1
|
Foulkes S, Monk EJM, Sparkes D, Hettiarachchi N, Milligan ID, Munro K, Taylor-Kerr A, Platt N, Howells A, Kyaw JYA, Adaji E, Gallagher E, Khawam J, Wellington E, Price L, Crossman D, Norman C, de Lacy E, Cromey L, Corrigan D, Lackenby A, Barbero P, Elegunde B, Zambon M, Chand MA, Brown CS, Islam J, Atti A, Hopkins S, Hall VJ, Cole MJ. Early Warning Surveillance for SARS-CoV-2 Omicron Variants, United Kingdom, November 2021-September 2022. Emerg Infect Dis 2023; 29:184-188. [PMID: 36454718 PMCID: PMC9796219 DOI: 10.3201/eid2901.221293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since June 2020, the SARS-CoV-2 Immunity and Reinfection Evaluation (SIREN) study has conducted routine PCR testing in UK healthcare workers and sequenced PCR-positive samples. SIREN detected increases in infections and reinfections and delected Omicron subvariant waves emergence contemporaneous with national surveillance. SIREN's sentinel surveillance methods can be used for variant surveillance.
Collapse
|
2
|
Halliday A, Long AE, Baum HE, Thomas AC, Shelley KL, Oliver E, Gupta K, Francis O, Williamson MK, Di Bartolo N, Randell MJ, Ben-Khoud Y, Kelland I, Mortimer G, Ball O, Plumptre C, Chandler K, Obst U, Secchi M, Piemonti L, Lampasona V, Smith J, Gregorova M, Knezevic L, Metz J, Barr R, Morales-Aza B, Oliver J, Collingwood L, Hitchings B, Ring S, Wooldridge L, Rivino L, Timpson N, McKernon J, Muir P, Hamilton F, Arnold D, Woolfson DN, Goenka A, Davidson AD, Toye AM, Berger I, Bailey M, Gillespie KM, Williams AJK, Finn A. Development and evaluation of low-volume tests to detect and characterize antibodies to SARS-CoV-2. Front Immunol 2022; 13:968317. [PMID: 36439154 PMCID: PMC9682908 DOI: 10.3389/fimmu.2022.968317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022] Open
Abstract
Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.
Collapse
Affiliation(s)
- Alice Halliday
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Anna E. Long
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Holly E. Baum
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Amy C. Thomas
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kathryn L. Shelley
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kapil Gupta
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | | | - Natalie Di Bartolo
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
| | - Matthew J. Randell
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Yassin Ben-Khoud
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ilana Kelland
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Georgina Mortimer
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Olivia Ball
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Charlie Plumptre
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kyla Chandler
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ulrike Obst
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Massimiliano Secchi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Joyce Smith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Michaela Gregorova
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lea Knezevic
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Jane Metz
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Rachael Barr
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Begonia Morales-Aza
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Jennifer Oliver
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lucy Collingwood
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Benjamin Hitchings
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Susan Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
| | - Linda Wooldridge
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Nicholas Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
| | - Jorgen McKernon
- National Infection Service, UK Health Security Agency, Southmead Hospital, Bristol, United Kingdom
| | - Peter Muir
- National Infection Service, UK Health Security Agency, Southmead Hospital, Bristol, United Kingdom
| | - Fergus Hamilton
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, United Kingdom
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David Arnold
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
| | - Anu Goenka
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ashley M. Toye
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
- Bristol Institute of Transfusion Sciences, NHS Blood and Transplant Filton, Bristol, United Kingdom
| | - Imre Berger
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol, United Kingdom
- Bristol BioDesign Institute, University of Bristol, Bristol, United Kingdom
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Kathleen M. Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Alistair J. K. Williams
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| |
Collapse
|
3
|
Atti A, Insalata F, Carr EJ, Otter AD, Castillo-Olivares J, Wu M, Harvey R, Howell M, Chan A, Lyall J, Temperton N, Cantoni D, da Costa K, Nadesalingam A, Taylor-Kerr A, Hettiarachchi N, Tranquillini C, Hewson J, Cole MJ, Foulkes S, Munro K, Monk EJM, Milligan ID, Linley E, Chand MA, Brown CS, Islam J, Semper A, Charlett A, Heeney JL, Beale R, Zambon M, Hopkins S, Brooks T, Hall V. Antibody correlates of protection from SARS-CoV-2 reinfection prior to vaccination: A nested case-control within the SIREN study. J Infect 2022; 85:545-556. [PMID: 36089104 PMCID: PMC9458758 DOI: 10.1016/j.jinf.2022.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection. METHODS We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N). Results were analysed using fixed effect linear regression and fitted into conditional logistic regression models. RESULTS We identified 23 cases and 92 controls. First infections occurred before November 2020; reinfections occurred before February 2021, pre-vaccination. Anti-S levels, LV-N and PV-N titres were significantly lower among cases; no difference was found for anti-N levels. Increasing anti-S levels were associated with reduced risk of reinfection (OR 0·63, CI 0·47-0·85), but no association for anti-N levels (OR 0·88, CI 0·73-1·05). Titres >40 were correlated with protection against reinfection for LV-N Wuhan (OR 0·02, CI 0·001-0·31) and LV-N Alpha (OR 0·07, CI 0·009-0·62). For PV-N, titres >100 were associated with protection against Wuhan (OR 0·14, CI 0·03-0·64) and Alpha (0·06, CI 0·008-0·40). CONCLUSIONS Before vaccination, protection against SARS-CoV-2 reinfection was directly correlated with anti-S levels, PV-N and LV-N titres, but not with anti-N levels. Detectable LV-N titres were sufficient for protection, whilst PV-N titres >100 were required for a protective effect. TRIAL REGISTRATION NUMBER ISRCTN11041050.
