1
|
Chiu HP, Yeo YY, Lai TY, Hung CT, Kowdle S, Haas GD, Jiang S, Sun W, Lee B. SARS-CoV-2 Nsp15 antagonizes the cGAS-STING-mediated antiviral innate immune responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611469. [PMID: 39282446 PMCID: PMC11398466 DOI: 10.1101/2024.09.05.611469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Coronavirus (CoV) Nsp15 is a viral endoribonuclease (EndoU) with a preference for uridine residues. CoV Nsp15 is an innate immune antagonist which prevents dsRNA sensor recognition and stress granule formation by targeting viral and host RNAs. SARS-CoV-2 restricts and delays the host antiviral innate immune responses through multiple viral proteins, but the role of SARS-CoV-2 Nsp15 in innate immune evasion is not completely understood. Here, we generate an EndoU activity knockout rSARS-CoV-2Nsp15-H234A to elucidate the biological functions of Nsp15. Relative to wild-type rSARS-CoV-2, replication of rSARS-CoV-2Nsp15-H234A was significantly decreased in IFN-responsive A549-ACE2 cells but not in its STAT1 knockout counterpart. Transcriptomic analysis revealed upregulation of innate immune response genes in cells infected with rSARS-CoV-2Nsp15-H234A relative to wild-type virus, including cGAS-STING, cytosolic DNA sensors activated by both DNA and RNA viruses. Treatment with STING inhibitors H-151 and SN-011 rescued the attenuated phenotype of rSARS-CoV-2Nsp15-H234A. SARS-CoV-2 Nsp15 inhibited cGAS-STING-mediated IFN-β promoter and NF-κB reporter activity, as well as facilitated the replication of EV-D68 and NDV by diminishing cGAS and STING expression and downstream innate immune responses. Notably, the decline in cGAS and STING was also apparent during SARS-CoV-2 infection. The EndoU activity was essential for SARS-CoV-2 Nsp15-mediated cGAS and STING downregulation, but not all HCoV Nsp15 share the consistent substrate selectivity. In the hamster model, rSARS-CoV-2Nsp15-H234A replicated to lower titers in the nasal turbinates and lungs and induced higher innate immune responses. Collectively, our findings exhibit that SARS-CoV-2 Nsp15 serves as a host innate immune antagonist by targeting host cGAS and STING.
Collapse
Affiliation(s)
- Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yao Yu Yeo
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
| | - Tsoi Ying Lai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chuan-Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Dana Farber Cancer Institute, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Dos Ramos Almeida CJL, Veras FP, Paiva IM, Schneider AH, da Costa Silva J, Gomes GF, Costa VF, Silva BMS, Caetite DB, Silva CMS, Salina ACG, Martins R, Bonilha CS, Cunha LD, Jamur MC, da Silva LLP, Arruda E, Zamboni DS, Louzada-Junior P, de Oliveira RDR, Alves-Filho JC, Cunha TM, de Queiroz Cunha F. Neutrophil Virucidal Activity Against SARS-CoV-2 Is Mediated by Neutrophil Extracellular Traps. J Infect Dis 2024; 229:1352-1365. [PMID: 38015657 DOI: 10.1093/infdis/jiad526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Inflammation in the lungs and other vital organs in COVID-19 is characterized by the presence of neutrophils and a high concentration of neutrophil extracellular traps (NETs), which seems to mediate host tissue damage. However, it is not known whether NETs could have virucidal activity against SARS-CoV-2. METHODS We investigated whether NETs could prevent SARS-CoV-2 replication in neutrophils and epithelial cells and what the consequence of NETs degradation would be in K18-humanized ACE2 transgenic mice infected with SARS-CoV-2. RESULTS Here, by immunofluorescence microscopy, we observed that viral particles colocalize with NETs in neutrophils isolated from patients with COVID-19 or healthy individuals and infected in vitro. The inhibition of NETs production increased virus replication in neutrophils. In parallel, we observed that NETs inhibited virus abilities to infect and replicate in epithelial cells after 24 hours of infection. Degradation of NETs with DNase I prevented their virucidal effect in vitro. Using K18-humanized ACE2 transgenic mice, we observed a higher viral load in animals treated with DNase I. However, the virucidal effect of NETs was not dependent on neutrophil elastase or myeloperoxidase activity. CONCLUSIONS Our results provide evidence of the role of NETosis as a mechanism of SARS-CoV-2 viral capture and inhibition.
Collapse
Affiliation(s)
| | - Flávio Protásio Veras
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto
| | - Isadora Marques Paiva
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Ayda Henriques Schneider
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Juliana da Costa Silva
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Giovanni Freitas Gomes
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Victor Ferreira Costa
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | - Diego Brito Caetite
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | | | - Ronaldo Martins
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Caio Santos Bonilha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | - Maria Célia Jamur
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
| | - Luís Lamberti Pinto da Silva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Eurico Arruda
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | - Paulo Louzada-Junior
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | - José Carlos Alves-Filho
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Fernando de Queiroz Cunha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| |
Collapse
|
3
|
Staroverov V, Galatenko A, Knyazev E, Tonevitsky A. Mathematical model explains differences in Omicron and Delta SARS-CoV-2 dynamics in Caco-2 and Calu-3 cells. PeerJ 2024; 12:e16964. [PMID: 38560455 PMCID: PMC10981414 DOI: 10.7717/peerj.16964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Within-host infection dynamics of Omicron dramatically differs from previous variants of SARS-CoV-2. However, little is still known about which parameters of virus-cell interplay contribute to the observed attenuated replication and pathogenicity of Omicron. Mathematical models, often expressed as systems of differential equations, are frequently employed to study the infection dynamics of various viruses. Adopting such models for results of in vitro experiments can be beneficial in a number of aspects, such as model simplification (e.g., the absence of adaptive immune response and innate immunity cells), better measurement accuracy, and the possibility to measure additional data types in comparison with in vivo case. In this study, we consider a refinement of our previously developed and validated model based on a system of integro-differential equations. We fit the model to the experimental data of Omicron and Delta infections in Caco-2 (human intestinal epithelium model) and Calu-3 (lung epithelium model) cell lines. The data include known information on initial conditions, infectious virus titers, and intracellular viral RNA measurements at several time points post-infection. The model accurately explains the experimental data for both variants in both cell lines using only three variant- and cell-line-specific parameters. Namely, the cell entry rate is significantly lower for Omicron, and Omicron triggers a stronger cytokine production rate (i.e., innate immune response) in infected cells, ultimately making uninfected cells resistant to the virus. Notably, differences in only a single parameter (e.g., cell entry rate) are insufficient to obtain a reliable model fit for the experimental data.
Collapse
Affiliation(s)
- Vladimir Staroverov
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexei Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Evgeny Knyazev
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
4
|
Yang D, Chan JFW, Yoon C, Luk TY, Shuai H, Hou Y, Huang X, Hu B, Chai Y, Yuen TTT, Liu Y, Zhu T, Liu H, Shi J, Wang Y, He Y, Sit KY, Au WK, Zhang AJ, Yuan S, Zhang BZ, Huang YW, Chu H. Type-II IFN inhibits SARS-CoV-2 replication in human lung epithelial cells and ex vivo human lung tissues through indoleamine 2,3-dioxygenase-mediated pathways. J Med Virol 2024; 96:e29472. [PMID: 38373201 DOI: 10.1002/jmv.29472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/21/2024]
Abstract
Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Moreover, IFNγ treatment does not significantly modulate the expression of SARS-CoV-2 entry-related factors and induces a similar level of pro-inflammatory response in human lung tissues when compared with IFNβ treatment. Mechanistically, we show that overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), which is most profoundly induced by IFNγ, substantially restricts the replication of ancestral SARS-CoV-2 and the Alpha and Delta variants. Meanwhile, loss-of-function study reveals that IDO1 knockdown restores SARS-CoV-2 replication restricted by IFNγ in Calu3 cells. We further found that the treatment of l-tryptophan, a substrate of IDO1, partially rescues the IFNγ-mediated inhibitory effect on SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Collectively, these results suggest that type-II IFN potently inhibits SARS-CoV-2 replication through IDO1-mediated antiviral response.
Collapse
Affiliation(s)
- Dong Yang
- Xianghu Laboratory, Hangzhou, Zhejiang, China
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- The University of Hong Kong, Hong Kong, China
- Department of Microbiology, Queen Mary Hospital, Hong Kong, China
- Guangzhou Laboratory, Guangdong Province, China
| | - Chaemin Yoon
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz-Yat Luk
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tianrenzheng Zhu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huan Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yang Wang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yixin He
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ko-Yung Sit
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wing-Kuk Au
- Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | | | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
5
|
Eleftheriotis G, Tsounis EP, Aggeletopoulou I, Dousdampanis P, Triantos C, Mouzaki A, Marangos M, Assimakopoulos SF. Alterations in gut immunological barrier in SARS-CoV-2 infection and their prognostic potential. Front Immunol 2023; 14:1129190. [PMID: 37006316 PMCID: PMC10050566 DOI: 10.3389/fimmu.2023.1129190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Although coronavirus disease 2019 (COVID-19) is primarily associated with mild respiratory symptoms, a subset of patients may develop more complicated disease with systemic complications and multiple organ injury. The gastrointestinal tract may be directly infected by SARS-CoV-2 or secondarily affected by viremia and the release of inflammatory mediators that cause viral entry from the respiratory epithelium. Impaired intestinal barrier function in SARS-CoV-2 infection is a key factor leading to excessive microbial and endotoxin translocation, which triggers a strong systemic immune response and leads to the development of viral sepsis syndrome with severe sequelae. Multiple components of the gut immune system are affected, resulting in a diminished or dysfunctional gut immunological barrier. Antiviral peptides, inflammatory mediators, immune cell chemotaxis, and secretory immunoglobulins are important parameters that are negatively affected in SARS-CoV-2 infection. Mucosal CD4+ and CD8+ T cells, Th17 cells, neutrophils, dendritic cells, and macrophages are activated, and the number of regulatory T cells decreases, promoting an overactivated immune response with increased expression of type I and III interferons and other proinflammatory cytokines. The changes in the immunologic barrier could be promoted in part by a dysbiotic gut microbiota, through commensal-derived signals and metabolites. On the other hand, the proinflammatory intestinal environment could further compromise the integrity of the intestinal epithelium by promoting enterocyte apoptosis and disruption of tight junctions. This review summarizes the changes in the gut immunological barrier during SARS-CoV-2 infection and their prognostic potential.
