1
|
Steenackers K, Hanning N, Bruckers L, Desombere I, Marchant A, Ariën KK, Georges D, Soentjens P, D'Onofrio V, Hites M, Berens-Riha N, De Coster I, Damme PV. Humoral immune response against SARS-CoV-2 after adapted COVID-19 vaccine schedules in healthy adults: The IMCOVAS randomized clinical trial. Vaccine 2024; 42:126117. [PMID: 39019657 DOI: 10.1016/j.vaccine.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND To overcome supply issues of COVID-19 vaccines, this partially single blind, multi-centric, vaccine trial aimed to evaluate humoral immunogenicity using lower vaccine doses, intradermal vaccination, and heterologous vaccine schedules. Also, the immunity after a booster vaccination was assessed. METHODOLOGY 566 COVID-19-naïve healthy adults were randomized to 1 of 8 treatment arms consisting of combinations of BNT162b2, mRNA-1273, and ChAdOx1-S. Anti-Receptor-Binding Domain immunoglobulin G (RBD IgG) titers, neutralizing antibody titres, and avidity of the anti-RBD IgGs was assessed up to 1 year after study start. RESULTS Prolonging the interval between vaccinations from 28 to 84 days and the use of a heterologous BNT162b2 + mRNA-1273 vaccination schedule led to a non-inferior immune response, compared to the reference schedule. A low dose of mRNA-1273 was sufficient to induce non-inferior immunity. Non-inferiority could not be demonstrated for intradermal vaccination. For all adapted vaccination schedules, anti-RBD IgG titres measured after a first booster vaccination were non-inferior to their reference schedule. CONCLUSION This study suggests that reference vaccine schedules can be adapted without jeopardizing the development of an adequate immune response. Immunity after a booster vaccination did not depend on the dose or brand of the booster vaccine, which is relevant for future booster campaigns. The trial is registered in the European Union Clinical Trials Register (number 2021-001993-52) and on clinicaltrials.gov (NCT06189040).
Collapse
Affiliation(s)
- Katie Steenackers
- Centre for Evaluation of Vaccination, University of Antwerp, Drie Eikenstraat 663, 2650 Edegem, Belgium
| | - Nikita Hanning
- Centre for Evaluation of Vaccination, University of Antwerp, Drie Eikenstraat 663, 2650 Edegem, Belgium
| | - Liesbeth Bruckers
- Data Science Institute, UHasselt, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Isabelle Desombere
- Laboratory Immune Response, Department of Infectious Diseases in Humans, Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Rte de Lennik 900, 1070 Anderlecht, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Daphnée Georges
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Rte de Lennik 900, 1070 Anderlecht, Belgium; Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Bât.B6c Quartier Agora, allée du six Août 11, 4000 Liège, Belgium
| | - Patrick Soentjens
- Department of Clinical Sciences, Institute of Tropical Medicine, Kronenburgstraat 43, 2000 Antwerp, Belgium
| | - Valentino D'Onofrio
- Center for Vaccinology, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Maya Hites
- Université libre de Bruxelles, Av. Franklin Roosevelt 50, 1050 Bruxelles, Belgium; Clinic of Infectious Diseases, Hôpital Universitaire de Bruxelles, Route de Lennik 808, 1070 Bruxelles, Belgium
| | - Nicole Berens-Riha
- Department of Clinical Sciences, Institute of Tropical Medicine, Kronenburgstraat 43, 2000 Antwerp, Belgium
| | - Ilse De Coster
- Centre for Evaluation of Vaccination, University of Antwerp, Drie Eikenstraat 663, 2650 Edegem, Belgium
| | - Pierre Van Damme
- Centre for Evaluation of Vaccination, University of Antwerp, Drie Eikenstraat 663, 2650 Edegem, Belgium.
| |
Collapse
|
2
|
Kuijpers Y, Kaczorowska J, Picavet HSJ, de Zeeuw-Brouwer ML, Kuijer M, Slits I, Gijsbers E, Rutkens R, de Rond L, Verschuren WMM, Buisman AM. Health characteristics associated with persistence of SARS-CoV-2 antibody responses after repeated vaccinations in older persons over time: the Doetinchem cohort study. Immun Ageing 2024; 21:68. [PMID: 39407293 PMCID: PMC11476400 DOI: 10.1186/s12979-024-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/20/2024]
Abstract
BACKGROUND Older persons elicit heterogeneous antibody responses to vaccinations that generally are lower than those in younger, healthier individuals. As older age and certain comorbidities can influence these responses we aimed to identify health-related variables associated with antibody responses after repeated SARS-CoV-2 vaccinations and their persistence thereafter in SARS-CoV-2 infection-naïve and previously infected older persons. METHOD In a large longitudinal study of older persons of the general population 50 years and over, a sub-cohort of the longitudinal Doetinchem cohort study (n = 1374), we measured IgG antibody concentrations in serum to SARS-CoV-2 Spike protein (S1) and Nucleoprotein (N). Samples were taken following primary vaccination with BNT162b2 or AZD1222, pre- and post-vaccination with a third and fourth BNT162b2 or mRNA-1273 (Wuhan), and up to a year after a fifth BNT162b2 bivalent (Wuhan/Omicron BA.1) vaccine. Associations between persistence of antibody concentrations over time and age, sex, health characteristics including cardiometabolic and inflammatory diseases as well as a frailty index were tested using univariable and multivariable models. RESULTS The booster doses substantially increased anti-SARS-CoV-2 Spike S1 (S1) antibody concentrations in older persons against both the Wuhan and Omicron strains. Older age was associated with decreased antibody persistence both after the primary vaccination series and up to 1 year after the fifth vaccine dose. In infection-naïve persons the presence of inflammatory diseases was associated with an increased antibody response to the third vaccine dose (Beta = 1.53) but was also associated with reduced persistence over the 12 months following the fifth (bivalent) vaccine dose (Beta = -1.7). The presence of cardiometabolic disease was associated with reduced antibody persistence following the primary vaccination series (Beta = -1.11), but this was no longer observed after bivalent vaccination. CONCLUSION Although older persons with comorbidities such as inflammatory and cardiometabolic diseases responded well to SARS-CoV-2 booster vaccinations, they showed a reduced persistence of these responses. This might indicate that especially these more vulnerable older persons could benefit from repeated booster vaccinations.
Collapse
Affiliation(s)
- Yunus Kuijpers
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands.
| | - Joanna Kaczorowska
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - H Susan J Picavet
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Marjan Kuijer
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Irene Slits
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Esther Gijsbers
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Ryanne Rutkens
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - Lia de Rond
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| | - W M Monique Verschuren
- Centre for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, 3508 TC, The Netherlands
| | - Anne-Marie Buisman
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3721 MA, The Netherlands
| |
Collapse
|
3
|
Kim HH, Lee HK, Hennighausen L, Furth PA, Sung H, Huh JW. Time-course analysis of antibody and cytokine response after the third SARS-CoV-2 vaccine dose. Vaccine X 2024; 20:100565. [PMID: 39399820 PMCID: PMC11470517 DOI: 10.1016/j.jvacx.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The widespread administration of an additional dose of the SARS-CoV-2 vaccine has been promoted across adult populations, demonstrating a robust immune response against COVID-19. Longitudinal studies provide crucial data on the durability of immune response after the third vaccination. This study aims to explore the antibody response, neutralizing activity, and cytokine response against the SARS-CoV-2 ancestral strain (wild-type) and its variants during the timeline before and after the administration of the third vaccine dose. Anti-spike antibody titers and neutralizing antibodies blocking ACE2 binding to spike antigens were measured in 62 study participants at baseline, and on days 7, 21, and 180 post-vaccination. Cytokine levels were assessed at the same points except for day 180, with an additional measurement on day 3 post-vaccination. The analysis revealed no substantial variation in anti-spike antibody titer against the SARS-CoV-2 ancestral strain between the pre-vaccination phase and three days following the third dose. However, a significant nine-fold increase in these titers was observed by day 7, maintained until day 21. Although a decrease was observed by day 180, all participants still had detectable antibody levels. A similar trend was noted for neutralizing antibodies, with a four-fold rise by day 7 post-vaccination. At day 180, a diminution of neutralizing antibody titers was evident for both wild-type and all variants, including Omicron subvariant. A transient increase in cytokine activity, notably involving components of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway, such as CXCL10 and IL-10, was observed within three days after the third dose. This study underscores a distinct amplification of humoral immune response seven days following the third SARS-CoV-2 vaccine dose and observes a decline in neutralizing antibody titers 180 days following the third dose, thus indicating the temporal humoral effectiveness of booster vaccination. A short-term cytokine surge, notably involving the JAK/STAT pathway, highlights the dynamic immune modulation post-vaccination.
