-Sueng Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seungjun Lee
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
15
|
Vaccines in Children with Inflammatory Bowel Disease: Brief Review. Vaccines (Basel) 2021; 9:vaccines9050487. [PMID: 34064576 PMCID: PMC8151471 DOI: 10.3390/vaccines9050487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Incidence of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), is increasing worldwide. Children with IBDs have a dysfunctional immune system and they are frequently treated with immunomodulating drugs and biological therapy, which significantly impair immune system functions and lead to an increased risk of infections. Vaccines are essential to prevent at least part of these infections and this explains why strict compliance to the immunization guidelines specifically prepared for IBD patients is strongly recommended. However, several factors might lead to insufficient immunization. In this paper, present knowledge on the use of vaccines in children with IBDs is discussed. Literature review showed that despite a lack of detailed quantification of the risk of infections in children with IBDs, these children might have infections more frequently than age-matched healthy subjects, and at least in some cases, these infections might be even more severe. Fortunately, most of these infections could be prevented when recommended schedules of immunization are carefully followed. Vaccines given to children with IBDs generally have adequate immunogenicity and safety. Attention must be paid to live attenuated vaccines that can be administered only to children without or with mild immune system function impairment. Vaccination of their caregivers is also recommended. Unfortunately, compliance to these recommendations is generally low and multidisciplinary educational programs to improve vaccination coverage must be planned, in order to protect children with IBD from vaccine-preventable diseases.
Collapse
|
16
|
Guo J, Han X, Huang W, You Y, Zhan J. Gut dysbiosis during early life: causes, health outcomes, and amelioration via dietary intervention. Crit Rev Food Sci Nutr 2021; 62:7199-7221. [PMID: 33909528 DOI: 10.1080/10408398.2021.1912706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The colonization and maturation of gut microbiota (GM) is a delicate and precise process, which continues to influence not only infancy and childhood but also adulthood health by affecting immunity. However, many perinatal factors, including gestational age, delivery mode, antibiotic administration, feeding mode, and environmental and maternal factors, can disturb this well-designed process, increasing the morbidity of various gut dysbiosis-related diseases, such as type-1-diabetes, allergies, necrotizing enterocolitis, and obesity. In this review, we discussed the early-life colonization and maturation of the GM, factors influencing this process, and diseases related to the disruption of this process. Moreover, we focused on discussing dietary interventions, including probiotics, oligosaccharides, nutritional supplementation, and exclusive enteral nutrition, in ameliorating early-life dysbiosis and diseases related to it. Furthermore, possible mechanisms, and shortcomings, as well as potential solutions to the drawbacks of dietary interventions, were also discussed.
Collapse
Affiliation(s)
- Jielong Guo
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xue Han
- Peking University School of Basic Medical Science, Peking University Health Science Centre, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Petraroli M, Castellone E, Patianna V, Esposito S. Gut Microbiota and Obesity in Adults and Children: The State of the Art. Front Pediatr 2021; 9:657020. [PMID: 33816411 PMCID: PMC8017119 DOI: 10.3389/fped.2021.657020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
In recent decades, obesity has become a serious public health problem affecting both children and adults. Considering the multifactorial origin of obesity, including modifiable factors, childhood was identified as the golden age for investing in obesity prevention by both promoting proper lifestyles and actively intervening in possible triggers. The gut microbiota is at the center of the most recent scientific studies and plays a key role in obesity development because it is intimately linked to energetic-humoral variations in the host: its alterations can promote a state of excessive energy storage, and it can be manipulated to maintain energy homoeostasis. This review aims to offer a panoramic understanding of the interplay between obesity and the gut microbiota, focusing on the contribution that the gut microbiota could have to the prevention of childhood obesity and its complications in adulthood. Currently, the use of some specific probiotic strains has been shown to be able to act on some secondary metabolic consequences of obesity (such as liver steatosis and insulin resistance) without any effect on weight loss. Although definitive conclusions cannot be drawn on the real impact of probiotics and prebiotics, there is no doubt that they represent an exciting new frontier in the treatment of obesity and associated metabolic dysfunctions. Targeted studies randomized on specific populations and homogeneous for ethnicity, sex, and age are urgently needed to reach definitive conclusions about the influence of microbiota on weight. In particular, we still need more studies in the pediatric population to better understand when the switch to an obese-like gut microbiota takes place and to better comprehend the right timing of each intervention, including the use of pre/probiotics, to improve it.