Collapse
Affiliation(s)
- Gerasimos Eleftheriotis
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Periklis Dousdampanis
- Department of Renal Diseases, “Agios Andreas” Patras State General Hospital, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stelios F. Assimakopoulos,
| |
Collapse
|
6
|
Staroverov V, Nersisyan S, Galatenko A, Alekseev D, Lukashevich S, Polyakov F, Anisimov N, Tonevitsky A. Development of a novel mathematical model that explains SARS-CoV-2 infection dynamics in Caco-2 cells. PeerJ 2023; 11:e14828. [PMID: 36748087 PMCID: PMC9899056 DOI: 10.7717/peerj.14828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Mathematical modeling is widely used to study within-host viral dynamics. However, to the best of our knowledge, for the case of SARS-CoV-2 such analyses were mainly conducted with the use of viral load data and for the wild type (WT) variant of the virus. In addition, only few studies analyzed models for in vitro data, which are less noisy and more reproducible. In this work we collected multiple data types for SARS-CoV-2-infected Caco-2 cell lines, including infectious virus titers, measurements of intracellular viral RNA, cell viability data and percentage of infected cells for the WT and Delta variants. We showed that standard models cannot explain some key observations given the absence of cytopathic effect in human cell lines. We propose a novel mathematical model for in vitro SARS-CoV-2 dynamics, which included explicit modeling of intracellular events such as exhaustion of cellular resources required for virus production. The model also explicitly considers innate immune response. The proposed model accurately explained experimental data. Attenuated replication of the Delta variant in Caco-2 cells could be explained by our model on the basis of just two parameters: decreased cell entry rate and increased cytokine production rate.
Collapse
Affiliation(s)
- Vladimir Staroverov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Institute of Molecular Biology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia,Armenian Bioinformatics Institute (ABI), Yerevan, Armenia,Current Affiliation: Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexei Galatenko
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Alekseev
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Sofya Lukashevich
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Fedor Polyakov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikita Anisimov
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Perera MR, Greenwood EJD, Crozier TWM, Elder EG, Schmitt J, Crump CM, Lehner PJ, Wills MR, Sinclair JH. Human Cytomegalovirus Infection of Epithelial Cells Increases SARS-CoV-2 Superinfection by Upregulating the ACE2 Receptor. J Infect Dis 2022; 227:543-553. [PMID: 36408607 PMCID: PMC9927080 DOI: 10.1093/infdis/jiac452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused widespread morbidity and mortality since its onset in late 2019. Here, we demonstrate that prior infection with human cytomegalovirus (HCMV) substantially increases infection with SARS-CoV-2 in vitro. HCMV is a common herpesvirus carried by 40%-100% of the population, which can reactivate in the lung under inflammatory conditions, such as those resulting from SARS-CoV-2 infection. We show in both endothelial and epithelial cell types that HCMV infection upregulates ACE2, the SARS-CoV-2 cell entry receptor. These observations suggest that HCMV reactivation events in the lung of healthy HCMV carriers could exacerbate SARS-CoV-2 infection and subsequent COVID-19 symptoms. This effect could contribute to the disparity of disease severity seen in ethnic minorities and those with lower socioeconomic status, due to their higher CMV seroprevalence. Our results warrant further clinical investigation as to whether HCMV infection influences the pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Marianne R Perera
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Edward J D Greenwood
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Thomas W M Crozier
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Elizabeth G Elder
- Department of Microbiology, National Veterinary Institute Uppsala, Sweden
| | - Janika Schmitt
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Lehner
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mark R Wills
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - John H Sinclair
- Correspondence: John H. Sinclair, PhD, Box 157, Level 5, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, UK ()
| | | |
Collapse
|
8
|
Pires De Souza GA, Le Bideau M, Boschi C, Wurtz N, Colson P, Aherfi S, Devaux C, La Scola B. Choosing a cellular model to study SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:1003608. [PMID: 36339347 PMCID: PMC9634005 DOI: 10.3389/fcimb.2022.1003608] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 08/04/2023] Open
Abstract
As new pathogens emerge, new challenges must be faced. This is no different in infectious disease research, where identifying the best tools available in laboratories to conduct an investigation can, at least initially, be particularly complicated. However, in the context of an emerging virus, such as SARS-CoV-2, which was recently detected in China and has become a global threat to healthcare systems, developing models of infection and pathogenesis is urgently required. Cell-based approaches are crucial to understanding coronavirus infection biology, growth kinetics, and tropism. Usually, laboratory cell lines are the first line in experimental models to study viral pathogenicity and perform assays aimed at screening antiviral compounds which are efficient at blocking the replication of emerging viruses, saving time and resources, reducing the use of experimental animals. However, determining the ideal cell type can be challenging, especially when several researchers have to adapt their studies to specific requirements. This review strives to guide scientists who are venturing into studying SARS-CoV-2 and help them choose the right cellular models. It revisits basic concepts of virology and presents the currently available in vitro models, their advantages and disadvantages, and the known consequences of each choice.
Collapse
Affiliation(s)
- Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Marion Le Bideau
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Céline Boschi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Nathalie Wurtz
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Department of Biological Sciences (INSB), Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
9
|
Iacobucci I, Monaco V, Canè L, Bibbò F, Cioffi V, Cozzolino F, Guarino A, Zollo M, Monti M. Spike S1 domain interactome in non-pulmonary systems: A role beyond the receptor recognition. Front Mol Biosci 2022; 9:975570. [PMID: 36225252 PMCID: PMC9550266 DOI: 10.3389/fmolb.2022.975570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which, since 2019 in China, has rapidly become a worldwide pandemic. The aggressiveness and global spread were enhanced by the many SARS-CoV-2 variants that have been isolated up to now. These mutations affect mostly the viral glycoprotein Spike (S), the capsid protein mainly involved in the early stages of viral entry processes, through the recognition of specific receptors on the host cell surface. In particular, the subunit S1 of the Spike glycoprotein contains the Receptor Binding Domain (RBD) and it is responsible for the interaction with the angiotensin-converting enzyme 2 (ACE2). Although ACE2 is the primary Spike host receptor currently studied, it has been demonstrated that SARS-CoV-2 is also able to infect cells expressing low levels of ACE2, indicating that the virus may have alternative receptors on the host cells. The identification of the alternative receptors can better elucidate the pathogenicity and the tropism of SARS-CoV-2. Therefore, we investigated the Spike S1 interactomes, starting from host membrane proteins of non-pulmonary cell lines, such as human kidney (HK-2), normal colon (NCM460D), and colorectal adenocarcinoma (Caco-2). We employed an affinity purification-mass spectrometry (AP-MS) to pull down, from the membrane protein extracts of all cell lines, the protein partners of the recombinant form of the Spike S1 domain. The purified interactors were identified by a shotgun proteomics approach. The lists of S1 potential interacting proteins were then clusterized according to cellular localization, biological processes, and pathways, highlighting new possible S1 intracellular functions, crucial not only for the entrance mechanisms but also for viral replication and propagation processes.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Luisa Canè
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Francesca Bibbò
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Valentina Cioffi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Massimo Zollo
- CEINGE Advanced Biotechnologies, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies (DMMBM), University of Naples “Federico II”, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
10
|
Chang JJY, Gleeson J, Rawlinson D, De Paoli-Iseppi R, Zhou C, Mordant FL, Londrigan SL, Clark MB, Subbarao K, Stinear TP, Coin LJM, Pitt ME. Long-Read RNA Sequencing Identifies Polyadenylation Elongation and Differential Transcript Usage of Host Transcripts During SARS-CoV-2 In Vitro Infection. Front Immunol 2022; 13:832223. [PMID: 35464437 PMCID: PMC9019466 DOI: 10.3389/fimmu.2022.832223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Better methods to interrogate host-pathogen interactions during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections are imperative to help understand and prevent this disease. Here we implemented RNA-sequencing (RNA-seq) using Oxford Nanopore Technologies (ONT) long-reads to measure differential host gene expression, transcript polyadenylation and isoform usage within various epithelial cell lines permissive and non-permissive for SARS-CoV-2 infection. SARS-CoV-2-infected and mock-infected Vero (African green monkey kidney epithelial cells), Calu-3 (human lung adenocarcinoma epithelial cells), Caco-2 (human colorectal adenocarcinoma epithelial cells) and A549 (human lung carcinoma epithelial cells) were analyzed over time (0, 2, 24, 48 hours). Differential polyadenylation was found to occur in both infected Calu-3 and Vero cells during a late time point (48 hpi), with Gene Ontology (GO) terms such as viral transcription and translation shown to be significantly enriched in Calu-3 data. Poly(A) tails showed increased lengths in the majority of the differentially polyadenylated transcripts in Calu-3 and Vero cell lines (up to ~101 nt in mean poly(A) length, padj = 0.029). Of these genes, ribosomal protein genes such as RPS4X and RPS6 also showed downregulation in expression levels, suggesting the importance of ribosomal protein genes during infection. Furthermore, differential transcript usage was identified in Caco-2, Calu-3 and Vero cells, including transcripts of genes such as GSDMB and KPNA2, which have previously been implicated in SARS-CoV-2 infections. Overall, these results highlight the potential role of differential polyadenylation and transcript usage in host immune response or viral manipulation of host mechanisms during infection, and therefore, showcase the value of long-read sequencing in identifying less-explored host responses to disease.
Collapse
Affiliation(s)
- Jessie J-Y Chang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Josie Gleeson
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Rawlinson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ricardo De Paoli-Iseppi
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Chenxi Zhou
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Michael B Clark
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Disease, Imperial College London, London, United Kingdom.,Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Miranda E Pitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
An orally available M pro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron. Nat Microbiol 2022; 7:716-725. [PMID: 35477751 DOI: 10.1038/s41564-022-01119-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023]
Abstract
Emerging SARS-CoV-2 variants continue to cause waves of new infections globally. Developing effective antivirals against SARS-CoV-2 and its variants is an urgent task. The main protease (Mpro) of SARS-CoV-2 is an attractive drug target because of its central role in viral replication and its conservation among variants. We herein report a series of potent α-ketoamide-containing Mpro inhibitors obtained using the Ugi four-component reaction. The prioritized compound, Y180, showed an IC50 of 8.1 nM against SARS-CoV-2 Mpro and had oral bioavailability of 92.9%, 31.9% and 85.7% in mice, rats and dogs, respectively. Y180 protected against wild-type SARS-CoV-2, B.1.1.7 (Alpha), B.1.617.1 (Kappa) and P.3 (Theta), with EC50 of 11.4, 20.3, 34.4 and 23.7 nM, respectively. Oral treatment with Y180 displayed a remarkable antiviral potency and substantially ameliorated the virus-induced tissue damage in both nasal turbinate and lung of B.1.1.7-infected K18-human ACE2 (K18-hACE2) transgenic mice. Therapeutic treatment with Y180 improved the survival of mice from 0 to 44.4% (P = 0.0086) upon B.1.617.1 infection in the lethal infection model. Importantly, Y180 was also highly effective against the B.1.1.529 (Omicron) variant both in vitro and in vivo. Overall, our study provides a promising lead compound for oral drug development against SARS-CoV-2.