Collapse
Affiliation(s)
- Hyeon Hwa Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Kyung Lee
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Priscilla A. Furth
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, United States
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Won Huh
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Le Gars M, Sadoff J, Cárdenas V, Heerwegh D, Tesfaye F, Roey GV, Spicer C, Matias SS, Crayne O, Kamphuis T, Struyf F, Schuitemaker H, Douoguih M. Safety, reactogenicity, and immunogenicity of Ad26.COV2.S as homologous or heterologous COVID-19 booster vaccination: Results of a randomized, double-blind, phase 2 trial. Vaccine 2024; 42:3938-3952. [PMID: 38918103 DOI: 10.1016/j.vaccine.2024.03.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 06/27/2024]
Abstract
COVID-19 vaccine boosters may optimize durability of protection against variants of concern (VOCs). In this randomized, double-blind, phase 2 trial, participants received 3 different dose levels of an Ad26.COV2.S booster (5 × 1010 vp [viral particles], 2.5 × 1010 vp, or 1 × 1010 vp) ≥6 months post-primary vaccination with either single-dose Ad26.COV2.S (homologous boost; n = 774) or 2-dose BNT162b2 (heterologous boost; n = 758). Primary endpoints were noninferiority of neutralizing antibody responses at Day 15 post-boost versus Day 29 post-primary vaccination. Secondary endpoints included reactogenicity/safety and neutralizing antibody responses to VOCs. All primary endpoints passed prespecified hierarchical noninferiority criteria by Day 15 post-boost. Geometric mean increases in neutralizing antibody titers against the D614G reference strain ranged from 5.5 to 6.8 at Day 15 for homologous boosting and 12.6 to 22.0 for heterologous boosting. For VOCs, heterologous boosting elicited higher neutralizing antibody responses than homologous boosting. Neutralizing antibody responses were dose-dependent and durable for ≥6 months post-boost. More solicited systemic adverse events occurred following heterologous versus homologous boosting. Trial Registration:ClinicalTrials.gov Identifier: NCT04999111.
Collapse
Affiliation(s)
- Mathieu Le Gars
- Janssen Vaccines & Prevention, Newtonweg 1, 2333 CN Leiden, The Netherlands.
| | - Jerald Sadoff
- Johnson & Johnson, 1 Johnson & Johnson Plaza, New Brunswick, NJ, USA.
| | - Vicky Cárdenas
- Janssen Research & Development, 1400 McKean Rd., Spring House, PA, USA.
| | - Dirk Heerwegh
- Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium.
| | - Fisseha Tesfaye
- Janssen Research & Development, 1000 U.S. Route 202 South, Raritan, NJ, USA.
| | - Griet Van Roey
- Janssen Vaccines & Prevention, Newtonweg 1, 2333 CN Leiden, The Netherlands.
| | - Colleen Spicer
- Janssen Research & Development, 1000 U.S. Route 202 South, Raritan, NJ, USA.
| | | | - Olivia Crayne
- Janssen Research & Development, 1000 U.S. Route 202 South, Raritan, NJ, USA.
| | - Tobias Kamphuis
- Janssen Vaccines & Prevention, Newtonweg 1, 2333 CN Leiden, The Netherlands.
| | - Frank Struyf
- Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium.
| | | | - Macaya Douoguih
- Janssen Vaccines & Prevention, Newtonweg 1, 2333 CN Leiden, The Netherlands.
| |
Collapse
|
5
|
Bailón-Cuenca JA, Cortés-Sarabia K, Legorreta-Soberanis J, Alvarado-Castro VM, Juárez-Baltazar U, Sánchez-Gervacio BM, Vences-Velázquez A, Leyva-Vázquez MA, Del Moral-Hernández O, Illades-Aguiar B. Detection of IgG antibodies against the receptor binding domain of the spike protein and nucleocapsid of SARS-CoV-2 at university students from Southern Mexico: a cross-sectional study. BMC Infect Dis 2024; 24:584. [PMID: 38867165 PMCID: PMC11170790 DOI: 10.1186/s12879-024-09435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Natural infection and vaccination against SARS-CoV-2 is associated with the development of immunity against the structural proteins of the virus. Specifically, the two most immunogenic are the S (spike) and N (nucleocapsid) proteins. Seroprevalence studies performed in university students provide information to estimate the number of infected patients (symptomatic or asymptomatic) and generate knowledge about the viral spread, vaccine efficacy, and epidemiological control. Which, the aim of this study was to evaluate IgG antibodies against the S and N proteins of SARS-CoV-2 at university students from Southern Mexico. METHODS A total of 1418 serum samples were collected from eighteen work centers of the Autonomous University of Guerrero. Antibodies were detected by Indirect ELISA using as antigen peptides derived from the S and N proteins. RESULTS We reported a total seroprevalence of 39.9% anti-S/N (positive to both antigens), 14.1% anti-S and 0.5% anti-N. The highest seroprevalence was reported in the work centers from Costa Grande, Acapulco and Centro. Seroprevalence was associated with age, COVID-19, contact with infected patients, and vaccination. CONCLUSION University students could play an essential role in disseminating SARS-CoV-2. We reported a seroprevalence of 54.5% against the S and N proteins, which could be due to the high population rate and cultural resistance to safety measures against COVID-19 in the different regions of the state.
Collapse
Affiliation(s)
- Jesús Adolfo Bailón-Cuenca
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Karen Cortés-Sarabia
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - José Legorreta-Soberanis
- Centro de Investigación de Enfermedades Tropicales, Universidad Autónoma de Guerrero, Acapulco, Guerrero, México
| | | | - Ulises Juárez-Baltazar
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | | | - Amalia Vences-Velázquez
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México
| | - Oscar Del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero. Chilpancingo de los Bravo, Guerrero, México.
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Guerrero, México.
| |
Collapse
|
6
|
Toback S, Marchese AM, Warren B, Ayman S, Zarkovic S, ElTantawy I, Mallory RM, Rousculp M, Almarzooqi F, Piechowski-Jozwiak B, Bonilla MF, Bakkour AE, Hussein SE, Al Kaabi N. Safety and immunogenicity of the NVX-CoV2373 vaccine as a booster in adults previously vaccinated with the BBIBP-CorV vaccine. Vaccine 2024; 42:1777-1784. [PMID: 38365482 DOI: 10.1016/j.vaccine.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
This phase 3 observer-blind, randomized, controlled study was conducted in adults ≥18 years of age to assess the safety and immunogenicity of NVX-CoV2373 as a heterologous booster compared to BBIBP-CorV when utilized as a homologous booster. Approximately 1000 participants were randomly assigned in a 1:1 ratio to receive a single dose of NVX-CoV2373 or BBIBP-CorV after prior vaccination with 2 or 3 doses of BBIBP-CorV. Solicited adverse events (AEs) were collected for 7 days after vaccination. Unsolicited AEs were collected for 28 days following the booster dose and serious adverse and adverse events of special interest (AESI) were collected throughout the study. Anti-spike IgG and neutralizing antibodies against SARS-CoV-2 were measured at baseline, day 14, day 28, and day 180. The study achieved its primary non-inferiority endpoint and also demonstrated statistically higher neutralization responses when NVX-CoV2373 was utilized as a heterologous booster compared with BBIBP-CorV as a homologous booster. Both vaccines had an acceptably low reactogenicity profile, and no new safety concerns were found. Heterologous boosting with NVX-CoV2373 was a highly immunogenic and safe vaccine regimen in those previously vaccinated with BBIBP-CorV.