Collapse
Affiliation(s)
| | | | | | - Susanna Esposito
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, University of Parma, Parma, Italy
| |
Collapse
|
18
|
Babakhanov AT, Dzhumabekov AT, Zhao AV, Kuandykov YK, Tanabayeva SB, Fakhradiyev IR, Nazarenko Y, Saliev TM. Impact of Appendectomy on Gut Microbiota. Surg Infect (Larchmt) 2021; 22:651-661. [PMID: 33523761 DOI: 10.1089/sur.2020.422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Considered vestigial from the classic point of view, the vermiform appendix has long been the subject of intensive studies. The recent understanding of appendix function in the context of unique architecture and bacterial complexity and density allows considering it as a safehouse for intestinal biodiversity. Methods: This review analyzes and assesses the current state of scientific knowledge regarding the role of the vermiform appendix in normal gut microbiota maintenance as a crucial factor of host homeostasis. It also highlights the difference in microbial composition between the large bowel and the appendix, as well as the association between the surgical excision, appendectomy, and dysbiosis-induced diseases. In addition, the review discusses the results of epidemiologic studies on appendectomy as a risk factor for the initiation of gastrointestinal carcinogenesis. It also highlights the association between appendectomy and a series of chronic inflammatory and neurologic disorders, including inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | - Alexey V Zhao
- Institute of Surgery named after A.V. Vishnevsky, Moscow, Russia
| | - Yerlan K Kuandykov
- Khoja Akhmet Yassawi International Kazakh-Turkish University, Shymkent Medical Institute Postgraduate Studies Faculty, Shymkent, Kazakhstan
| | | | | | - Yana Nazarenko
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Timur M Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| |
Collapse
|
19
|
Verburgt CM, Ghiboub M, Benninga MA, de Jonge WJ, Van Limbergen JE. Nutritional Therapy Strategies in Pediatric Crohn's Disease. Nutrients 2021; 13:212. [PMID: 33450982 PMCID: PMC7828385 DOI: 10.3390/nu13010212] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
The increase in incidences of pediatric Crohn's Disease (CD) worldwide has been strongly linked with dietary shifts towards a Westernized diet, ultimately leading to altered gut microbiota and disturbance in intestinal immunity and the metabolome. Multiple clinical studies in children with CD have demonstrated the high efficacy of nutritional therapy with exclusive enteral nutrition (EEN) to induce remission with an excellent safety profile. However, EEN is poorly tolerated, limiting its compliance and clinical application. This has spiked an interest in the development of alternative and better-tolerated nutritional therapy strategies. Several nutritional therapies have now been designed not only to treat the nutritional deficiencies seen in children with active CD but also to correct dysbiosis and reduce intestinal inflammation. In this review, we report the most recent insights regarding nutritional strategies in children with active CD: EEN, partial enteral nutrition (PEN), Crohn's disease exclusive diet (CDED), and CD treatment-with-eating diet (CD-TREAT). We describe their setup, efficacy, safety, and (dis)advantages as well as some of their potential mechanisms of action and perspectives. A better understanding of different nutritional therapeutic options and their mechanisms will yield better and safer management strategies for children with CD and may address the barriers and limitations of current strategies in children.
Collapse
Affiliation(s)
- Charlotte M. Verburgt
- Department of Pediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (C.M.V.); (M.G.); (M.A.B.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands;
| | - Mohammed Ghiboub
- Department of Pediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (C.M.V.); (M.G.); (M.A.B.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands;
| | - Marc A. Benninga
- Department of Pediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (C.M.V.); (M.G.); (M.A.B.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands;
- Department of Surgery, University of Bonn, 53127 Bonn, Germany
| | - Johan E. Van Limbergen
- Department of Pediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (C.M.V.); (M.G.); (M.A.B.)