Collapse
|
12
|
Metz-Zumaran C, Kee C, Doldan P, Guo C, Stanifer ML, Boulant S. Increased Sensitivity of SARS-CoV-2 to Type III Interferon in Human Intestinal Epithelial Cells. J Virol 2022; 96:e0170521. [PMID: 35262371 PMCID: PMC9006957 DOI: 10.1128/jvi.01705-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus SARS-CoV-2 caused the COVID-19 global pandemic leading to 5.3 million deaths worldwide as of December 2021. The human intestine was found to be a major viral target which could have a strong impact on virus spread and pathogenesis since it is one of the largest organs. While type I interferons (IFNs) are key cytokines acting against systemic virus spread, in the human intestine type III IFNs play a major role by restricting virus infection and dissemination without disturbing homeostasis. Recent studies showed that both type I and III IFNs can inhibit SARS-CoV-2 infection, but it is not clear whether one IFN controls SARS-CoV-2 infection of the human intestine better or with a faster kinetics. In this study, we could show that type I and III IFNs both possess antiviral activity against SARS-CoV-2 in human intestinal epithelial cells (hIECs); however, type III IFN is more potent. Shorter type III IFN pretreatment times and lower concentrations were required to efficiently reduce virus load compared to type I IFNs. Moreover, type III IFNs significantly inhibited SARS-CoV-2 even 4 h postinfection and induced a long-lasting antiviral effect in hIECs. Importantly, the sensitivity of SARS-CoV-2 to type III IFNs was virus specific since type III IFN did not control VSV infection as efficiently. Together, these results suggest that type III IFNs have a higher potential for IFN-based treatment of SARS-CoV-2 intestinal infection compared to type I IFNs. IMPORTANCE SARS-CoV-2 infection is not restricted to the respiratory tract and a large number of COVID-19 patients experience gastrointestinal distress. Interferons are key molecules produced by the cell to combat virus infection. Here, we evaluated how two types of interferons (type I and III) can combat SARS-CoV-2 infection of human gut cells. We found that type III interferons were crucial to control SARS-CoV-2 infection when added both before and after infection. Importantly, type III interferons were also able to produce a long-lasting effect, as cells were protected from SARS-CoV-2 infection up to 72 h posttreatment. This study suggested an alternative treatment possibility for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Camila Metz-Zumaran
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Carmon Kee
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Group “Cellular Polarity and Viral Infection,” German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricio Doldan
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Group “Cellular Polarity and Viral Infection,” German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Group “Cellular Polarity and Viral Infection,” German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
In Vitro SARS-CoV-2 Infection of Microvascular Endothelial Cells: Effect on Pro-Inflammatory Cytokine and Chemokine Release. Int J Mol Sci 2022; 23:ijms23074063. [PMID: 35409421 PMCID: PMC8999888 DOI: 10.3390/ijms23074063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
In the novel pandemic of Coronavirus Disease 2019, high levels of pro-inflammatory cytokines lead to endothelial activation and dysfunction, promoting a pro-coagulative state, thrombotic events, and microvasculature injuries. The aim of the present work was to investigate the effect of SARS-CoV-2 on pro-inflammatory cytokines, tissue factor, and chemokine release, with Human Microvascular Endothelial Cells (HMEC-1). ACE2 receptor expression was evaluated by western blot analysis. SARS-CoV-2 infection was assessed by one-step RT-PCR until 7 days post-infection (p.i.), and by Transmission Electron Microscopy (TEM). IL-6, TNF-α, IL-8, IFN-α, and hTF mRNA expression levels were detected by RT-PCR, while cytokine release was evaluated by ELISA. HMEC-1 expressed ACE2 receptor and SARS-CoV-2 infection showed a constant viral load. TEM analysis showed virions localized in the cytoplasm. Expression of IL-6 at 24 h and IFN-α mRNA at 24 h and 48 h p.i. was higher in infected than uninfected HMEC-1 (p < 0.05). IL-6 levels were significantly higher in supernatants from infected HMEC-1 (p < 0.001) at 24 h, 48 h, and 72 h p.i., while IL-8 levels were significantly lower at 24 h p.i. (p < 0.001). These data indicate that in vitro microvascular endothelial cells are susceptible to SARS-CoV-2 infection but slightly contribute to viral amplification. However, SARS-CoV-2 infection might trigger the increase of pro-inflammatory mediators.
Collapse
|
14
|
Effect of Short Time of SARS-CoV-2 Infection in Caco-2 Cells. Viruses 2022; 14:v14040704. [PMID: 35458434 PMCID: PMC9031642 DOI: 10.3390/v14040704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease 19 (COVID-19) clinical manifestations include the involvement of the gastrointestinal tract, affecting around 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected children. In the present work, the consequence of a short time of viral absorption (5, 15, 30 and 60 min) was tested on the Caco-2 intestinal epithelial cell line. Our findings show that Caco-2 cells are highly permissive to SARS-CoV-2 infection, even after 5 min of viral inoculation at a multiplicity of infection of 0.1. No cytopathic effect was evident during the subsequent 7 days of monitoring; nevertheless, the immunofluorescence staining for the viral nucleocapsid confirmed the presence of intracellular SARS-CoV-2. Our findings highlight the very short time during which SARS-CoV-2 is able to infect these cells in vitro.
Collapse
|
15
|
Tay DJW, Lew ZZR, Chu JJH, Tan KS. Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us? Front Microbiol 2022; 13:844447. [PMID: 35401477 PMCID: PMC8984613 DOI: 10.3389/fmicb.2022.844447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic has tested the capabilities of public health and scientific community. Since the dawn of the twenty-first century, viruses have caused several outbreaks, with coronaviruses being responsible for 2: SARS-CoV in 2007 and MERS-CoV in 2013. As the border between wildlife and the urban population continue to shrink, it is highly likely that zoonotic viruses may emerge more frequently. Furthermore, it has been shown repeatedly that these viruses are able to efficiently evade the innate immune system through various strategies. The strong and abundant antiviral innate immunity evasion strategies shown by SARS-CoV-2 has laid out shortcomings in our approach to quickly identify and modulate these mechanisms. It is thus imperative that there be a systematic framework for the study of the immune evasion strategies of these viruses, to guide development of therapeutics and curtail transmission. In this review, we first provide a brief overview of general viral evasion strategies against the innate immune system. Then, we utilize SARS-CoV-2 as a case study to highlight the methods used to identify the mechanisms of innate immune evasion, and pinpoint the shortcomings in the current paradigm with its focus on overexpression and protein-protein interactions. Finally, we provide a recommendation for future work to unravel viral innate immune evasion strategies and suitable methods to aid in the study of virus-host interactions. The insights provided from this review may then be applied to other viruses with outbreak potential to remain ahead in the arms race against viral diseases.
Collapse
Affiliation(s)
- Douglas Jie Wen Tay
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhe Zhang Ryan Lew
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kai Sen Tan
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Kai Sen Tan,
| |
Collapse
|
16
|
Al-Hajeri H, Baroun F, Abutiban F, Al-Mutairi M, Ali Y, Alawadhi A, Albasri A, Aldei A, AlEnizi A, Alhadhood N, Al-Herz A, Alkadi A, Alkanderi W, Almathkoori A, Almutairi N, Alsayegh S, Alturki A, Bahbahani H, Dehrab A, Ghanem A, Haji Hasan E, Hayat S, Saleh K, Tarakmeh H. Therapeutic role of immunomodulators during the COVID-19 pandemic- a narrative review. Postgrad Med 2022; 134:160-179. [PMID: 35086413 PMCID: PMC8862162 DOI: 10.1080/00325481.2022.2033563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The emergency state caused by COVID-19 saw the use of immunomodulators despite the absence of robust research. To date, the results of relatively few randomized controlled trials have been published, and methodological approaches are riddled with bias and heterogeneity. Anti-SARS-CoV-2 antibodies, convalescent plasma and the JAK inhibitor baricitinib have gained Emergency Use Authorizations and tentative recommendations for their use in clinical practice alone or in combination with other therapies. Anti-SARS-CoV-2 antibodies are predominating the management of non-hospitalized patients, while the inpatient setting is seeing the use of convalescent plasma, baricitinib, tofacitinib, tocilizumab, sarilumab, and corticosteroids, as applicable. Available clinical data also suggest the potential clinical benefit of the early administration of blood-derived products (e.g. convalescent plasma, non-SARS-CoV-2-specific immunoglobins) and the blockade of factors implicated in the hyperinflammatory state of severe COVID-19 (Interleukin 1 and 6; Janus Kinase). Immune therapies seem to have a protective effect and using immunomodulators alone or in combination with viral replication inhibitors and other treatment modalities might prevent progression into severe COVID-19 disease, cytokine storm and death. Future trials should address existing gaps and reshape the landscape of COVID-19 management.