Collapse
Affiliation(s)
- Seth Toback
- Novavax Inc., 700 Quince Orchard Rd, Gaithersburg, MD 20878, United States.
| | - Anthony M Marchese
- Novavax Inc., 700 Quince Orchard Rd, Gaithersburg, MD 20878, United States.
| | - Brandy Warren
- Novavax Inc., 700 Quince Orchard Rd, Gaithersburg, MD 20878, United States.
| | - Sondos Ayman
- Insights Research Organization & Solutions (IROS), Building of Masdar M13 T Limited, SE 45_05, Plot C16, Khalifa City, Abu Dhabi, United Arab Emirates.
| | - Senka Zarkovic
- Insights Research Organization & Solutions (IROS), Building of Masdar M13 T Limited, SE 45_05, Plot C16, Khalifa City, Abu Dhabi, United Arab Emirates.
| | - Islam ElTantawy
- Insights Research Organization & Solutions (IROS), Building of Masdar M13 T Limited, SE 45_05, Plot C16, Khalifa City, Abu Dhabi, United Arab Emirates.
| | - Raburn M Mallory
- Novavax Inc., 700 Quince Orchard Rd, Gaithersburg, MD 20878, United States.
| | - Matthew Rousculp
- Novavax Inc., 700 Quince Orchard Rd, Gaithersburg, MD 20878, United States.
| | - Fahed Almarzooqi
- G42 Healthcare, 3(rd) Floor, 1B Building, Mohamed bin Zayed University of Artificial Intelligence, Masdar City, Abu Dhabi, United Arab Emirates.
| | - Bartlomiej Piechowski-Jozwiak
- Cleveland Clinic Abu Dhabi, 59 Hamouda Bin Ali Al Dhaheri St - Al Maryah Island - Abu Dhabi Global Market Square, Abu Dhabi, United Arab Emirates.
| | - Maria-Fernanda Bonilla
- Cleveland Clinic Abu Dhabi, 59 Hamouda Bin Ali Al Dhaheri St - Al Maryah Island - Abu Dhabi Global Market Square, Abu Dhabi, United Arab Emirates.
| | - Agyad Ebrahim Bakkour
- Sheikh Khalifa Medical City, SEHA, Al Karamah St - Al Manhal - Al Tibbiya, Abu Dhabi, United Arab Emirates.
| | - Salah Eldin Hussein
- Sheikh Khalifa Medical City, SEHA, Al Karamah St - Al Manhal - Al Tibbiya, Abu Dhabi, United Arab Emirates.
| | - Nawal Al Kaabi
- Sheikh Khalifa Medical City, SEHA, Al Karamah St - Al Manhal - Al Tibbiya, Abu Dhabi, United Arab Emirates; College of Medicine and Health Sciences, Khalifa University, Shakhbout Bin Sultan St - Hadbat Al Za'faranah - Zone 1, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Assawakosri S, Kanokudom S, Suntronwong N, Chansaenroj J, Auphimai C, Nilyanimit P, Vichaiwattana P, Thongmee T, Duangchinda T, Chantima W, Pakchotanon P, Srimuan D, Thatsanathorn T, Klinfueng S, Sudhinaraset N, Wanlapakorn N, Mongkolsapaya J, Honsawek S, Poovorawan Y. Immunogenicity and durability against Omicron BA.1, BA.2 and BA.4/5 variants at 3-4 months after a heterologous COVID-19 booster vaccine in healthy adults with a two-doses CoronaVac vaccination. Heliyon 2024; 10:e23892. [PMID: 38226248 PMCID: PMC10788509 DOI: 10.1016/j.heliyon.2023.e23892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/01/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Background Several countries have authorized a booster vaccine campaign to combat the spread of COVID-19. Data on persistence of booster vaccine-induced immunity against new Omicron subvariants are still limited. Therefore, our study aimed to determine the serological immune response of COVID-19 booster after CoronaVac-priming. Methods A total of 187 CoronaVac-primed participants were enrolled and received an inactivated (BBIBP), viral vector (AZD1222) or mRNA vaccine (full-/half-dose BNT162B2, full-/half-dose mRNA-1273) as a booster dose. The persistence of humoral immunity both binding and neutralizing antibodies against wild-type and Omicron was determined on day 90-120 after booster. Results A waning of total RBD immunoglobulin (Ig) levels, anti-RBD IgG, and neutralizing antibodies against Omicron BA.1, BA.2, and BA.4/5 variants was observed 90-120 days after booster vaccination. Participants who received mRNA-1273 had the highest persistence of the immunogenicity response, followed by BNT162b2, AZD1222, and BBIBP-CorV. The responses between full and half doses of mRNA-1273 were comparable. The percentage reduction of binding antibody ranged from 50 % to 75 % among all booster vaccine. Conclusions The antibody response substantially waned after 90-120 days post-booster dose. The heterologous mRNA and the viral vector booster demonstrated higher detectable rate of humoral immune responses against the Omicron variant compared to the inactivated BBIBP booster. Nevertheless, an additional fourth dose is recommended to maintain immune response against infection.
Collapse
Affiliation(s)
- Suvichada Assawakosri
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chompoonut Auphimai
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Development Agency, NSTDA, Pathum Thani 12120, Thailand
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Development Agency, NSTDA, Pathum Thani 12120, Thailand
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natthinee Sudhinaraset
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Sittisak Honsawek
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- FRS(T), the Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Batmunkh T, Moore KA, Thomson H, Altangerel B, Amraa O, Avaa N, Batbayar L, Batsukh K, Bright K, Burentogtokh T, Ha Do LA, Dorj G, Hart JD, Javkhlantugs K, Jigjidsuren S, Justice F, Li S, Licciardi PV, Mashbaatar K, Mazarakis N, Neal EF, Nguyen CD, Ochirbat B, Tsolmon B, Tuya A, Surenjav U, von Mollendorf C, Mulholland K. Immunogenicity, safety, and reactogenicity of a half- versus full-dose BNT162b2 (Pfizer-BioNTech) booster following a two-dose ChAdOx1 nCoV-19, BBIBP-CorV, or Gam-COVID-Vac priming schedule in Mongolia: a randomised, controlled, non-inferiority trial. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 42:100953. [PMID: 38357398 PMCID: PMC10865044 DOI: 10.1016/j.lanwpc.2023.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 02/16/2024]
Abstract
Background COVID-19 vaccine booster doses restore vaccine effectiveness lost from waning immunity and emerging variants. Fractional dosing may improve COVID-19 booster acceptability and uptake and will reduce the per-dose cost of COVID-19 booster programmes. We sought to quantify the immunogenicity, reactogenicity, and safety of a half-dose BNT162b2 (Pfizer-BioNTech) booster relative to the standard formulation. Methods This randomised, controlled, non-inferiority trial recruited adults in Mongolia primed with a two-dose homologous ChAdOx1 nCov-19 (Oxford-AstraZeneca, n = 129 participants), BBIBP-CorV (Sinopharm (Beijing), n = 399), or Gam-COVID-Vac (Gamaleya, n = 70) schedule. Participants were randomised (1:1) to receive a 15 μg (half-dose) or 30 μg (full-dose) BNT162b2 booster. Participants and study staff assessing reactogenicity were blinded up to day 28. Co-primary endpoints were Wuhan-Hu-1 anti-spike S1 IgG seroresponse 28 days post-boosting and reactogenicity within 7 days of boosting. The non-inferiority margin for the absolute difference in seroresponse was -10%. Differences in seroresponse were estimated from logistic regression with marginal standardisation. Geometric mean ratios of IgG were also estimated. ClinicalTrials.gov Identifier: NCT05265065. Findings Between May 27th and September 30th, 2022, 601 participants were randomized to full-dose BNT162b2 (n = 300) or half-dose (n = 301). 598 were included in safety analyses, and 587 in immunological analyses. The frequency of grade 3-4 reactions was similar between arms (half-dose: 4/299 [1.3%]; full-dose: 6/299 [2.0%]). Across all severity grades, half-dose recipients reported fewer local and systemic reactions (60% versus 72% and 25% versus 32%, respectively). Seroresponse was 84.7% (250/295) and 86.6% (253/292) in the half-dose and full-dose arms, respectively (Difference: -2.8%; 95% CI -7.7, 2.1). Geometric mean IgG titres were similar in those receiving full and half-dose boosters for the ChAdOx1 and BBIBP-CorV primed groups, but lower in the half-dose arm in Gam-COVID-Vac-primed participants (GMR: 0.71; 95% CI 0.54, 0.93). Interpretation Half-dose BNT162b2 boosting elicited an immune response that was non-inferior to a full-dose, with fewer reactions, in adults primed with ChAdOx1 nCov-19 or BBIBP-CorV. Half-dose boosting may not be suitable in adults primed with Gam-COVID-Vac. Half-dose BNT162b2 boosting may be considered in populations primed with ChAdOx1 nCov-19 or BBIBP-CorV. Funding Coalition for Epidemic Preparedness Innovations (CEPI).