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, 1105 BK Amsterdam, The Netherlands;
- Department of Pediatrics, Dalhousie University, Halifax, NS B3K 6R8, Canada
| |
Collapse
|
20
|
Guo J, Ren C, Han X, Huang W, You Y, Zhan J. Role of IgA in the early-life establishment of the gut microbiota and immunity: Implications for constructing a healthy start. Gut Microbes 2021; 13:1-21. [PMID: 33870860 PMCID: PMC8078773 DOI: 10.1080/19490976.2021.1908101] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Colonization and maturation of the gut microbiota (GM) during early life is a landmark event that fundamentally influences the (early) immunity and later-life health of various mammals. This is a delicate, systematic process that is biologically actively regulated by infants and their mothers, where (secretory) IgA, an important regulator of microbes found in breast milk and generated actively by infants, may play a key role. By binding to microbes, IgA can inhibit or enhance their colonization, influence their gene expression, and regulate immune responses. IgA dysfunction during early life is associated with disrupted GM maturation and various microbe-related diseases, such as necrotizing enterocolitis and diarrhea, which can also have a lasting effect on GM and host health. This review discusses the process of early GM maturation and its interaction with immunity and the role of IgA (focusing on milk secretory IgA) in regulating this process. The possible application of this knowledge in promoting normal GM maturation processes and immune education has also been highlighted.
Collapse
Affiliation(s)
- Jielong Guo
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Chenglong Ren
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xue Han
- Peking University School of Basic Medical Science, Peking University Health Science Centre
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Zhuang X, Liu C, Zhan S, Tian Z, Li N, Mao R, Zeng Z, Chen M. Gut Microbiota Profile in Pediatric Patients With Inflammatory Bowel Disease: A Systematic Review. Front Pediatr 2021; 9:626232. [PMID: 33604319 PMCID: PMC7884334 DOI: 10.3389/fped.2021.626232] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aim: Accumulating evidence have implicated gut microbiota alterations in pediatric and adult patients with inflammatory bowel disease (IBD); however, the results of different studies are often inconsistent and even contradictory. It is believed that early changes in new-onset and treatment-naïve pediatric patients are more informative. We performed a systematic review to investigate the gut microbiota profiles in pediatric IBD and identify specific microbiota biomarkers associated with this disorder. Methods: Electronic databases were searched from inception to 31 July 2020 for studies that observed gut microbiota alterations in pediatric patients with IBD. Study quality was assessed using the Newcastle-Ottawa scale. Results: A total of 41 original studies investigating gut microbiota profiles in pediatric patients with IBD were included in this review. Several studies have reported a decrease in α-diversity and an overall difference in β-diversity. Although no specific gut microbiota alterations were consistently reported, a gain in Enterococcus and a significant decrease in Anaerostipes, Blautia, Coprococcus, Faecalibacterium, Roseburia, Ruminococcus, and Lachnospira were found in the majority of the included articles. Moreover, there is insufficient data to show specific microbiota bacteria associated with disease activity, location, and behavior in pediatric IBD. Conclusions: This systematic review identified evidence for differences in the abundance of some bacteria in pediatric patients with IBD when compared to patients without IBD; however, no clear overall conclusion could be drawn from the included studies due to inconsistent results and heterogeneous methodologies. Further studies with large samples that follow more rigorous and standardized methodologies are needed.
Collapse
Affiliation(s)
- Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenyi Tian
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Esposito S, Jones MH, Feleszko W, Martell JAO, Falup-Pecurariu O, Geppe N, Martinón-Torres F, Shen KL, Roth M, Principi N. Prevention of New Respiratory Episodes in Children with Recurrent Respiratory Infections: An Expert Consensus Statement. Microorganisms 2020; 8:E1810. [PMID: 33213053 PMCID: PMC7698530 DOI: 10.3390/microorganisms8111810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
In healthy infants and young children, the development of respiratory tract infections (RTIs) is extremely common. In this paper, we present an international consensus of the available approaches for the prevention of recurrent RTIs in children, including the atopic/allergic ones as well as those with asthma. Few convincing measures for reducing the frequency and clinical relevance of recurrent respiratory episodes in RTI-prone children have been developed until now. Among the most recently suggested measures, immunotherapy is attractive, but only for OM-85 is there a sufficient number of well-conducted clinical trials confirming efficacy in RTIs prevention with an adequate safety profile. In the case of probiotics, it is not clear which bacteria can offer the best results and which dosage and schedule of administration are the most effective. The problems of dosage and the schedule of administration are not solved also for vitamin D, despite some promising efficacy results. While we wait for new knowledge, the elimination or reduction as much as possible of the environmental factors that favor RTIs, vaccination when available and/or indicated, and the systematic application of the traditional methods for infection prevention, such as hand washing, remain the best measures to prevent recurrent infections in RTI-prone children.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy
| | - Marcus Herbert Jones
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre (RS) 90619-900, Brazil;
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy, The Medical University of Warsaw, 00-927 Warsaw, Poland;
| | - José A. Ortega Martell
- Department of Immunology, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo 42082, Mexico;
| | - Oana Falup-Pecurariu
- Faculty of Medicine, Transilvania University, Children’s Clinic Hospital, 500036 Brasov, Romania;
| | - Natalia Geppe
- Department of Paediatrics, Sechenov First Moscow State Medical University, 115093 Moscow, Russia;
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Kun-Ling Shen
- China National Clinical Research Center for Respiratory Diseases, Department of Respiratory Medicine, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Michael Roth
- Pulmonary Cell Research and Pneumology, Department of Biomedicine and Internal Medicine, University Hospital Basel, 4002 Basel, Switzerland;
| | | |
Collapse
|
23
|
Shimizu Y, Nakamura K, Yoshii A, Yokoi Y, Kikuchi M, Shinozaki R, Nakamura S, Ohira S, Sugimoto R, Ayabe T. Paneth cell α-defensin misfolding correlates with dysbiosis and ileitis in Crohn's disease model mice. Life Sci Alliance 2020; 3:3/6/e201900592. [PMID: 32345659 PMCID: PMC7190275 DOI: 10.26508/lsa.201900592] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
This study provides novel insight into Crohn’s disease where α-defensin misfolding resulting from excessive ER stress in Paneth cells induces dysbiosis and disease progression. Crohn’s disease (CD) is an intractable inflammatory bowel disease, and dysbiosis, disruption of the intestinal microbiota, is associated with CD pathophysiology. ER stress, disruption of ER homeostasis in Paneth cells of the small intestine, and α-defensin misfolding have been reported in CD patients. Because α-defensins regulate the composition of the intestinal microbiota, their misfolding may cause dysbiosis. However, whether ER stress, α-defensin misfolding, and dysbiosis contribute to the pathophysiology of CD remains unknown. Here, we show that abnormal Paneth cells with markers of ER stress appear in SAMP1/YitFc, a mouse model of CD, along with disease progression. Those mice secrete reduced-form α-defensins that lack disulfide bonds into the intestinal lumen, a condition not found in normal mice, and reduced-form α-defensins correlate with dysbiosis during disease progression. Moreover, administration of reduced-form α-defensins to wild-type mice induces the dysbiosis. These data provide novel insights into CD pathogenesis induced by dysbiosis resulting from Paneth cell α-defensin misfolding and they suggest further that Paneth cells may be potential therapeutic targets.
Collapse
Affiliation(s)
- Yu Shimizu
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan.,Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan.,Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| | - Aki Yoshii
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Yuki Yokoi
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan.,Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| | - Mani Kikuchi
- Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| | - Ryuga Shinozaki
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Shunta Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Shuya Ohira
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Rina Sugimoto
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Hokkaido, Japan .,Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
24
|
Komatsu Y, Shimizu Y, Yamano M, Kikuchi M, Nakamura K, Ayabe T, Aizawa T. Disease progression-associated alterations in fecal metabolites in SAMP1/YitFc mice, a Crohn's disease model. Metabolomics 2020; 16:48. [PMID: 32274593 DOI: 10.1007/s11306-020-01671-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic, relapsing inflammatory bowel disease affecting the gastrointestinal tract. Although its precise etiology has not been fully elucidated, an imbalance of the intestinal microbiota has been known to play a role in CD. Fecal metabolites derived from microbiota may be related to the onset and progression of CD OBJECTIVES: This study aimed to clarify the transition of gut microbiota and fecal metabolites associated with disease progression using SAMP1/YitFc mice, a model of spontaneous CD METHODS: The ileum tissues isolated from SAMP1/YitFc mice at different ages were stained with hematoxylin-eosin for histologic characterization with CD progression. Feces from control, Institute of Cancer Research (ICR; n = 6), and SAMP1/YitFc (n = 8) mice at different ages were subjected to microbial analysis and 1H nuclear magnetic resonance (NMR) analysis to investigate fluctuations in gut microbiota and fecal metabolites with CD progression RESULTS: Relative abundance of the Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, and Bacteroidales S24-7 at family-level gut microbiota and fecal metabolites, such as short-chain fatty acids, lactate, glucose, xylose, and choline, dramatically fluctuated with histologic progression of intestinal inflammation in SAMP1/YitFc mice. Unlike the other metabolites, fecal taurine concentration in SAMP1/YitFc mice was higher than ICR mice regardless of age CONCLUSION: The fecal metabolites showing characteristic fluctuations may help to understand the inflammatory mechanism associated with CD, and might be utilized as potential biomarkers in predicting CD pathology.