Collapse
Affiliation(s)
- Ana Atti
- UK Health Security Agency, Smith Square, London SW1P, UK.
| | | | - Edward J Carr
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Ashley D Otter
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
| | - Mary Wu
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Ruth Harvey
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Andrew Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
| | - Jonathan Lyall
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Central Ave, Gillingham, Chatham ME4 4BF, UK
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Central Ave, Gillingham, Chatham ME4 4BF, UK
| | - Kelly da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Central Ave, Gillingham, Chatham ME4 4BF, UK
| | - Angalee Nadesalingam
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK
| | | | | | | | | | | | - Sarah Foulkes
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Katie Munro
- UK Health Security Agency, Smith Square, London SW1P, UK
| | | | | | - Ezra Linley
- Manchester Royal Infirmary, UK Health Security Agency, Oxford Road, Manchester M139WL, UK
| | - Meera A Chand
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Colin S Brown
- UK Health Security Agency, Smith Square, London SW1P, UK; The National Institute for Health Research Health Protection Research (NIHR) Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK
| | - Jasmin Islam
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Amanda Semper
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Andre Charlett
- UK Health Security Agency, Smith Square, London SW1P, UK; NIHR Health Protection Research Unit in Behavioural Science and Evaluation at University of Bristol in partnership with Public Health England, Queens Road, Bristol BS8 1QU, UK; NIHR Health Protection Research Unit in Immunisation at the London School of Hygiene and Tropical Medicine in partnership with Public Health England, Keppel St, London WC1E 7HT, UK
| | | | - Rupert Beale
- The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Maria Zambon
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Susan Hopkins
- UK Health Security Agency, Smith Square, London SW1P, UK; The National Institute for Health Research Health Protection Research (NIHR) Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK
| | - Tim Brooks
- UK Health Security Agency, Smith Square, London SW1P, UK
| | - Victoria Hall
- UK Health Security Agency, Smith Square, London SW1P, UK; The National Institute for Health Research Health Protection Research (NIHR) Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK
| |
Collapse
|
4
|
Wallace S, Hall V, Charlett A, Kirwan PD, Cole M, Gillson N, Atti A, Timeyin J, Foulkes S, Taylor-Kerr A, Andrews N, Shrotri M, Rokadiya S, Oguti B, Vusirikala A, Islam J, Zambon M, Brooks TJG, Ramsay M, Brown CS, Chand M, Hopkins S. Impact of prior SARS-CoV-2 infection and COVID-19 vaccination on the subsequent incidence of COVID-19: a multicentre prospective cohort study among UK healthcare workers - the SIREN (Sarscov2 Immunity & REinfection EvaluatioN) study protocol. BMJ Open 2022; 12:e054336. [PMID: 35768083 PMCID: PMC9240450 DOI: 10.1136/bmjopen-2021-054336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Understanding the effectiveness and durability of protection against SARS-CoV-2 infection conferred by previous infection and COVID-19 is essential to inform ongoing management of the pandemic. This study aims to determine whether prior SARS-CoV-2 infection or COVID-19 vaccination in healthcare workers protects against future infection. METHODS AND ANALYSIS This is a prospective cohort study design in staff members working in hospitals in the UK. At enrolment, participants are allocated into cohorts, positive or naïve, dependent on their prior SARS-CoV-2 infection status, as measured by standardised SARS-CoV-2 antibody testing on all baseline serum samples and previous SARS-CoV-2 test results. Participants undergo monthly antibody testing and fortnightly viral RNA testing during follow-up and based on these results may move between cohorts. Any results from testing undertaken for other reasons (eg, symptoms, contact tracing) or prior to study entry will also be captured. Individuals complete enrolment and fortnightly questionnaires on exposures, symptoms and vaccination. Follow-up is 12 months from study entry, with an option to extend follow-up to 24 months.The primary outcome of interest is infection with SARS-CoV-2 after previous SARS-CoV-2 infection or COVID-19 vaccination during the study period. Secondary outcomes include incidence and prevalence (both RNA and antibody) of SARS-CoV-2, viral genomics, viral culture, symptom history and antibody/neutralising antibody titres. ETHICS AND DISSEMINATION The study was approved by the Berkshire Research Ethics Committee, Health Research Authority (IRAS ID 284460, REC reference 20/SC/0230) on 22 May 2020; the vaccine amendment was approved on 12 January 2021. Participants gave informed consent before taking part in the study.Regular reports to national and international expert advisory groups and peer-reviewed publications ensure timely dissemination of findings to inform decision making. TRIAL REGISTRATION NUMBER ISRCTN11041050.