Collapse
Affiliation(s)
| | - Kerryn A. Moore
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Helen Thomson
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | | | | | | | | | - Khishigjargal Batsukh
- General Laboratory of Clinical Pathology, First Central Hospital of Mongolia, Ulaanbaatar, Mongolia
| | - Kathryn Bright
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Tsogjargal Burentogtokh
- General Laboratory of Clinical Pathology, First Central Hospital of Mongolia, Ulaanbaatar, Mongolia
| | - Lien Anh Ha Do
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Gantuya Dorj
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - John D. Hart
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | | | - Sarantsetseg Jigjidsuren
- General Laboratory of Clinical Pathology, First Central Hospital of Mongolia, Ulaanbaatar, Mongolia
| | - Frances Justice
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Shuo Li
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Paul V. Licciardi
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | | | - Nadia Mazarakis
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Eleanor F.G. Neal
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Cattram Duong Nguyen
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Batbayar Ochirbat
- Mongolia Ministry of Health, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Bilegtsaikhan Tsolmon
- National Centre for Communicable Diseases, Ulaanbaatar, Mongolia
- Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Alimaa Tuya
- Onoshmed Laboratory, Sukhbaatar District, Ulaanbaatar, Mongolia
| | | | - Claire von Mollendorf
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Kim Mulholland
- Infection and Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| |
Collapse
|
9
|
Kyaw MH, Spinardi J, Zhang L, Oh HML, Srivastava A. Evidence synthesis and pooled analysis of vaccine effectiveness for COVID-19 mRNA vaccine BNT162b2 as a heterologous booster after inactivated SARS-CoV-2 virus vaccines. Hum Vaccin Immunother 2023; 19:2165856. [PMID: 36727201 PMCID: PMC9980688 DOI: 10.1080/21645515.2023.2165856] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Introduction of primary COVID-19 vaccination has helped reduce severe disease and death caused by SARS-CoV-2 infection. Understanding the protection conferred by heterologous booster regimens informs alternative vaccination strategies that enable programmatic resilience and can catalyze vaccine confidence and coverage. Inactivated SARS-CoV-2 vaccines are among the most widely used vaccines worldwide. This review synthesizes the available evidence identified as of May 26, 2022, on the safety, immunogenicity, and effectiveness of a heterologous BNT162b2 (Pfizer-BioNTech) mRNA vaccine booster dose after an inactivated SARS-CoV-2 vaccine primary series, to help protect against COVID-19. Evidence showed that the heterologous BNT16b2 mRNA vaccine booster enhances immunogenicity and improves vaccine effectiveness against COVID-19, and no new safety concerns were identified with heterologous inactivated primary series with mRNA booster combinations.
Collapse
Affiliation(s)
- Moe H Kyaw
- Vaccine Medical Affairs, Emerging Markets, Pfizer Inc, Gaithersburg, MD, USA
| | - Julia Spinardi
- Vaccine Medical Affairs, Emerging Markets, Pfizer Inc, Sao Paulo, Brazil
| | - Ling Zhang
- Real World Evidence Analytics Center of Excellence, Boehringer Ingelheim, Ridgefield, CT, USA
| | - Helen May Lin Oh
- Department of Infectious Diseases, Changi General Hospital, Singapore
| | | |
Collapse
|
10
|
Suntronwong N, Kanokudom S, Thatsanathorn T, Thongmee T, Sudhinaraset N, Wanlapakorn N, Poovorawan Y. Durability of immune response against omicron BA.2 and BA.4/5 and T cell responses after boosting with mRNA and adenoviral vector-based vaccines following heterologous CoronaVac/ChAdOx-1nCov-19 vaccination. Hum Vaccin Immunother 2023; 19:2283916. [PMID: 38014687 PMCID: PMC10760367 DOI: 10.1080/21645515.2023.2283916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
Heterologous vaccination with inactivated vaccine followed by adenoviral vector-based vaccine has shown superiority in enhancing immune response compared to homologous primary series. However, data comparing immunity decline after a third booster following heterologous CoronaVac/ChAdOx-1nCov-19 has been limited. Here, we assessed neutralizing activity against omicron variant and T cell response at 3 months monitoring in 96 individuals who received ChAdOx-1nCov-19, BNT162b2, or mRNA-1273 as a third dose following heterologous CoronaVac/ChAdOx-1nCov-19. Comparing the antibody levels at 3 and 1 month(s) after the third booster, the results showed a persistence of anti-RBD IgG in all vaccine regimens, with the IgG level waning slower in the ChAdOx-1nCov-19 boosted group (geometric mean ratio (GMR): 0.64 (95%CI: 0.59-0.70)) compared to the BNT162b2 (0.34 (95%CI:0.31-0.38)) and mRNA-1273 boosted groups (0.32 (95%CI: 0.29-0.36)). Neutralizing activity against omicron BA.2 and BA.4/5 dropped by 1.2 to 1.5-fold but remained detectable, with the highest level observed in the mRNA-1273 group, followed by BNT162b2 and ChAdOx-1nCov-19 groups, respectively. Furthermore, the number of individuals with T cell reactivity decreased in BNT162b2 and mRNA-1273 groups, while it increased in ChAdOx-1nCov-19 group at 3-month post-boost compared to 1 month. Data on the durability of immune response could help comprehensively optimize the booster vaccine strategy.