Collapse
Affiliation(s)
- Hebah Al-Hajeri
- Department of Rheumatology and Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Fatemah Baroun
- Department of Rheumatology and Internal Medicine, AlJahra Hospital, Al-Jahra, Kuwait
| | - Fatemah Abutiban
- Department of Rheumatology and Internal Medicine, Jaber Al-Ahmad Hospital, South Surra, Kuwait
| | | | - Yasser Ali
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Adel Alawadhi
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Anwar Albasri
- Rheumatology Unit, Department of Internal Medicine, Jaber Al-Ahmad Hospital, South Surra, Kuwait
| | - Ali Aldei
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Ahmad AlEnizi
- Rheumatology Unit, Department of Internal Medicine, AlJahra Hospital, AlJahra, Kuwait
| | - Naser Alhadhood
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Adeeba Al-Herz
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Amjad Alkadi
- Rheumatology Unit, Department of Internal Medicine, Al-Sabah Hospital, Alsabah, Kuwait
| | - Waleed Alkanderi
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Ammar Almathkoori
- Rheumatology Unit, Department of Internal Medicine, Al-Adan Hospital, Hadiya, Kuwait
| | - Nora Almutairi
- Rheumatology Unit, Department of Internal Medicine, Al-Sabah Hospital, Alsabah, Kuwait
| | - Saud Alsayegh
- Rheumatology Unit, Department of Internal Medicine, Jaber Al-Ahmad Armed Forces, Kuwait City, Kuwait
| | - Ali Alturki
- Rheumatology Unit, Department of Internal Medicine, Al-Adan Hospital, Hadiya, Kuwait
| | - Husain Bahbahani
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Ahmad Dehrab
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Aqeel Ghanem
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Eman Haji Hasan
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Sawsan Hayat
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Khuloud Saleh
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Hoda Tarakmeh
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
17
|
Grossegesse M, Bourquain D, Neumann M, Schaade L, Schulze J, Mache C, Wolff T, Nitsche A, Doellinger J. Deep Time Course Proteomics of SARS-CoV- and SARS-CoV-2-Infected Human Lung Epithelial Cells (Calu-3) Reveals Strong Induction of Interferon-Stimulated Gene Expression by SARS-CoV-2 in Contrast to SARS-CoV. J Proteome Res 2022; 21:459-469. [PMID: 34982558 PMCID: PMC8751642 DOI: 10.1021/acs.jproteome.1c00783] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 01/07/2023]
Abstract
Severe acute respiratory syndrome (SARS)-CoV and SARS-CoV-2 infections are characterized by remarkable differences, including infectivity and case fatality rate. The underlying mechanisms are not well understood, illustrating major knowledge gaps of coronavirus biology. In this study, protein expression of the SARS-CoV- and SARS-CoV-2-infected human lung epithelial cell line Calu-3 was analyzed using data-independent acquisition-mass spectrometry. This resulted in a comprehensive map of infection-related proteome-wide expression changes in human cells covering the quantification of 7478 proteins across four time points. Most notably, the activation of interferon type-I response was observed, which is surprisingly absent in several proteome studies. The data reveal that SARS-CoV-2 triggers interferon-stimulated gene expression much stronger than SARS-CoV, which reflects the already described differences in interferon sensitivity. Potentially, this may be caused by the enhanced abundance of the viral M protein of SARS-CoV in comparison to SARS-CoV-2, which is a known inhibitor of type I interferon expression. This study expands the knowledge on the host response to SARS-CoV-2 infections on a global scale using an infection model, which seems to be well suited to analyze the innate immunity.
Collapse
Affiliation(s)
- Marica Grossegesse
- Centre for Biological Threats and Special Pathogens:
Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute,
13353Berlin, Germany
| | - Daniel Bourquain
- Centre for Biological Threats and Special Pathogens,
Robert Koch Institute, 13353Berlin,
Germany
| | - Markus Neumann
- Centre for Biological Threats and Special Pathogens:
Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute,
13353Berlin, Germany
| | - Lars Schaade
- Centre for Biological Threats and Special Pathogens,
Robert Koch Institute, 13353Berlin,
Germany
| | - Jessica Schulze
- Influenza and Other Respiratory Viruses,
Robert Koch Institute, Unit 17, 13353Berlin,
Germany
| | - Christin Mache
- Influenza and Other Respiratory Viruses,
Robert Koch Institute, Unit 17, 13353Berlin,
Germany
| | - Thorsten Wolff
- Influenza and Other Respiratory Viruses,
Robert Koch Institute, Unit 17, 13353Berlin,
Germany
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens:
Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute,
13353Berlin, Germany
| | - Joerg Doellinger
- Centre for Biological Threats and Special Pathogens:
Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute,
13353Berlin, Germany
- Centre for Biological Threats and Special Pathogens:
Proteomics and Spectroscopy (ZBS 6), Robert Koch Institute,
13353Berlin, Germany
| |
Collapse
|
18
|
Paparo L, Maglio MA, Cortese M, Bruno C, Capasso M, Punzo E, Ferrucci V, Lasorsa VA, Viscardi M, Fusco G, Cerino P, Romano A, Troncone R, Zollo M. A New Butyrate Releaser Exerts a Protective Action against SARS-CoV-2 Infection in Human Intestine. Molecules 2022; 27:862. [PMID: 35164139 PMCID: PMC8838168 DOI: 10.3390/molecules27030862] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Butyrate is a major gut microbiome metabolite that regulates several defense mechanisms against infectious diseases. Alterations in the gut microbiome, leading to reduced butyrate production, have been reported in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A new butyrate releaser, useful for all the known applications of butyrate, presenting physiochemical characteristics suitable for easy oral administration, (N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA), has been recently developed. We investigated the protective action of FBA against SARS-CoV-2 infection in the human small intestine and enterocytes. Relevant aspects of SARS-CoV-2 infection were assessed: infectivity, host functional receptor angiotensin-converting enzyme-2 (ACE2), transmembrane protease serine 2 (TMPRSS2), neuropilin-1 (NRP1), pro-inflammatory cytokines expression, genes involved in the antiviral response and the activation of Nf-kB nuclear factor (erythroid-derived 2-like) 2 (Nfr2) pathways. We found that FBA positively modulates the crucial aspects of the infection in small intestinal biopsies and human enterocytes, reducing the expression of ACE2, TMPRSS2 and NRP1, pro-inflammatory cytokines interleukin (IL)-15, monocyte chemoattractant protein-1 (MCP-1) and TNF-α, and regulating several genes involved in antiviral pathways. FBA was also able to reduce the number of SARS-CoV-2-infected cells, and ACE2, TMPRSS2 and NRP1 expression. Lastly, through the inhibition of Nf-kB and the up-regulation of Nfr2, it was also able to reduce the expression of pro-inflammatory cytokines IL-15, MCP-1 and TNF-α in human enterocytes. The new butyrate releaser, FBA, exerts a preventive action against SARS-CoV-2 infection. It could be considered as an innovative strategy to limit COVID-19.
Collapse
Affiliation(s)
- Lorella Paparo
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Maria Antonia Maglio
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
| | - Maddalena Cortese
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Cristina Bruno
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Mario Capasso
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Erika Punzo
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Veronica Ferrucci
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Vito Alessandro Lasorsa
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Maurizio Viscardi
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| | - Giovanna Fusco
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| | - Pellegrino Cerino
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| | - Alessia Romano
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
| | - Riccardo Troncone
- Dipartimento di Scienze Mediche Translazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.A.M.); (M.C.); (C.B.); (E.P.); (R.T.)
| | - Massimo Zollo
- CEINGE—Advanced Biotechnologies s.c.ar.l., Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.C.); (V.F.); (V.A.L.); (A.R.); (M.Z.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (M.V.); (G.F.); (P.C.)
| |
Collapse
|
19
|
Zhang X, Chu H, Chik KKH, Wen L, Shuai H, Yang D, Wang Y, Hou Y, Yuen TTT, Cai JP, Yuan S, Yin F, Yuen KY, Chan JFW. hnRNP C modulates MERS-CoV and SARS-CoV-2 replication by governing the expression of a subset of circRNAs and cognitive mRNAs. Emerg Microbes Infect 2022; 11:519-531. [PMID: 35060842 PMCID: PMC8843244 DOI: 10.1080/22221751.2022.2032372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
ABSTRACTHost circular RNAs (circRNAs) play critical roles in the pathogenesis of viral infections. However, how viruses modulate the biogenesis of host proviral circRNAs to facilitate their replication remains unclear. We have recently shown that Middle East respiratory syndrome coronavirus (MERS-CoV) infection increases co-expression of circRNAs and their cognate messenger RNAs (mRNAs), possibly by hijacking specific host RNA binding proteins (RBPs). In this study, we systemically analysed the interactions between the representative circRNA-mRNA pairs upregulated upon MERS-CoV infection and host RBPs. Our analysis identified heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a key host factor that governed the expression of numerous MERS-CoV-perturbed circRNAs, including hsa_circ_0002846, hsa_circ_0002061, and hsa_circ_0004445. RNA immunoprecipitation assay showed that hnRNP C could bind physically to these circRNAs. Specific knockdown of hnRNP C by small interfering RNA significantly (P < 0.05 to P < 0.0001) suppressed MERS-CoV replication in human lung adenocarcinoma (Calu-3) and human small airway epithelial (HSAEC) cells. Both MERS-CoV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection increased the total and phosphorylated forms of hnRNP C to activate the downstream CRK-mTOR pathway. Treatment of MERS-CoV- (IC50: 0.618 µM) or SARS-CoV-2-infected (IC50: 1.233 µM) Calu-3 cells with the mTOR inhibitor OSI-027 resulted in significantly reduced viral loads. Collectively, our study identified hnRNP C as a key regulator of MERS-CoV-perturbed circRNAs and their cognate mRNAs, and the potential of targeting hnRNP C-related signalling pathways as an anticoronaviral strategy.
Collapse
Affiliation(s)
- Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Lei Wen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Dong Yang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yixin Wang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Feifei Yin
- Key Laboratory of Translational Tropical Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People's Republic of China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People's Republic of China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People's Republic of China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
20
|
Masterson CH, Ceccato A, Artigas A, Dos Santos C, Rocco PR, Rolandsson Enes S, Weiss DJ, McAuley D, Matthay MA, English K, Curley GF, Laffey JG. Mesenchymal stem/stromal cell-based therapies for severe viral pneumonia: therapeutic potential and challenges. Intensive Care Med Exp 2021; 9:61. [PMID: 34970706 PMCID: PMC8718182 DOI: 10.1186/s40635-021-00424-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/21/2021] [Indexed: 12/15/2022] Open
Abstract
Severe viral pneumonia is a significant cause of morbidity and mortality globally, whether due to outbreaks of endemic viruses, periodic viral epidemics, or the rarer but devastating global viral pandemics. While limited anti-viral therapies exist, there is a paucity of direct therapies to directly attenuate viral pneumonia-induced lung injury, and management therefore remains largely supportive. Mesenchymal stromal/stem cells (MSCs) are receiving considerable attention as a cytotherapeutic for viral pneumonia. Several properties of MSCs position them as a promising therapeutic strategy for viral pneumonia-induced lung injury as demonstrated in pre-clinical studies in relevant models. More recently, early phase clinical studies have demonstrated a reassuring safety profile of these cells. These investigations have taken on an added importance and urgency during the COVID-19 pandemic, with multiple trials in progress across the globe. In parallel with clinical translation, strategies are being investigated to enhance the therapeutic potential of these cells in vivo, with different MSC tissue sources, specific cellular products including cell-free options, and strategies to ‘licence’ or ‘pre-activate’ these cells, all being explored. This review will assess the therapeutic potential of MSC-based therapies for severe viral pneumonia. It will describe the aetiology and epidemiology of severe viral pneumonia, describe current therapeutic approaches, and examine the data suggesting therapeutic potential of MSCs for severe viral pneumonia in pre-clinical and clinical studies. The challenges and opportunities for MSC-based therapies will then be considered.