Collapse
Affiliation(s)
- Sarah Wallace
- National Infection Service, UK Health Security Agency, London, UK
| | - Victoria Hall
- National Infection Service, UK Health Security Agency, London, UK
| | - Andre Charlett
- Statistics, Modelling and Economics Unit, UK Health Security Agency, London, UK
| | - Peter D Kirwan
- National Infection Service, UK Health Security Agency, London, UK
- MRC Biostatistics Unit, Cambridge, UK
| | - Michele Cole
- National Infection Service, UK Health Security Agency, London, UK
| | - Natalie Gillson
- National Infection Service, UK Health Security Agency, London, UK
| | - Ana Atti
- National Infection Service, UK Health Security Agency, London, UK
| | - Jean Timeyin
- National Infection Service, UK Health Security Agency, London, UK
| | - Sarah Foulkes
- National Infection Service, UK Health Security Agency, London, UK
| | | | - Nick Andrews
- Statistics, Modelling and Economics Unit, UK Health Security Agency, London, UK
| | | | - Sakib Rokadiya
- National Infection Service, UK Health Security Agency, London, UK
| | - Blanche Oguti
- National Infection Service, UK Health Security Agency, London, UK
| | | | - Jasmin Islam
- National Infection Service, UK Health Security Agency, London, UK
| | - Maria Zambon
- National Infection Service, UK Health Security Agency, London, UK
| | - Tim J G Brooks
- National Infection Service, UK Health Security Agency, London, UK
| | - Mary Ramsay
- National Infection Service, UK Health Security Agency, London, UK
| | - Colin S Brown
- National Infection Service, UK Health Security Agency, London, UK
| | - Meera Chand
- National Infection Service, UK Health Security Agency, London, UK
| | - Susan Hopkins
- National Infection Service, UK Health Security Agency, London, UK
| |
Collapse
|
5
|
Arkell P, Gusmao C, Sheridan SL, Tanesi MY, Gomes N, Oakley T, Wapling J, Alves L, Kopf S, Sarmento N, Barreto IDC, Amaral S, Draper AD, Coelho D, Guterres H, Salles A, Machado F, Fancourt NS, Yan J, Marr I, Macartney K, Francis JR. Serological surveillance of healthcare workers to evaluate natural infection- and vaccine-derived immunity to SARS-CoV-2 during an outbreak in Dili, Timor-Leste. Int J Infect Dis 2022; 119:80-86. [PMID: 35358723 PMCID: PMC8958849 DOI: 10.1016/j.ijid.2022.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background Serosurveillance can be used to investigate the extent and distribution of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a population. Characterisation of humoral immune responses gives insight into whether immunity is infection- or vaccine-derived. Methods A longitudinal study of health care workers (HCWs) in Dili, Timor-Leste, was conducted during vaccine rollout (ChAdOx1) and a concurrent SARS-CoV-2 outbreak. Results A total of 324 HCWs were included at baseline (April-May 2021). Out of those, 32 (9.9%) were seropositive for anti-nucleocapsid protein (anti-N) IgG antibodies, indicating a significant sub-clinical infection among HCWs early in the local outbreak. Follow-up was conducted in 157 (48.5%) participants (July-September 2021), by which time there had been high uptake of vaccination (91.7%), and 86.0% were seropositive for anti-spike protein antibodies. Acquisition of anti-N antibodies was observed in partially vaccinated HCWs (30/76, 39.5%), indicating some post-dose-1 infections. Discussion Serosurveillance of HCWs may provide early warning of SARS-CoV-2 outbreaks and should be considered in non-endemic settings, particularly where there is limited availability/uptake of testing for acute infection. Characterisation of humoral immune responses may be used to assess vaccine impact and coverage. Such studies should be considered in national and international efforts to investigate and mitigate against future emerging pathogens.
Collapse
Affiliation(s)
- Paul Arkell
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia; Imperial College, London, UK.
| | - Celia Gusmao
- Hospital Nacional Guido Valadares, Dili, Timor-Leste
| | - Sarah L Sheridan
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia
| | - Maria Y Tanesi
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Nelia Gomes
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Tessa Oakley
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Johanna Wapling
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Lucsendar Alves
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Stacey Kopf
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Nevio Sarmento
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Salvador Amaral
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Anthony Dk Draper
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | | | | | | | - Nicholas Ss Fancourt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Jennifer Yan
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Ian Marr
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Kristine Macartney
- National Centre for Immunisation Research and Surveillance, Westmead, NSW, Australia
| | - Joshua R Francis
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.
| |
Collapse
|