Collapse
Affiliation(s)
- Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Chulalongkorn University, Bangkok, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthinee Sudhinaraset
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok, Thailand
| |
Collapse
|
11
|
Bingula R, Chabrolles H, Bonnet B, Archimbaud C, Brebion A, Cosme J, Ollier A, Dutheil F, Junda M, Mirand A, Regagnon C, Vidal M, Henquell C, Evrard B. Increase over time of antibody levels 3 months after a booster dose as an indication of better protection against Omicron infection. Emerg Microbes Infect 2023; 12:2184176. [PMID: 36848040 PMCID: PMC10013501 DOI: 10.1080/22221751.2023.2184176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The third, "booster", vaccination increases the overall immune response against SARS-CoV-2 variants. However, after the initial peak at around 3 weeks post-vaccination, anti-spike antibody levels decline. Post-booster kinetics of cellular response has been less investigated and there is no documented evidence of a true boosting effect. Furthermore, multiple studies underline the less effective immune responses against Omicron, the latest variant of concern, at both humoral and cellular levels. In this letter, we analyse humoral (anti-RBD IgG levels) and cellular (IFN-γ release assay) immune response in 205 health care workers 3 weeks and 3 months after administration of an mRNA-based booster dose, either mRNA-1273 or BNT162b2. Since all subjects were SARS-CoV-2 infection-naïve, we also looked at the incidence of Omicron infection between 3 and 6 months post-booster.At both timepoints, 3x mRNA-1273 vaccination had the highest overall antibody and IFN-γ levels, followed by 3x BNT162b2 vaccination and heterologous mRNA-based regimens. Heterologous ChAdOx1-mRNA-based regimen had the lowest antibody levels while cellular response equal to that of 3x BNT162b2 vaccination and heterologous mRNA-based regimens. Our results show that both humoral and cellular responses waned at 3 months for all vaccination regimens. However, we identified three trajectories of dosage variation. Interestingly, the subgroup of subjects with increasing anti-RBD IgG levels over time had a lower incidence of Omicron infection. Whether increasing humoral response at 3 months post-booster is more indicative of protection than a high initial peak remains to be confirmed in a larger cohort.
Collapse
Affiliation(s)
- Rea Bingula
- UMR UNH, ECREIN, Immunology Laboratory, Faculty of Medicine, Clermont Auvergne University, Clermont-Ferrand, France
| | - Hélène Chabrolles
- Virology Department, Clermont-Ferrand University Hospital (CHU Clermont-Ferrand), 3IHP, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Clermont Auvergne University, Clermont-Ferrand, France
| | - Benjamin Bonnet
- UMR UNH, ECREIN, Immunology Laboratory, Faculty of Medicine, Clermont Auvergne University, Clermont-Ferrand, France.,Immunology Department, Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Clermont-Ferrand, France
| | - Christine Archimbaud
- Virology Department, Clermont-Ferrand University Hospital (CHU Clermont-Ferrand), 3IHP, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Clermont Auvergne University, Clermont-Ferrand, France
| | - Amélie Brebion
- Virology Department, Clermont-Ferrand University Hospital (CHU Clermont-Ferrand), 3IHP, Clermont-Ferrand, France
| | - Justine Cosme
- Immunology Department, Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Clermont-Ferrand, France
| | - Amandine Ollier
- Clinical Research and Innovation Direction, Clermont-Ferrand University Hospital (CHU Clermont-Ferrand) 3 IHP, Clermont-Ferrand, France
| | - Frédéric Dutheil
- Preventive and Occupational Medicine, Clermont-Ferrand University Hospital (CHU Clermont-Ferrand), Clermont-Ferrand, France.,CNRS, LaPSCo Physiological and Psychosocial Stress, Clermont Auvergne University, Clermont-Ferrand, France
| | - Maud Junda
- Immunology Department, Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Clermont-Ferrand, France
| | - Audrey Mirand
- Virology Department, Clermont-Ferrand University Hospital (CHU Clermont-Ferrand), 3IHP, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Clermont Auvergne University, Clermont-Ferrand, France
| | - Christel Regagnon
- Virology Department, Clermont-Ferrand University Hospital (CHU Clermont-Ferrand), 3IHP, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Clermont Auvergne University, Clermont-Ferrand, France
| | - Magali Vidal
- Virology Department, Clermont-Ferrand University Hospital (CHU Clermont-Ferrand), 3IHP, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Clermont Auvergne University, Clermont-Ferrand, France
| | - Cécile Henquell
- Virology Department, Clermont-Ferrand University Hospital (CHU Clermont-Ferrand), 3IHP, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Clermont Auvergne University, Clermont-Ferrand, France
| | - Bertrand Evrard
- UMR UNH, ECREIN, Immunology Laboratory, Faculty of Medicine, Clermont Auvergne University, Clermont-Ferrand, France.,Immunology Department, Clermont-Ferrand University Hospital (CHU Clermont Ferrand), Clermont-Ferrand, France
| |
Collapse
|
12
|
Kanokudom S, Suntronwong N, Duangchinda T, Wanlapakorn N, Poovorawan Y. Dynamic Antibody Response and Hybrid Immunity Following Multiple COVID-19 Vaccine Doses and Infection: A Case Study. Cureus 2023; 15:e45531. [PMID: 37731681 PMCID: PMC10507991 DOI: 10.7759/cureus.45531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 09/22/2023] Open
Abstract
This case study highlights the dynamic nature of the antibody response to SARS-CoV-2 in a vulnerable subject aged 70 years between 2021 and 2023. This individual had been vaccinated with six doses of the ancestral (Wuhan-Hu-1) COVID-19 vaccine and had a breakthrough infection 126 days after receiving Covovax™- (CO) as the sixth dose. The serostatus for total immunoglobulin specific to the receptor binding domain (total RBD Ig) changed from negative to positive following a two-dose CoronaVac (CV) vaccination, indicating a successful immune response. Booster doses, including AZD1222 (AZ), half-dose BNT162b2 (PF), and CO, increased the total RBD Ig levels, except for CV. The individual experienced a breakthrough infection by the Omicron BA.5 variant, leading to a substantial surge in total RBD Ig to over 105 U/mL. This generated sustained and extended antibody persistence, with the half-life of total RBD Ig lasting approximately 103.6 days. Furthermore, it has been observed that this breakthrough infection generated the highest neutralizing antibodies against BA.5, followed by XBB.1.5, BQ.1.1, and BA.2.75, respectively.
Collapse
Affiliation(s)
- Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, THA
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, THA
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC) National Science and Technology Development Agency, Pathum Thani, THA
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, THA
| | - Yong Poovorawan
- Center of Excellence In Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, THA
| |
Collapse
|
13
|
Montero S, Urrunaga-Pastor D, Soto-Becerra P, Cvetkovic-Vega A, Guillermo-Roman M, Figueroa-Montes L, Sagástegui AA, Alvizuri-Pastor S, Contreras-Macazana RM, Apolaya-Segura M, Díaz-Vélez C, Maguiña JL. Humoral response after a BNT162b2 heterologous third dose of COVID-19 vaccine following two doses of BBIBP-CorV among healthcare personnel in Peru. Vaccine X 2023; 14:100311. [PMID: 37207103 PMCID: PMC10162476 DOI: 10.1016/j.jvacx.2023.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/21/2023] Open
Abstract
Background The inactivated virus vaccine, BBIBP-CorV, was principally distributed across low- and middle-income countries as primary vaccination strategy to prevent poor COVID-19 outcomes. Limited information is available regarding its effect on heterologous boosting. We aim to evaluate the immunogenicity and reactogenicity of a third booster dose of BNT162b2 following a double BBIBP-CorV regime. Methods We conducted a cross-sectional study among healthcare providers from several healthcare facilities of the Seguro Social de Salud del Perú - ESSALUD. We included participants two-dose BBIBP-CorV vaccinated who presented a three-dose vaccination card at least 21 days passed since the vaccinees received their third dose and were willing to provide written informed consent. Antibodies were determined using LIAISON® SARS-CoV-2 TrimericS IgG (DiaSorin Inc., Stillwater, USA). Factors potentially associated with immunogenicity, and adverse events, were considered. We used a multivariable fractional polynomial modeling approach to estimate the association between anti-SARS-CoV-2 IgG antibodies' geometric mean (GM) ratios and related predictors. Results We included 595 subjects receiving a third dose with a median (IQR) age of 46 [37], [54], from which 40% reported previous SARS-CoV-2 infection. The overall geometric mean (IQR) of anti-SARS-CoV-2 IgG antibodies was 8,410 (5,115 - 13,000) BAU/mL. Prior SARS-CoV-2 history and full/part-time in-person working modality were significantly associated with greater GM. Conversely, time from boosting to IgG measure was associated with lower GM levels. We found 81% of reactogenicity in the study population; younger age and being a nurse were associated with a lower incidence of adverse events. Conclusions Among healthcare providers, a booster dose of BNT162b2 following a full BBIBP-CorV regime provided high humoral immune protection. Thus, SARS-CoV-2 previous exposure and working in person displayed as determinants that increase anti-SARS-CoV-2 IgG antibodies.