Collapse
Affiliation(s)
- C H Masterson
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland.,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - A Ceccato
- Intensive Care Unit, Hospital Universitari Sagrat Cor, Barcelona, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Sabbadell, Spain
| | - A Artigas
- CIBER de Enfermedades Respiratorias (CIBERES), Sabbadell, Spain.,Critical Center, Corporacion Sanitaria Universitaria Parc Tauli, Autonomous University of Barcelona, Sabadell, Spain
| | - C Dos Santos
- Keenan Center for Biomedical Research, St. Michael's Hospital, Bond St, Toronto, Canada.,Interdepartmental Division of Critical Care Medicine and Institutes of Medical Sciences, University of Toronto, Toronto, Canada
| | - P R Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - S Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - D J Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - D McAuley
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - M A Matthay
- Department of Medicine and Anesthesia, University of California, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - K English
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - G F Curley
- Anaesthesia, School of Medicine, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - J G Laffey
- Anaesthesia, School of Medicine, National University of Ireland, Galway, Ireland. .,Regenerative Medicine Institute, National University of Ireland, Galway, Ireland. .,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospital Group, Galway, Ireland.
| |
Collapse
|
21
|
Negi N, Maurya SP, Singh R, Das BK. An update on host immunity correlates and prospects of re-infection in COVID-19. Int Rev Immunol 2021; 41:367-392. [PMID: 34961403 PMCID: PMC8787841 DOI: 10.1080/08830185.2021.2019727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023]
Abstract
Reinfection with SARS-CoV-2 is not frequent yet the incidence rate of it is increasing globally owing to the slow emergence of drift variants that pose a perpetual threat to vaccination strategies and have a greater propensity for disease reoccurrence. Long-term protection against SARS-CoV-2 reinfection relies on the induction of the innate as well as the adaptive immune response endowed with immune memory. However, a multitude of factors including the selection pressure, the waning immunity against SARS-CoV-2 over the first year after infection possibly favors evolution of more infectious immune escape variants, amplifying the risk of reinfection. Additionally, the correlates of immune protection, the novel SARS-CoV-2 variants of concern (VOC), the durability of the adaptive and mucosal immunity remain major challenges for the development of therapeutic and prophylactic interventions. Interestingly, a recent body of evidence indicated that the gastrointestinal (GI) tract is another important target organ for SARS-CoV-2 besides the respiratory system, potentially increasing the likelihood of reinfection by impacting the microbiome and the immune response via the gut-lung axis. In this review, we summarized the latest development in SARS-CoV-2 reinfection, and explored the untapped potential of trained immunity. We also highlighted the immune memory kinetics of the humoral and cell-mediated immune response, genetic drift of the emerging viral variants, and discussed the current challenges in vaccine development. Understanding the dynamics and the quality of immune response by unlocking the power of the innate, humoral and cell-mediated immunity during SARS-CoV-2 reinfection would open newer avenues for drug discovery and vaccine designs.
Collapse
Affiliation(s)
- Neema Negi
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick,Limerick, Ireland
| | - Shesh Prakash Maurya
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
To KKW, Sridhar S, Chiu KHY, Hung DLL, Li X, Hung IFN, Tam AR, Chung TWH, Chan JFW, Zhang AJX, Cheng VCC, Yuen KY. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerg Microbes Infect 2021; 10:507-535. [PMID: 33666147 PMCID: PMC8006950 DOI: 10.1080/22221751.2021.1898291] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Without modern medical management and vaccines, the severity of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) might approach the magnitude of 1894-plague (12 million deaths) and 1918-A(H1N1) influenza (50 million deaths) pandemics. The COVID-19 pandemic was heralded by the 2003 SARS epidemic which led to the discovery of human and civet SARS-CoV-1, bat SARS-related-CoVs, Middle East respiratory syndrome (MERS)-related bat CoV HKU4 and HKU5, and other novel animal coronaviruses. The suspected animal-to-human jumping of 4 betacoronaviruses including the human coronaviruses OC43(1890), SARS-CoV-1(2003), MERS-CoV(2012), and SARS-CoV-2(2019) indicates their significant pandemic potential. The presence of a large reservoir of coronaviruses in bats and other wild mammals, culture of mixing and selling them in urban markets with suboptimal hygiene, habit of eating exotic mammals in highly populated areas, and the rapid and frequent air travels from these areas are perfect ingredients for brewing rapidly exploding epidemics. The possibility of emergence of a hypothetical SARS-CoV-3 or other novel viruses from animals or laboratories, and therefore needs for global preparedness should not be ignored. We reviewed representative publications on the epidemiology, virology, clinical manifestations, pathology, laboratory diagnostics, treatment, vaccination, and infection control of COVID-19 as of 20 January 2021, which is 1 year after person-to-person transmission of SARS-CoV-2 was announced. The difficulties of mass testing, labour-intensive contact tracing, importance of compliance to universal masking, low efficacy of antiviral treatment for severe disease, possibilities of vaccine or antiviral-resistant virus variants and SARS-CoV-2 becoming another common cold coronavirus are discussed.
Collapse
Affiliation(s)
- Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kelvin Hei-Yeung Chiu
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Derek Ling-Lung Hung
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xin Li
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Anthony Raymond Tam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Tom Wai-Hin Chung
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Anna Jian-Xia Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Vincent Chi-Chung Cheng
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
23
|
Shuai H, Chan JFW, Yuen TTT, Yoon C, Hu JC, Wen L, Hu B, Yang D, Wang Y, Hou Y, Huang X, Chai Y, Chan CCS, Poon VKM, Lu L, Zhang RQ, Chan WM, Ip JD, Chu AWH, Hu YF, Cai JP, Chan KH, Zhou J, Sridhar S, Zhang BZ, Yuan S, Zhang AJ, Huang JD, To KKW, Yuen KY, Chu H. Emerging SARS-CoV-2 variants expand species tropism to murines. EBioMedicine 2021; 73:103643. [PMID: 34689086 PMCID: PMC8530107 DOI: 10.1016/j.ebiom.2021.103643] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Wildtype mice are not susceptible to SARS-CoV-2 infection. Emerging SARS-CoV-2 variants, including B.1.1.7, B.1.351, P.1, and P.3, contain mutations in spike that has been suggested to associate with an increased recognition of mouse ACE2, raising the postulation that these SARS-CoV-2 variants may have evolved to expand species tropism to wildtype mouse and potentially other murines. Our study evaluated this possibility with substantial public health importance. METHODS We investigated the capacity of wildtype (WT) SARS-CoV-2 and SARS-CoV-2 variants in infecting mice (Mus musculus) and rats (Rattus norvegicus) under in vitro and in vivo settings. Susceptibility to infection was evaluated with RT-qPCR, plaque assays, immunohistological stainings, and neutralization assays. FINDINGS Our results reveal that B.1.1.7 and other N501Y-carrying variants but not WT SARS-CoV-2 can infect wildtype mice. High viral genome copies and high infectious virus particle titres are recovered from the nasal turbinate and lung of B.1.1.7-inocluated mice for 4-to-7 days post infection. In agreement with these observations, robust expression of viral nucleocapsid protein and histopathological changes are detected from the nasal turbinate and lung of B.1.1.7-inocluated mice but not that of the WT SARS-CoV-2-inoculated mice. Similarly, B.1.1.7 readily infects wildtype rats with production of infectious virus particles. INTERPRETATION Our study provides direct evidence that the SARS-CoV-2 variant, B.1.1.7, as well as other N501Y-carrying variants including B.1.351 and P.3, has gained the capability to expand species tropism to murines and public health measures including stringent murine control should be implemented to facilitate the control of the ongoing pandemic. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Academician workstation of Hainan Province, Hainan Medical University, and Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Terrence Tsz-Tai Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chaemin Yoon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jing-Chu Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bingjie Hu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuxin Hou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yue Chai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chris Chung-Sing Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lu Lu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Rui-Qi Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wan-Mui Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jonathan Daniel Ip
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Allen Wing-Ho Chu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ye-Fan Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jian-Dong Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China; Academician workstation of Hainan Province, Hainan Medical University, and Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
24
|
Paparo L, Bruno C, Ferrucci V, Punto E, Viscardi M, Fusco G, Cerino P, Romano A, Zollo M, Berni Canani R. Protective effects elicited by cow milk fermented with L. Paracasei CBAL74 against SARS-CoV-2 infection in human enterocytes. J Funct Foods 2021; 87:104787. [PMID: 34630633 PMCID: PMC8491972 DOI: 10.1016/j.jff.2021.104787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/06/2023] Open
Abstract
Fermented foods have been proposed in limiting SARS-CoV-2 infection. Emerging evidence suggest the efficacy of cow's milk fermented with the probiotic L. paracasei CBAL74 (FM-CBAL74) in preventing infectious diseases. We evaluated the protective action of FM-CBAL74 against SARS-CoV-2 infection in human enterocytes. Relevant aspects of SARS-CoV-2 infection were assessed: infectivity, host functional receptor angiotensin-converting enzyme-2 (ACE2), transmembrane protease serine 2 (TMPRSS2), and pro-inflammatory cytokines expression (IL-6, IL-15, IL-1β, VEGFβ, TNF-α, MCP-1, CXCL1). Pre-incubation with FM-CBA L74 reduced the number of infected cells. The expression of ACE2 and the pro-inflammatory cytokines IL-6, VEGFβ, IL-15, IL-1β was downregulated by the pre-treatment with this fermented food. No effect on TMPRSS2, MCP-1, TNF-α and CXCL1 expression was observed. Modulating the crucial aspects of the infection, the fermented food FM-CBAL74 exerts a preventive action against SARS-CoV-2. These evidence could pave the way to innovative nutritional strategy to mitigate the COVID-19.