Collapse
Affiliation(s)
- Yosuke Komatsu
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Wellness & Nutrition Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Yu Shimizu
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Megumi Yamano
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mani Kikuchi
- Division of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kiminori Nakamura
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Division of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tokiyoshi Ayabe
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Division of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Tomoyasu Aizawa
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
25
|
The gut microbiome in epilepsy. Microb Pathog 2020; 139:103853. [PMID: 31730997 DOI: 10.1016/j.micpath.2019.103853] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
|
26
|
Koh YC, Ho CT, Pan MH. Recent advances in cancer chemoprevention with phytochemicals. J Food Drug Anal 2020; 28:14-37. [DOI: 10.1016/j.jfda.2019.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
|
27
|
Bianchini S, Orabona C, Camilloni B, Berioli MG, Argentiero A, Matino D, Alunno A, Albini E, Vacca C, Pallotta MT, Mancini G, Tascini G, Toni G, Mondanelli G, Silvestri E, Grohmann U, Esposito S. Effects of probiotic administration on immune responses of children and adolescents with type 1 diabetes to a quadrivalent inactivated influenza vaccine. Hum Vaccin Immunother 2019; 16:86-94. [PMID: 31210557 PMCID: PMC7012143 DOI: 10.1080/21645515.2019.1633877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study was planned to evaluate whether a 3-month treatment with Lactobacillus rhamnosus GG (LGG) can modify immune system functions in children and adolescents with type 1 diabetes (T1D), leading to an increased immune response to an injectable quadrivalent inactivated influenza vaccine (QIV). A total of 87 pediatric patients with T1D were screened, although 34 patients in the Probiotic group and 30 in the Control group accepted to be vaccinated with QIV and completed the study. Vaccine immunogenicity and safety and the inflammatory cytokine response were studied. Results showed that QIV was immunogenic and safe in T1D pediatric patients and pre-administration of LGG for three months did not substantially modify the QIV humoral immunity. The combination of QIV and LGG reduced inflammatory responses (i.e., IFN-γ, IL17A, IL-17F, IL-6, and TNF-α) from activated PBMCs of pediatric patients with T1D, without dampening the production of seroprotective antibodies. In conclusion, QIV is associated with an adequate immunogenicity in children and adolescents with T1D in presence of a good safety profile. Although a systematic administration of LGG did not result in an improvement of humoral responses to an influenza vaccine, the probiotic did induce important anti-inflammatory effects.
Collapse
Affiliation(s)
- Sonia Bianchini
- Paediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Ciriana Orabona
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Barbara Camilloni
- Microbiology Unit, Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Maria Giulia Berioli
- Paediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Alberto Argentiero
- Paediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Davide Matino
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Anna Alunno
- Microbiology Unit, Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Elisa Albini
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Carmine Vacca
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Maria Teresa Pallotta
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Giulia Mancini
- Paediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Giorgia Tascini
- Paediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Giada Toni
- Paediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Giada Mondanelli
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Ettore Silvestri
- Paediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Ursula Grohmann
- Pharmacology Section, Department of Experimental Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Susanna Esposito
- Paediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
28
|
Huang J, Zhang C, Wang J, Guo Q, Zou W. Oral Lactobacillus reuteri LR06 or Bifidobacterium BL5b supplement do not produce analgesic effects on neuropathic and inflammatory pain in rats. Brain Behav 2019; 9:e01260. [PMID: 30839179 PMCID: PMC6456777 DOI: 10.1002/brb3.1260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Previous studies have reported that certain bacteria exert visceral antinociceptive activity in visceral pain and may also help to relieve neuropathic and inflammatory pain. OBJECTIVE The aim of this study was to explore the analgesic effect of Lactobacillus reuteri LR06 (LR06) or Bifidobacterium BL5b (BL5b) in chronic pain in vivo. DESIGN Rats were randomly assigned into four groups: sham, Chronic Constriction Injury (CCI)/Complete Freund's Adjuvant (CFA) + control, CCI/CFA + LR06, and CCI/CFA + BL5b. Rats from the probiotic groups were treated with 1 x 109 cfu (LR06 or BL5b) daily through gavage for 14 days after a pain model was successfully established. Mechanical and thermal hyperalgesia were used to assess the analgesic effect of the probiotics. Iba1 was used to verify the microglial inflammatory reaction in the different groups. RESULTS The results showed that probiotics L. reuteri LR06 or Bifidobacterium BL5b had no significant antinociception effects in chronic pain rats. The chronic pain-induced activation of microglia (Iba1) was not relieved by probiotics in CCI/CFA-induced neuropathic or inflammatory pain rats. CONCLUSION Our results suggested that L. reuteri LR06 or Bifidobacterium BL5b had no antinociceptive effects on CCI-induced neuropathic pain and CFA-induced inflammatory pain in rats.