Collapse
Affiliation(s)
- Stephanie Montero
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
| | - Diego Urrunaga-Pastor
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Unidad para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola (USIL), Lima, Peru
| | - Percy Soto-Becerra
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Universidad Continental, Huancayo, Perú
| | - Aleksandar Cvetkovic-Vega
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Facultad de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Peru
| | - Martina Guillermo-Roman
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
| | | | | | | | | | - Moisés Apolaya-Segura
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Facultad de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Peru
| | - Cristian Díaz-Vélez
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Facultad de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Peru
| | - Jorge L. Maguiña
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, ESSALUD, Lima, Peru
- Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
14
|
Andersson NW, Thiesson EM, Baum U, Pihlström N, Starrfelt J, Faksová K, Poukka E, Lund LC, Hansen CH, Aakjær M, Kjær J, Cohet C, Goossens M, Andersen M, Hallas J, Meijerink H, Ljung R, Hviid A. Comparative effectiveness of heterologous third dose vaccine schedules against severe covid-19 during omicron predominance in Nordic countries: population based cohort analyses. BMJ 2023; 382:e074325. [PMID: 37487623 PMCID: PMC10360027 DOI: 10.1136/bmj-2022-074325] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVE To investigate the comparative vaccine effectiveness of heterologous booster schedules (ie, three vaccine doses) compared with primary schedules (two vaccine doses) and with homologous mRNA vaccine booster schedules (three vaccine doses) during a period of omicron predominance. DESIGN Population based cohort analyses. SETTING Denmark, Finland, Norway, and Sweden, 27 December 2020 to 31 December 2022. PARTICIPANTS All adults aged ≥18 years who had received at least a primary vaccination schedule of AZD1222 (Oxford-AstraZeneca) or monovalent SARS-CoV-2 wild type (ancestral) strain based mRNA vaccines BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna), in any combination. MAIN OUTCOME MEASURES The main outcome measure was country combined risks of covid-19 related hospital admission and death with covid-19 and additional outcomes of covid-19 related admission to an intensive care unit and SARS-CoV-2 infection. During a period of omicron predominance, these outcomes were compared in those who received a heterologous booster versus primary schedule (matched analyses) and versus those who received a homologous mRNA vaccine booster (weighted analyses). Follow-up was for 75 days from day 14 after the booster dose; comparative vaccine effectiveness was calculated as 1-risk ratio. RESULTS Across the four Nordic countries, 1 086 418 participants had received a heterologous booster schedule of AZD1222+BNT162b2 or mRNA-1273 and 2 505 093 had received a heterologous booster schedule of BNT162b2+mRNA-1273. Compared with the primary schedule only (two doses), the vaccine effectiveness of heterologous booster schedules comprising AZD1222+BNT162b2 or mRNA-1273 and BNT162b2+mRNA-1273 was 82.7% (95% confidence interval 77.1% to 88.2%) and 81.5% (78.9% to 84.2%) for covid-19 related hospital admission and 95.9% (91.6% to 100.0%) and 87.5% (82.5% to 92.6%) for death with covid-19, respectively. Homologous mRNA booster schedules were similarly associated with increased protection against covid-19 related hospital admission (≥76.5%) and death with covid-19 (≥84.1%) compared with previous primary course vaccination only. When a heterologous booster schedule was compared with the homologous booster schedule, vaccine effectiveness was 27.2% (3.7% to 50.6%) for AZD1222+BNT162b2 or mRNA-1273 and 23.3% (15.8% to 30.8%) for BNT162b2+mRNA-1273 schedules against covid-19 related hospital admission and 21.7% (-8.3% to 51.7%) and 18.4% (-15.7% to 52.5%) against death with covid-19, respectively. CONCLUSION Heterologous booster schedules are associated with increased protection against severe, omicron related covid-19 outcomes compared with primary course schedules and homologous booster schedules.
Collapse
Affiliation(s)
| | | | - Ulrike Baum
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Nicklas Pihlström
- Division of Licensing, Swedish Medical Products Agency, Uppsala, Sweden
| | - Jostein Starrfelt
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristýna Faksová
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Eero Poukka
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lars Christian Lund
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Christian Holm Hansen
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Mia Aakjær
- Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper Kjær
- Data Analytics Center, Danish Medicines Agency, Copenhagen, Denmark
| | | | | | - Morten Andersen
- Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper Hallas
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Clinical Pharmacology, Odense University Hospital, Odense, Denmark
| | - Hinta Meijerink
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
| | - Rickard Ljung
- Division of Use and Information, Swedish Medical Products Agency, Uppsala, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
15
|
Liu X, Munro APS, Wright A, Feng S, Janani L, Aley PK, Babbage G, Baker J, Baxter D, Bawa T, Bula M, Cathie K, Chatterjee K, Dodd K, Enever Y, Fox L, Qureshi E, Goodman AL, Green CA, Haughney J, Hicks A, Jones CE, Kanji N, van der Klaauw AA, Libri V, Llewelyn MJ, Mansfield R, Maallah M, McGregor AC, Minassian AM, Moore P, Mughal M, Mujadidi YF, Belhadef HT, Holliday K, Osanlou O, Osanlou R, Owens DR, Pacurar M, Palfreeman A, Pan D, Rampling T, Regan K, Saich S, Saralaya D, Sharma S, Sheridan R, Stokes M, Thomson EC, Todd S, Twelves C, Read RC, Charlton S, Hallis B, Ramsay M, Andrews N, Lambe T, Nguyen-Van-Tam JS, Cornelius V, Snape MD, Faust SN. Persistence of immune responses after heterologous and homologous third COVID-19 vaccine dose schedules in the UK: eight-month analyses of the COV-BOOST trial. J Infect 2023; 87:18-26. [PMID: 37085049 PMCID: PMC10116128 DOI: 10.1016/j.jinf.2023.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose in June 2021. Monovalent messenger RNA (mRNA) COVID-19 vaccines were subsequently widely used for the third and fourth-dose vaccination campaigns in high-income countries. Real-world vaccine effectiveness against symptomatic infections following third doses declined during the Omicron wave. This report compares the immunogenicity and kinetics of responses to third doses of vaccines from day (D) 28 to D242 following third doses in seven study arms. METHODS The trial initially included ten experimental vaccine arms (seven full-dose, three half-dose) delivered at three groups of six sites. Participants in each site group were randomised to three or four experimental vaccines, or MenACWY control. The trial was stratified such that half of participants had previously received two primary doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) and half had received two doses of BNT162b2 (Pfizer-BioNtech, hereafter referred to as BNT). The D242 follow-up was done in seven arms (five full-dose, two half-dose). The BNT vaccine was used as the reference as it was the most commonly deployed third-dose vaccine in clinical practice in high-income countries. The primary analysis was conducted using all randomised and baseline seronegative participants who were SARS-CoV-2 naïve during the study and who had not received a further COVID-19 vaccine for any reason since third dose randomisation. RESULTS Among the 817 participants included in this report, the median age was 72 years (IQR: 55-78) with 50.7% being female. The decay rates of anti-spike IgG between vaccines are different among both populations who received initial doses of ChAd/ChAd and BNT/BNT. In the population that previously received ChAd/ChAd, mRNA vaccines had the highest titre at D242 following their vaccine dose although Ad26. COV2. S (Janssen; hereafter referred to as Ad26) showed slower decay. For people who received BNT/BNT as their initial doses, a slower decay was also seen in the Ad26 and ChAd arms. The anti-spike IgG became significantly higher in the Ad26 arm compared to the BNT arm as early as 3 months following vaccination. Similar decay rates were seen between BNT and half-BNT; the geometric mean ratios ranged from 0.76 to 0.94 at different time points. The difference in decay rates between vaccines was similar for wild-type live virus-neutralising antibodies and that seen for anti-spike IgG. For cellular responses, the persistence was similar between study arms. CONCLUSIONS Heterologous third doses with viral vector vaccines following two doses of mRNA achieve more durable humoral responses compared with three doses of mRNA vaccines. Lower doses of mRNA vaccines could be considered for future booster campaigns.