Collapse
Affiliation(s)
- Lorella Paparo
- Department of Translational Medical Science, University of Naples, "Federico II", Naples, Italy
- CEINGE - Advanced Biotechnologies Research Center s.c.ar.l., University of Naples "Federico II", Naples, Italy
| | - Cristina Bruno
- Department of Translational Medical Science, University of Naples, "Federico II", Naples, Italy
- CEINGE - Advanced Biotechnologies Research Center s.c.ar.l., University of Naples "Federico II", Naples, Italy
| | - Veronica Ferrucci
- CEINGE - Advanced Biotechnologies Research Center s.c.ar.l., University of Naples "Federico II", Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples "Federico II", Naples, Italy
| | - Erika Punto
- Department of Translational Medical Science, University of Naples, "Federico II", Naples, Italy
- CEINGE - Advanced Biotechnologies Research Center s.c.ar.l., University of Naples "Federico II", Naples, Italy
| | - Maurizio Viscardi
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, University of Naples "Federico II", Naples, Italy
| | - Giovanna Fusco
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, University of Naples "Federico II", Naples, Italy
| | - Pellegrino Cerino
- DAI Medicina di Laboratorio e Trasfusionale, AOU Azienda Ospedaliera, University of Naples "Federico II", Naples, Italy
| | - Alessia Romano
- CEINGE - Advanced Biotechnologies Research Center s.c.ar.l., University of Naples "Federico II", Naples, Italy
| | - Massimo Zollo
- CEINGE - Advanced Biotechnologies Research Center s.c.ar.l., University of Naples "Federico II", Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), University of Naples "Federico II", Naples, Italy
| | - Roberto Berni Canani
- Department of Translational Medical Science, University of Naples, "Federico II", Naples, Italy
- CEINGE - Advanced Biotechnologies Research Center s.c.ar.l., University of Naples "Federico II", Naples, Italy
- European Laboratory for the Investigation of Food-Induced Diseases, University of Naples "Federico II", Naples, Italy
- Task Force for Microbiome Studies, University of Naples "Federico II", Naples, Italy
- Task Force for Nutraceuticals and Functional Foods, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
25
|
Aguida B, Pooam M, Ahmad M, Jourdan N. Infrared light therapy relieves TLR-4 dependent hyper-inflammation of the type induced by COVID-19. Commun Integr Biol 2021; 14:200-211. [PMID: 34552685 PMCID: PMC8451450 DOI: 10.1080/19420889.2021.1965718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The leading cause of mortality from COVID-19 infection is respiratory distress due to an exaggerated host immune response, resulting in hyper-inflammation and ensuing cytokine storms in the lungs. Current drug-based therapies are of limited efficacy, costly, and have potential negative side effects. By contrast, photobiomodulation therapy, which involves periodic brief exposure to red or infrared light, is a noninvasive, safe, and affordable method that is currently being used to treat a wide range of diseases with underlying inflammatory conditions. Here, we show that exposure to two 10-min, high-intensity periods per day of infrared light causes a marked reduction in the TLR-4 dependent inflammatory response pathway, which has been implicated in the onset of cytokine storms in COVID-19 patients. Infrared light exposure resulted in a significant decline in NFkB and AP1 activity as measured by the reporter gene assay; decreased expression of inflammatory marker genes IL-6, IL-8, TNF-alpha, INF-alpha, and INF-beta as determined by qPCR gene expression assay; and an 80% decline in secreted cytokine IL6 as measured by ELISA assay in cultured human cells. All of these changes occurred after only 48 hours of treatment. We suggest that an underlying cellular mechanism involving modulation of ROS may downregulate the host immune response after Infrared Light exposure, leading to decrease in inflammation. We further discuss technical considerations involving light sources and exposure conditions to put these observations into potential clinical use to treat COVID-19 induced mortality.
Collapse
Affiliation(s)
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Margaret Ahmad
- Cnrs, Ibps, Sorbonne Université, Paris, France.,Department of Biology, Xavier University, Cincinnati, Ohio, USA
| | | |
Collapse
|
26
|
Immunobiotic Lactobacilli Improve Resistance of Respiratory Epithelial Cells to SARS-CoV-2 Infection. Pathogens 2021; 10:pathogens10091197. [PMID: 34578229 PMCID: PMC8472143 DOI: 10.3390/pathogens10091197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
Previously, we reported that immunomodulatory lactobacilli, nasally administered, beneficially regulated the lung antiviral innate immune response induced by Toll-like receptor 3 (TLR3) activation and improved protection against the respiratory pathogens, influenza virus and respiratory syncytial virus in mice. Here, we assessed the immunomodulatory effects of viable and non-viable Lactiplantibacillus plantarum strains in human respiratory epithelial cells (Calu-3 cells) and the capacity of these immunobiotic lactobacilli to reduce their susceptibility to the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Immunobiotic L. plantarum MPL16 and CRL1506 differentially modulated IFN-β, IL-6, CXCL8, CCL5 and CXCL10 production and IFNAR2, DDX58, Mx1 and OAS1 expression in Calu-3 cells stimulated with the TLR3 agonist poly(I:C). Furthermore, the MPL16 and CRL1506 strains increased the resistance of Calu-3 cells to the challenge with SARS-CoV-2. L. plantarum MPL16 induced these beneficial effects more efficiently than the CRL1506 strain. Of note, neither non-viable MPL16 and CRL1506 strains nor the non-immunomodulatory strains L. plantarum CRL1905 and MPL18 could modify the resistance of Calu-3 cells to SARS-CoV-2 infection or the immune response to poly(I:C) challenge. To date, the potential beneficial effects of immunomodulatory probiotics on SARS-CoV-2 infection and COVID-19 outcome have been extrapolated from studies carried out in the context of other viral pathogens. To the best of our knowledge, this is the first demonstration of the ability of immunomodulatory lactobacilli to positively influence the replication of the new coronavirus. Further mechanistic studies and in vivo experiments in animal models of SARS-CoV-2 infection are necessary to identify specific strains of beneficial immunobiotic lactobacilli like L. plantarum MPL16 or CRL1506 for the prevention or treatment of the COVID-19.
Collapse
|
27
|
Mslati H, Gentile F, Perez C, Cherkasov A. Comprehensive Consensus Analysis of SARS-CoV-2 Drug Repurposing Campaigns. J Chem Inf Model 2021; 61:3771-3788. [PMID: 34313439 PMCID: PMC8340583 DOI: 10.1021/acs.jcim.1c00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 01/18/2023]
Abstract
The current COVID-19 pandemic has elicited extensive repurposing efforts (both small and large scale) to rapidly identify COVID-19 treatments among approved drugs. Herein, we provide a literature review of large-scale SARS-CoV-2 antiviral drug repurposing efforts and highlight a marked lack of consistent potency reporting. This variability indicates the importance of standardizing best practices-including the use of relevant cell lines, viral isolates, and validated screening protocols. We further surveyed available biochemical and virtual screening studies against SARS-CoV-2 targets (Spike, ACE2, RdRp, PLpro, and Mpro) and discuss repurposing candidates exhibiting consistent activity across diverse, triaging assays and predictive models. Moreover, we examine repurposed drugs and their efficacy against COVID-19 and the outcomes of representative repurposed drugs in clinical trials. Finally, we propose a drug repurposing pipeline to encourage the implementation of standard methods to fast-track the discovery of candidates and to ensure reproducible results.
Collapse
Affiliation(s)
- Hazem Mslati
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Francesco Gentile
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Carl Perez
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of
British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6,
Canada
| |
Collapse
|
28
|
Zhang F, Li W, Feng J, Ramos da Silva S, Ju E, Zhang H, Chang Y, Moore PS, Guo H, Gao SJ. SARS-CoV-2 pseudovirus infectivity and expression of viral entry-related factors ACE2, TMPRSS2, Kim-1, and NRP-1 in human cells from the respiratory, urinary, digestive, reproductive, and immune systems. J Med Virol 2021; 93:6671-6685. [PMID: 34324210 PMCID: PMC8426707 DOI: 10.1002/jmv.27244] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023]
Abstract
Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a wide spectrum of syndromes involving multiple organ systems and is primarily mediated by viral spike (S) glycoprotein through the receptor-binding domain (RBD) and numerous cellular proteins including ACE2, transmembrane serine protease 2 (TMPRSS2), kidney injury molecule-1 (Kim-1), and neuropilin-1 (NRP-1). In this study, we examined the entry tropism of SARS-CoV-2 and SARS-CoV using S protein-based pseudoviruses to infect 22 cell lines and 3 types of primary cells isolated from respiratory, urinary, digestive, reproductive, and immune systems. At least one cell line or type of primary cell from each organ system was infected by both pseudoviruses. Infection by pseudoviruses is effectively blocked by S1, RBD, and ACE2 recombinant proteins, and more weakly by Kim-1 and NRP-1 recombinant proteins. Furthermore, cells with robust SARS-CoV-2 pseudovirus infection had strong expression of either ACE2 or Kim-1 and NRP-1 proteins. ACE2 glycosylation appeared to be critical for the infections of both viruses as there was a positive correlation between infectivity of either SARS-CoV-2 or SARS-CoV pseudovirus with the level of glycosylated ACE2 (gly-ACE2). These results reveal that SARS-CoV-2 cell entry could be mediated by either an ACE2-dependent or -independent mechanism, thus providing a likely molecular basis for its broad tropism for a wide variety of cell types.