Collapse
Affiliation(s)
- Jiangju Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Chuanlei Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
D'Argenio V. The Prenatal Microbiome: A New Player for Human Health. High Throughput 2018; 7:ht7040038. [PMID: 30544936 PMCID: PMC6306741 DOI: 10.3390/ht7040038] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
The last few years have featured an increasing interest in the study of the human microbiome and its correlations with health status. Indeed, technological advances have allowed the study of microbial communities to reach a previously unthinkable sensitivity, showing the presence of microbes also in environments usually considered as sterile. In this scenario, microbial communities have been described in the amniotic fluid, the umbilical blood cord, and the placenta, denying a dogma of reproductive medicine that considers the uterus like a sterile womb. This prenatal microbiome may play a role not only in fetal development but also in the predisposition to diseases that may develop later in life, and also in adulthood. Thus, the aim of this review is to report the current knowledge regarding the prenatal microbiome composition, its association with pathological processes, and the future perspectives regarding its manipulation for healthy status promotion and maintenance.
Collapse
Affiliation(s)
- Valeria D'Argenio
- CEINGE-BiotecnologieAvanzate, via G. Salvatore via G. Salvatore 486, 80145 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
30
|
Bell V, Ferrão J, Pimentel L, Pintado M, Fernandes T. One Health, Fermented Foods, and Gut Microbiota. Foods 2018; 7:foods7120195. [PMID: 30513869 PMCID: PMC6306734 DOI: 10.3390/foods7120195] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Changes in present-day society such as diets with more sugar, salt, and saturated fat, bad habits and unhealthy lifestyles contribute to the likelihood of the involvement of the microbiota in inflammatory diseases, which contribute to global epidemics of obesity, depression, and mental health concerns. The microbiota is presently one of the hottest areas of scientific and medical research, and exerts a marked influence on the host during homeostasis and disease. Fermented foods and beverages are generally defined as products made by microbial organisms and enzymatic conversions of major and minor food components. Further to the commonly-recognized effects of nutrition on the digestive health (e.g., dysbiosis) and well-being, there is now strong evidence for the impact of fermented foods and beverages (e.g., yoghurt, pickles, bread, kefir, beers, wines, mead), produced or preserved by the action of microorganisms, on general health, namely their significance on the gut microbiota balance and brain functionality. Fermented products require microorganisms, i.e., Saccharomyces yeasts and lactic acid bacteria, yielding alcohol and lactic acid. Ingestion of vibrant probiotics, especially those contained in fermented foods, is found to cause significant positive improvements in balancing intestinal permeability and barrier function. Our guts control and deal with every aspect of our health. How we digest our food and even the food sensitivities we have is linked with our mood, behavior, energy, weight, food cravings, hormone balance, immunity, and overall wellness. We highlight some impacts in this domain and debate calls for the convergence of interdisciplinary research fields from the United Nations’ initiative. Worldwide human and animal medicine are practiced separately; veterinary science and animal health are generally neither considered nor inserted within national or international Health discussions. The absence of a clear definition and subsequent vision for the future of One Health may act as a barrier to transdisciplinary collaboration. The point of this mini review is to highlight the role of fermented foods and beverages on gut microbiota and debate if the need for confluence of transdisciplinary fields of One Health is feasible and achievable, since they are managed by separate sectors with limited communication.
Collapse
Affiliation(s)
- Victoria Bell
- Faculdade de Farmácia, Universidade de Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Jorge Ferrão
- Universidade Pedagógica, Rua João Carlos Raposo Beirão 135, Maputo 1000-001, Mozambique.
| | - Lígia Pimentel
- CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Manuela Pintado
- CBQF-Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Tito Fernandes
- Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal.
| |
Collapse
|