Collapse
Affiliation(s)
- Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Alasdair P S Munro
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Annie Wright
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Leila Janani
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Gavin Babbage
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jonathan Baker
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | - Tanveer Bawa
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Marcin Bula
- NIHR Liverpool Clinical Research Facility, Liverpool, UK
| | - Katrina Cathie
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Krishna Chatterjee
- NIHR Cambridge Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kate Dodd
- NIHR Liverpool Clinical Research Facility, Liverpool, UK
| | | | - Lauren Fox
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Ehsaan Qureshi
- NIHR/Wellcome Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Anna L Goodman
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK; MRC Clinical Trials Unit, University College London, London, UK
| | - Christopher A Green
- NIHR/Wellcome Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - John Haughney
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, UK
| | | | - Christine E Jones
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Nasir Kanji
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Agatha A van der Klaauw
- Wellcome-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Vincenzo Libri
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - Mina Maallah
- Department of Infectious Diseases and Tropical Medicine, London Northwest University Healthcare, London, UK
| | - Alastair C McGregor
- Department of Infectious Diseases and Tropical Medicine, London Northwest University Healthcare, London, UK
| | - Angela M Minassian
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | - Kyra Holliday
- NIHR Leeds Clinical Research Facility, Leeds Teaching Hospitals Trust and University of Leeds, Leeds, UK
| | - Orod Osanlou
- Public Health Wales, Betsi Cadwaladr University Health Board, Bangor University, Bangor, UK
| | | | - Daniel R Owens
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Mihaela Pacurar
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Adrian Palfreeman
- University Hospitals of Leicester NHS Trust, University of Leicester, Leicester, UK
| | - Daniel Pan
- University Hospitals of Leicester NHS Trust, University of Leicester, Leicester, UK; Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Tommy Rampling
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Karen Regan
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Stephen Saich
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Dinesh Saralaya
- Bradford Institute for Health Research and Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Sunil Sharma
- University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Ray Sheridan
- Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK
| | - Matthew Stokes
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Emma C Thomson
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, UK; MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Shirley Todd
- Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK
| | - Chris Twelves
- NIHR Leeds Clinical Research Facility, Leeds Teaching Hospitals Trust and University of Leeds, Leeds, UK
| | - Robert C Read
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | | | - Mary Ramsay
- UK Health Security Agency, Colindale, London, UK
| | - Nick Andrews
- UK Health Security Agency, Colindale, London, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
16
|
Palmer CD, Scallan CD, Kraemer Tardif LD, Kachura MA, Rappaport AR, Koralek DO, Uriel A, Gitlin L, Klein J, Davis MJ, Venkatraman H, Hart MG, Jaroslavsky JR, Kounlavouth S, Marrali M, Nganje CN, Bae K, Yan T, Leodones K, Egorova M, Hong SJ, Kuan J, Grappi S, Garbes P, Jooss K, Ustianowski A. GRT-R910: a self-amplifying mRNA SARS-CoV-2 vaccine boosts immunity for ≥6 months in previously-vaccinated older adults. Nat Commun 2023; 14:3274. [PMID: 37280238 DOI: 10.1038/s41467-023-39053-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
SARS-CoV-2 has resulted in high levels of morbidity and mortality world-wide, and severe complications can occur in older populations. Humoral immunity induced by authorized vaccines wanes within 6 months, and frequent boosts may only offer transient protection. GRT-R910 is an investigational self-amplifying mRNA (samRNA)-based SARS-CoV-2 vaccine delivering full-length Spike and selected conserved non-Spike T cell epitopes. This study reports interim analyses for a phase I open-label dose-escalation trial evaluating GRT-R910 in previously vaccinated healthy older adults (NCT05148962). Primary endpoints of safety and tolerability were assessed. Most solicited local and systemic adverse events (AEs) following GRT-R910 dosing were mild to moderate and transient, and no treatment-related serious AEs were observed. The secondary endpoint of immunogenicity was assessed via IgG binding assays, neutralization assays, interferon-gamma ELISpot, and intracellular cytokine staining. Neutralizing antibody titers against ancestral Spike and variants of concern were boosted or induced by GRT-R910 and, contrasting to authorized vaccines, persisted through at least 6 months after the booster dose. GRT-R910 increased and/or broadened functional Spike-specific T cell responses and primed functional T cell responses to conserved non-Spike epitopes. This study is limited due to small sample size, and additional data from ongoing studies will be required to corroborate these interim findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alison Uriel
- North Manchester General Hospital & University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew Ustianowski
- North Manchester General Hospital & University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Voysey M, Flaxman A, Aboagye J, Aley PK, Belij-Rammerstorfer S, Bibi S, Bittaye M, Cappuccini F, Charlton S, Clutterbuck EA, Davies S, Dold C, Edwards NJ, Ewer KJ, Faust SN, Folegatti PM, Fowler J, Gilbride C, Gilbert SC, Godfrey L, Hallis B, Humphries HE, Jenkin D, Kerridge S, Mujadidi YF, Plested E, Ramasamy MN, Robinson H, Sanders H, Snape MD, Song R, Thomas KM, Ulaszewska M, Woods D, Wright D, Pollard AJ, Lambe T. Persistence of the immune response after two doses of ChAdOx1 nCov-19 (AZD1222): 1 year of follow-up of two randomized controlled trials. Clin Exp Immunol 2023; 211:280-287. [PMID: 36729167 PMCID: PMC10038323 DOI: 10.1093/cei/uxad013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
The trajectory of immune responses following the primary dose series determines the decline in vaccine effectiveness over time. Here we report on maintenance of immune responses during the year following a two-dose schedule of ChAdOx1 nCoV-19/AZD1222, in the absence of infection, and also explore the decay of antibody after infection. Total spike-specific IgG antibody titres were lower with two low doses of ChAdOx1 nCoV-19 vaccines (two low doses) (P = 0.0006) than with 2 standard doses (the approved dose) or low dose followed by standard dose vaccines regimens. Longer intervals between first and second doses resulted in higher antibody titres (P < 0.0001); however, there was no evidence that the trajectory of antibody decay differed by interval or by vaccine dose, and the decay of IgG antibody titres followed a similar trajectory after a third dose of ChAdOx1 nCoV-19. Trends in post-infection samples were similar with an initial rapid decay in responses but good persistence of measurable responses thereafter. Extrapolation of antibody data, following two doses of ChAdOx1 nCov-19, demonstrates a slow rate of antibody decay with modelling, suggesting that antibody titres are well maintained for at least 2 years. These data suggest a persistent immune response after two doses of ChAdOx1 nCov-19 which will likely have a positive impact against serious disease and hospitalization.