Collapse
Affiliation(s)
- Fei Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wan Li
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jian Feng
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Suzane Ramos da Silva
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Enguo Ju
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hu Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yuan Chang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick S Moore
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haitao Guo
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Park A, Harris LK. Gene Expression Meta-Analysis Reveals Interferon-Induced Genes Associated With SARS Infection in Lungs. Front Immunol 2021; 12:694355. [PMID: 34367154 PMCID: PMC8342995 DOI: 10.3389/fimmu.2021.694355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Background Severe Acute Respiratory Syndrome (SARS) corona virus (CoV) infections are a serious public health threat because of their pandemic-causing potential. This work is the first to analyze mRNA expression data from SARS infections through meta-analysis of gene signatures, possibly identifying therapeutic targets associated with major SARS infections. Methods This work defines 37 gene signatures representing SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV2 infections in human lung cultures and/or mouse lung cultures or samples and compares them through Gene Set Enrichment Analysis (GSEA). To do this, positive and negative infectious clone SARS (icSARS) gene panels are defined from GSEA-identified leading-edge genes between two icSARS-CoV derived signatures, both from human cultures. GSEA then is used to assess enrichment and identify leading-edge icSARS panel genes between icSARS gene panels and 27 other SARS-CoV gene signatures. The meta-analysis is expanded to include five MERS-CoV and three SARS-CoV2 gene signatures. Genes associated with SARS infection are predicted by examining the intersecting membership of GSEA-identified leading-edges across gene signatures. Results Significant enrichment (GSEA p<0.001) is observed between two icSARS-CoV derived signatures, and those leading-edge genes defined the positive (233 genes) and negative (114 genes) icSARS panels. Non-random significant enrichment (null distribution p<0.001) is observed between icSARS panels and all verification icSARSvsmock signatures derived from human cultures, from which 51 over- and 22 under-expressed genes are shared across leading-edges with 10 over-expressed genes already associated with icSARS infection. For the icSARSvsmock mouse signature, significant, non-random significant enrichment held for only the positive icSARS panel, from which nine genes are shared with icSARS infection in human cultures. Considering other SARS strains, significant, non-random enrichment (p<0.05) is observed across signatures derived from other SARS strains for the positive icSARS panel. Five positive icSARS panel genes, CXCL10, OAS3, OASL, IFIT3, and XAF1, are found across mice and human signatures regardless of SARS strains. Conclusion The GSEA-based meta-analysis approach used here identifies genes with and without reported associations with SARS-CoV infections, highlighting this approach’s predictability and usefulness in identifying genes that have potential as therapeutic targets to preclude or overcome SARS infections.
Collapse
Affiliation(s)
- Amber Park
- Harris Interdisciplinary Research, Davenport University, Grand Rapids, MI, United States
| | - Laura K Harris
- Harris Interdisciplinary Research, Davenport University, Grand Rapids, MI, United States.,Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
30
|
ILRUN Downregulates ACE2 Expression and Blocks Infection of Human Cells by SARS-CoV-2. J Virol 2021; 95:e0032721. [PMID: 33963054 DOI: 10.1128/jvi.00327-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human protein-coding gene ILRUN (inflammation and lipid regulator with UBA-like and NBR1-like domains; previously C6orf106) was identified as a proviral factor for Hendra virus infection and was recently characterized to function as an inhibitor of type I interferon expression. Here, we have utilized transcriptome sequencing (RNA-seq) to define cellular pathways regulated by ILRUN in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of Caco-2 cells. We find that inhibition of ILRUN expression by RNA interference alters transcription profiles of numerous cellular pathways, including upregulation of the SARS-CoV-2 entry receptor ACE2 and several other members of the renin-angiotensin aldosterone system. In addition, transcripts of the SARS-CoV-2 coreceptors TMPRSS2 and CTSL were also upregulated. Inhibition of ILRUN also resulted in increased SARS-CoV-2 replication, while overexpression of ILRUN had the opposite effect, identifying ILRUN as a novel antiviral factor for SARS-CoV-2 replication. This represents, to our knowledge, the first report of ILRUN as a regulator of the renin-angiotensin-aldosterone system (RAAS). IMPORTANCE There is no doubt that the current rapid global spread of COVID-19 has had significant and far-reaching impacts on our health and economy and will continue to do so. Research in emerging infectious diseases, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is growing rapidly, with new breakthroughs in the understanding of host-virus interactions to assist with the development of innovative and exciting therapeutic strategies. Here, we present the first evidence that modulation of the human protein-coding gene ILRUN functions as an antiviral factor for SARS-CoV-2 infection, likely through its newly identified role in regulating the expression of SARS-CoV-2 entry receptors ACE2, TMPRSS2, and CTSL. These data improve our understanding of biological pathways that regulate host factors critical to SARS-CoV-2 infection, contributing to the development of antiviral strategies to deal with the current SARS-CoV-2 pandemic.
Collapse
|
31
|
Vazquez C, Swanson SE, Negatu SG, Dittmar M, Miller J, Ramage HR, Cherry S, Jurado KA. SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms. PLoS One 2021; 16:e0253089. [PMID: 34166398 PMCID: PMC8224853 DOI: 10.1371/journal.pone.0253089] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, infecting over 43 million people and claiming over 1 million lives, with these numbers increasing daily. Therefore, there is urgent need to understand the molecular mechanisms governing SARS-CoV-2 pathogenesis, immune evasion, and disease progression. Here, we show that SARS-CoV-2 can block IRF3 and NF-κB activation early during virus infection. We also identify that the SARS-CoV-2 viral proteins NSP1 and NSP13 can block interferon activation via distinct mechanisms. NSP1 antagonizes interferon signaling by suppressing host mRNA translation, while NSP13 downregulates interferon and NF-κB promoter signaling by limiting TBK1 and IRF3 activation, as phospho-TBK1 and phospho-IRF3 protein levels are reduced with increasing levels of NSP13 protein expression. NSP13 can also reduce NF-κB activation by both limiting NF-κB phosphorylation and nuclear translocation. Last, we also show that NSP13 binds to TBK1 and downregulates IFIT1 protein expression. Collectively, these data illustrate that SARS-CoV-2 bypasses multiple innate immune activation pathways through distinct mechanisms.
Collapse
Affiliation(s)
- Christine Vazquez
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sydnie E. Swanson
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Seble G. Negatu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark Dittmar
- Department Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jesse Miller
- Department Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Holly R. Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University Sidney Kimmel Medical College, Philadelphia, Pennsylvania, United States of America
| | - Sara Cherry
- Department Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kellie A. Jurado
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
33
|
Chu H, Shuai H, Hou Y, Zhang X, Wen L, Huang X, Hu B, Yang D, Wang Y, Yoon C, Wong BHY, Li C, Zhao X, Poon VKM, Cai JP, Wong KKY, Yeung ML, Zhou J, Au-Yeung RKH, Yuan S, Jin DY, Kok KH, Perlman S, Chan JFW, Yuen KY. Targeting highly pathogenic coronavirus-induced apoptosis reduces viral pathogenesis and disease severity. SCIENCE ADVANCES 2021; 7:7/25/eabf8577. [PMID: 34134991 PMCID: PMC8208716 DOI: 10.1126/sciadv.abf8577] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 05/06/2023]
Abstract
Infection by highly pathogenic coronaviruses results in substantial apoptosis. However, the physiological relevance of apoptosis in the pathogenesis of coronavirus infections is unknown. Here, with a combination of in vitro, ex vivo, and in vivo models, we demonstrated that protein kinase R-like endoplasmic reticulum kinase (PERK) signaling mediated the proapoptotic signals in Middle East respiratory syndrome coronavirus (MERS-CoV) infection, which converged in the intrinsic apoptosis pathway. Inhibiting PERK signaling or intrinsic apoptosis both alleviated MERS pathogenesis in vivo. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV induced apoptosis through distinct mechanisms but inhibition of intrinsic apoptosis similarly limited SARS-CoV-2- and SARS-CoV-induced apoptosis in vitro and markedly ameliorated the lung damage of SARS-CoV-2-inoculated human angiotensin-converting enzyme 2 (hACE2) mice. Collectively, our study provides the first evidence that virus-induced apoptosis is an important disease determinant of highly pathogenic coronaviruses and demonstrates that this process can be targeted to attenuate disease severity.
Collapse
Affiliation(s)
- Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuxin Hou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xi Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bingjie Hu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chaemin Yoon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bosco Ho-Yin Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Cun Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaoyu Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kenneth Kak-Yuen Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Man-Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Rex Kwok-Him Au-Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kin-Hang Kok
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
34
|
Saccon E, Chen X, Mikaeloff F, Rodriguez JE, Szekely L, Vinhas BS, Krishnan S, Byrareddy SN, Frisan T, Végvári Á, Mirazimi A, Neogi U, Gupta S. Cell-type-resolved quantitative proteomics map of interferon response against SARS-CoV-2. iScience 2021; 24:102420. [PMID: 33898942 PMCID: PMC8056843 DOI: 10.1016/j.isci.2021.102420] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/07/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
The commonly used laboratory cell lines are the first line of experimental models to study the pathogenicity and performing antiviral assays for emerging viruses. Here, we assessed the tropism and cytopathogenicity of the first Swedish isolate of SARS-CoV-2 in six different human cell lines, compared their growth characteristics, and performed quantitative proteomics for the susceptible cell lines. Overall, Calu-3, Caco2, Huh7, and 293FT cell lines showed a high-to-moderate level of susceptibility to SARS-CoV-2. In Caco2 cells, the virus can achieve high titers in the absence of any prominent cytopathic effect. The protein abundance profile during SARS-CoV-2 infection revealed cell-type-specific regulation of cellular pathways. Type-I interferon signaling was identified as the common dysregulated cellular response in Caco2, Calu-3, and Huh7 cells. Together, our data show cell-type specific variability for cytopathogenicity, susceptibility, and cellular response to SARS-CoV-2 and provide important clues to guide future studies.
Collapse
Affiliation(s)
- Elisa Saccon
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 14152 Stockholm, Sweden
| | - Xi Chen
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 14152 Stockholm, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 14152 Stockholm, Sweden
| | - Jimmy Esneider Rodriguez
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Laszlo Szekely
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Beatriz Sá Vinhas
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 14152 Stockholm, Sweden
| | - Shuba Krishnan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 14152 Stockholm, Sweden
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 14152 Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 14152 Stockholm, Sweden
| | - Soham Gupta
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, 14152 Stockholm, Sweden
| |
Collapse
|
35
|
Zhu P, Wang Y, Chu H, Wang L. Superhydrophobicity preventing surface contamination as a novel strategy against COVID-19. J Colloid Interface Sci 2021; 600:613-619. [PMID: 34034121 PMCID: PMC8110320 DOI: 10.1016/j.jcis.2021.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Surface contact with virus is ubiquitous in the transmission pathways of respiratory diseases such as Coronavirus Disease 2019 (COVID-19), by which contaminated surfaces are infectious fomites intensifying the transmission of the disease. To date, the influence of surface wettability on fomite formation remains elusive. Here, we report that superhydrophobicity prevents the attachment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces by repelling virus-laden droplets. Compared to bare surfaces, superhydrophobic (SHPB) surfaces exhibit a significant reduction in SARS-CoV-2 attachment of up to 99.99995%. We identify the vital importance of solid-liquid adhesion in dominating viral attachment, where the viral activity (N) is proportional to the cube of solid-liquid adhesion (A), N ∝ A3. Our results predict that a surface would be practically free of SARS-CoV-2 deposition when solid-liquid adhesion is ≤1 mN. Engineering surfaces with superhydrophobicity would open an avenue for developing a general approach to preventing fomite formation against the COVID-19 pandemic and future ones.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China; Department of Mechanical Engineering, the University of Hong Kong, Hong Kong, China; HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300 Hangzhou, China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Hin Chu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.
| | - Liqiu Wang
- Department of Mechanical Engineering, the University of Hong Kong, Hong Kong, China; HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300 Hangzhou, China.
| |
Collapse
|
36
|
Abstract
Roughly 1 year after the first case of COVID-19 was identified and less than 1 year after the sequencing of SARS-CoV-2, multiple SARS-CoV-2 vaccines with demonstrated safety and efficacy in phase III clinical trials are available. The most promising vaccines have targeted the surface glycoprotein (S-protein) of SARS-CoV-2 and achieved an approximate 85%-95% reduction in the risk of symptomatic COVID-19, while retaining excellent safety profiles and modest side effects in the phase III clinical trials. The mRNA, replication-incompetent viral vector, and protein subunit vaccine technologies have all been successfully employed. Some novel SARS-CoV-2 variants evade but do not appear to fully overcome the potent immunity induced by these vaccines. Emerging real-world effectiveness data add evidence for protection from severe COVID-19. This is an impressive first demonstration of the effectiveness of the mRNA vaccine and vector vaccine platforms. The success of SARS-CoV-2 vaccine development should be credited to open science, industry partnerships, harmonization of clinical trials, and the altruism of study participants. The manufacturing and distribution of the emergency use-authorized SARS-CoV-2 vaccines are ongoing challenges. What remains now is to ensure broad and equitable global vaccination against COVID-19.
Collapse
Affiliation(s)
| | - Njira Lugogo
- Division of Pulmonary and Critical Care Medicine, and
| | | | - Anna S. Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Pascoal LB, Rodrigues PB, Genaro LM, Gomes ABDSP, Toledo-Teixeira DA, Parise PL, Bispo-Dos-Santos K, Simeoni CL, Guimarães PV, Buscaratti LI, Elston JGDA, Marques-Souza H, Martins-de-Souza D, Ayrizono MDLS, Velloso LA, Proenca-Modena JL, Moraes-Vieira PMM, Mori MAS, Farias AS, Vinolo MAR, Leal RF. Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human colonic samples. Gut Microbes 2021; 13:1-9. [PMID: 33550892 PMCID: PMC7889267 DOI: 10.1080/19490976.2021.1874740] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Microbiota-derived molecules called short-chain fatty acids (SCFAs) play a key role in the maintenance of the intestinal barrier and regulation of immune response during infectious conditions. Recent reports indicate that SARS-CoV-2 infection changes microbiota and SCFAs production. However, the relevance of this effect is unknown. In this study, we used human intestinal biopsies and intestinal epithelial cells to investigate the impact of SCFAs in the infection by SARS-CoV-2. SCFAs did not change the entry or replication of SARS-CoV-2 in intestinal cells. These metabolites had no effect on intestinal cells' permeability and presented only minor effects on the production of anti-viral and inflammatory mediators. Together our findings indicate that the changes in microbiota composition of patients with COVID-19 and, particularly, of SCFAs do not interfere with the SARS-CoV-2 infection in the intestine.
Collapse
Affiliation(s)
- Lívia Bitencourt Pascoal
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Patrícia Brito Rodrigues
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lívia Moreira Genaro
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Daniel Augusto Toledo-Teixeira
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Pierina Lorencini Parise
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Karina Bispo-Dos-Santos
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Camila Lopes Simeoni
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Paula Veri Guimarães
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lucas Ildefonso Buscaratti
- Brazilian Laboratory on Silencing Technologies (Blast), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - João Gabriel De Angeli Elston
- Brazilian Laboratory on Silencing Technologies (Blast), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Henrique Marques-Souza
- Brazilian Laboratory on Silencing Technologies (Blast), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil,Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria De Lourdes Setsuko Ayrizono
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Lício Augusto Velloso
- Laboratory of Cell Signaling, School of Medical Sciences,University of Campinas (UNICAMP), Campinas, Brazil,Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Pedro Manoel Mendes Moraes-Vieira
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil,Laboratory of Immunometabolism, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Alves Silva Mori
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil,Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alessandro Santos Farias
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil,Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil,Marco Aurélio RamirezVinolo Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil; Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Raquel Franco Leal
- Inflammatory Bowel Disease Research Laboratory, Colorectal Surgery Unit, Department of Surgery, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil,Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil,CONTACT Raquel Franco Leal
| |
Collapse
|
38
|
Mary A, Hénaut L, Macq PY, Badoux L, Cappe A, Porée T, Eckes M, Dupont H, Brazier M. Rationale for COVID-19 Treatment by Nebulized Interferon-β-1b-Literature Review and Personal Preliminary Experience. Front Pharmacol 2020; 11:592543. [PMID: 33329000 PMCID: PMC7734101 DOI: 10.3389/fphar.2020.592543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
The inflammatory response to COVID-19 is specifically associated with an impaired type I interferon (IFN) response and complete blockade of IFN-β secretion. Clinically, nebulization of IFN-α-2b has been historically used in China to treat viral pneumonia associated with SARS-CoV. Very recent data show that the use of inhaled type I IFN is associated with decreased mortality in Chinese COVID-19 patients. However, IFN nebulization is currently not standard in Europe and the United States. Therefore, our group has set up a project aimed to evaluate the possibility to nebulize IFN-β-1b (a drug currently used in Europe to treat multiple sclerosis via subcutaneous injections) and to assess the safety of this new mode of administration in SARS-CoV-2 infected patients. We present here literature data that allowed us to build our hypothesis and to develop collaboration between clinical pharmacists, intensivists and nebulization engineers in order to gain first pre-clinical and clinical experience of IFN-β-1b nebulization. After validation of the nebulization method and verification of droplet size compatible with nebulization, the method has been applied to four intensive care patients treated at our university hospital, for whom none of the COVID-19 therapies initially used in France led to significant clinical improvement. All patients exhibited negative viral carriage and experienced clinical improvement 7-16 days after having initiated nebulized IFN-β-1b inhalation therapy. No side effects were observed. All patients were alive within a 90-days follow-up. Although it is not possible to draw firm conclusions on treatment efficacy based on this case report, our study shows that pulmonary IFN-β-1b administration is feasible, with a good safety profile. This procedure, which presents the advantage of directly targeting the lungs and reducing the risks of systemic side effects, may represent a promising therapeutic strategy for the care of patients with severe COVID-19. However, our preliminary observation requires confirmation by randomized controlled trials.
Collapse
Affiliation(s)
- Aurélien Mary
- Clinical Critical Care Pharmacy Department, Amiens-Picardie University Hospital, Amiens, France
- UR UPJV 7517, MP3CV, CURS, University of Picardie Jules Verne, Amiens, France
| | - Lucie Hénaut
- UR UPJV 7517, MP3CV, CURS, University of Picardie Jules Verne, Amiens, France
| | - Pierre Yves Macq
- Surgical Critical Care Department, Amiens-Picardie University Hospital, Amiens, France
| | - Louise Badoux
- Surgical Critical Care Department, Amiens-Picardie University Hospital, Amiens, France
| | - Arnaud Cappe
- Clinical Critical Care Pharmacy Department, Amiens-Picardie University Hospital, Amiens, France
| | | | | | - Hervé Dupont
- UR UPJV 7517, MP3CV, CURS, University of Picardie Jules Verne, Amiens, France
- Surgical Critical Care Department, Amiens-Picardie University Hospital, Amiens, France
| | - Michel Brazier
- UR UPJV 7517, MP3CV, CURS, University of Picardie Jules Verne, Amiens, France
- Department of Biochemistry, Amiens-Picardie University Hospital, Amiens, France
| |
Collapse
|
39
|
Chu H, Chan JFW, Wang Y, Yuen TTT, Chai Y, Shuai H, Yang D, Hu B, Huang X, Zhang X, Hou Y, Cai JP, Zhang AJ, Zhou J, Yuan S, To KKW, Hung IFN, Cheung TT, Ng ATL, Hau-Yee Chan I, Wong IYH, Law SYK, Foo DCC, Leung WK, Yuen KY. SARS-CoV-2 Induces a More Robust Innate Immune Response and Replicates Less Efficiently Than SARS-CoV in the Human Intestines: An Ex Vivo Study With Implications on Pathogenesis of COVID-19. Cell Mol Gastroenterol Hepatol 2020; 11:771-781. [PMID: 33010495 PMCID: PMC7527315 DOI: 10.1016/j.jcmgh.2020.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Besides prominent respiratory involvement, gastrointestinal manifestations are commonly reported in Coronavirus Disease 2019 (COVID-19) patients. We compared infection of ex vivo human intestinal tissues by SARS-CoV-2 and SARS-CoV with respect to their replication kinetics and immune activation profile. METHODS Human intestinal tissues were obtained from patients while undergoing surgical operations at Queen Mary Hospital, Hong Kong. Upon surgical removal, the tissues were immediately processed and infected with SARS-CoV-2 or SARS-CoV. Replication kinetics were determined with immunohistochemistry, qRT-PCR, and plaque assays. Immune activation in the infected intestinal tissues was assessed by detecting the gene expression of interferons and representative pro-inflammatory cytokines and chemokines. RESULTS SARS-CoV-2 could infect and productively replicate in the ex vivo human intestinal tissues with release of infectious virus particles, but not in ex vivo human liver and kidney tissues. Importantly, SARS-CoV-2 replicated less efficiently than SARS-CoV, induced less cytopathology in the human intestinal epithelium, and induced a more robust innate immune response including the activation of both type I and type III interferons, than SARS-CoV in human intestinal tissues. CONCLUSION Using the ex vivo human intestinal tissues as a physiologically relevant model, our data indicated that SARS-CoV-2 could productively replicate in the human gut and suggested that the gastrointestinal tract might serve as an alternative route of virus dissemination. SARS-CoV-2 replicated less efficiently and induced less cytopathology than SARS-CoV in keeping with the clinical observations reported for COVID-19 and SARS, which might be the result of a more robust immune activation by SARS-CoV-2 than SARS-CoV in the human intestine.
Collapse
Affiliation(s)
- Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Terrence Tsz-Tai Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yue Chai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huiping Shuai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bingjie Hu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xi Zhang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuxin Hou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Tan To Cheung
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ada Tsui-Lin Ng
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ivy Hau-Yee Chan
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ian Yu-Hong Wong
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Simon Ying-Kit Law
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Dominic Chi-Chung Foo
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wai-Keung Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|