Collapse
Affiliation(s)
- Merryn Voysey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amy Flaxman
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jeremy Aboagye
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mustapha Bittaye
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Federica Cappuccini
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Sophie Davies
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Nick J Edwards
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK
| | - Katie J Ewer
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Pedro M Folegatti
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jamie Fowler
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ciaran Gilbride
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK
| | - Leila Godfrey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Daniel Jenkin
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK
| | - Simon Kerridge
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Yama F Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Emma Plested
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Maheshi N Ramasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Helen Sanders
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Rinn Song
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Marta Ulaszewska
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, UK
| | - Danielle Woods
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Daniel Wright
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Wen GP, Zhu M, Li LR, Li XJ, Ye HM, Zhou YL. Homologous booster immunization with an inactivated vaccine induced robust antibody response in healthcare workers: A retrospective study. Front Immunol 2023; 14:1099629. [PMID: 36817474 PMCID: PMC9935570 DOI: 10.3389/fimmu.2023.1099629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Coronavirus Disease 2019 (Covid-19) severely impacted the health, society, and economy around the world. With declining protective efficacy of primary vaccination and the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, a Covid-19 booster vaccination is being fully implemented globally. Many people received three doses of BBIBP-CorV inactivated vaccine in China and other developing countries. However, the antibody response and immune persistence of the homologous BBIBP-CorV booster vaccination is yet to be thoroughly evaluated, as previous studies focused within one month after the third dose. In this study, 97 participants were enrolled to analyze the antibody response and immune persistence within 6 months as well as the safety within 7 days after the third-dose of homologous BBIBP-CorV inactivated vaccine. The seroconversion rate for total antibody against the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein were both 100% at month 1 and month 6 after the third dose. The IgG against the RBD of the SARS-CoV-2 S protein seroconversion rate increased from 42.27% before the third dose to 100% 1 month after the third dose and then slightly decreased to 98.97% 5 months later. Positive IgM against the RBD of the SARS-CoV-2 S protein was rare and was observed in only one participant at month 1 after the third dose. The neutralizing antibody levels at month 1 and month 6 after the third dose increased 63.32-fold and 13.16-fold compared with those before the third dose, and the positive rate for neutralizing antibody was still 100% at month 6 after the third dose. Importantly, the antibody responses induced by the vaccine and immune persistence were not affected by sex or age. No serious adverse reactions were reported. Total antibody and IgG against the RBD of the SARS-CoV-2 S protein were highly correlated with neutralizing antibody, suggesting that total antibody and IgG against the RBD of the SARS-CoV-2 S protein could be used as predictors for neutralizing antibody. In conclusion, the third dose of homologous BBIBP-CorV inactivated vaccine induced a robust antibody response and moderate immune persistence. These finding are of great significance for development future vaccination strategies.
Collapse
Affiliation(s)
- Gui-Ping Wen
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Min Zhu
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Li-Rong Li
- Department of Hospital Infection Management, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiu-Juan Li
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui-Ming Ye
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yu-Lin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
19
|
Kang JM, Lee J, Huh KH, Joo DJ, Lee JG, Kim HY, Lee M, Jung I, Kim MY, Kim S, Park Y, Kim MS. Comparison of humoral immunogenicity in solid organ transplant recipients after third-dose mRNA vaccine with homologous or heterologous schedules: An observational study. J Clin Virol 2023; 159:105374. [PMID: 36592547 PMCID: PMC9800015 DOI: 10.1016/j.jcv.2022.105374] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Solid organ transplant recipients (SOTRs) are susceptible to severe coronavirus disease 2019 (COVID-19); however, immunogenicity studies of the Omicron variants per vaccination schedules are still lacking. We examined humoral immunogenicity following third-dose mRNA vaccine administration in Korean SOTRs who received primary COVID-19 vaccine series on homologous or heterologous schedules. METHODS We recruited SOTRs at Severance Hospital from October 27, 2021, to March 31, 2022. Blood samples were collected between 14 days and 5 months after the second and third mRNA vaccine (BNT162b2 or mRNA-1273) doses. SARS-CoV-2 anti-spike IgG titer was analyzed. The neutralization inhibition rate was analyzed using the surrogate neutralization assay for the wild-type, Delta, and Omicron variants. RESULTS No significant differences existed in the SARS-CoV-2 anti-spike IgG positivity rate between the homologous BNT162b2/BNT162b2/BNT162b2 (85%) and other heterologous groups (83% of ChAdOx1/ChAdOx1/BNT162b2, 90% of ChAdOx1/ChAdOx1/mRNA-1273, and 78% of ChAdOx1/BNT162b2/BNT162b2). No significant difference existed in the neutralization inhibition rates between the four groups for wild-type, Delta, and Omicron variants. Median neutralization inhibition rates against the Omicron variant (2-5%) were significantly lower than those against the wild-type (87-97%) and Delta (55-89%) variants (P < 0.001). CONCLUSIONS Regardless of the schedule, the neutralization inhibition rate against the Omicron variant was poor; therefore, additional preventive measures are required in such high-risk populations.
Collapse
Affiliation(s)
- Ji-Man Kang
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of); Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (the Republic of).
| | - Juhan Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of); The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Kyu Ha Huh
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of); The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Dong Jin Joo
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of); The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Jae Geun Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of); The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Ha Yan Kim
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Myeongjee Lee
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Min Young Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of); Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sinyoung Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Younhee Park
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of).
| | - Myoung Soo Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (the Republic of); The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea (the Republic of)..
| |
Collapse
|
20
|
Jaiswal SR, Saifullah A, Arunachalam J, Lakhchaura R, Tailor D, Mehta A, Bhagawati G, Aiyer H, Biswas S, Khamar B, Malhotra SV, Chakrabarti S. Augmenting Vaccine Efficacy against Delta Variant with 'Mycobacterium- w'-Mediated Modulation of NK-ADCC and TLR-MYD88 Pathways. Vaccines (Basel) 2023; 11:vaccines11020328. [PMID: 36851206 PMCID: PMC9966412 DOI: 10.3390/vaccines11020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium-w (Mw) was shown to boost adaptive natural killer (ANK) cells and protect against COVID-19 during the first wave of the pandemic. As a follow-up of the trial, 50 healthcare workers (HCW) who had received Mw in September 2020 and subsequently received at least one dose of ChAdOx1 nCoV-19 vaccine (Mw + ChAdOx1 group) were monitored for symptomatic COVID-19 during a major outbreak with the delta variant of SARS-CoV-2 (April-June 2021), along with 201 HCW receiving both doses of the vaccine without Mw (ChAdOx1 group). Despite 48% having received just a single dose of the vaccine in the Mw + ChAdOx1 group, only two had mild COVID-19, compared to 36 infections in the ChAdOx1 group (HR-0.46, p = 0.009). Transcriptomic studies revealed an enhanced adaptive NK cell-dependent ADCC in the Mw + ChAdOx1 group, along with downregulation of the TLR2-MYD88 pathway and concomitant attenuation of downstream inflammatory pathways. This might have resulted in robust protection during the pandemic with the delta variant.
Collapse
Affiliation(s)
- Sarita Rani Jaiswal
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, New Delhi 110096, India
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, India
| | - Ashraf Saifullah
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
| | - Jaganath Arunachalam
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, New Delhi 110096, India
| | - Rohit Lakhchaura
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
| | - Dhanir Tailor
- Department of Cell, Development & Cancer Biology and Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anupama Mehta
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
| | - Gitali Bhagawati
- Department of Pathology and Microbiology, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
| | - Hemamalini Aiyer
- Department of Pathology and Microbiology, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, India
| | - Bakulesh Khamar
- Research & Development, Cadila Pharmaceuticals Ltd., Ahmedabad 382225, India
| | - Sanjay V. Malhotra
- Department of Cell, Development & Cancer Biology and Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Suparno Chakrabarti
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, New Delhi 110096, India
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
- Correspondence: or
| |
Collapse
|
21
|
Hannawi S, Saf Eldin L, Abuquta A, Alamadi A, Mahmoud SA, Li J, Chen Y, Xie L. Safety and immunogenicity of a bivalent SARS-CoV-2 protein booster vaccine, SCTV01C in adults previously vaccinated with inactivated vaccine: A randomized, double-blind, placebo-controlled phase 1/2 clinical trial. J Infect 2023; 86:154-225. [PMID: 36509358 PMCID: PMC9731927 DOI: 10.1016/j.jinf.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Suad Hannawi
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Linda Saf Eldin
- General Surgery Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Alaa Abuquta
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Ahmad Alamadi
- Ear, Nose and Throat Department (ENT), Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | | | - Jian Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Yuanxin Chen
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China; Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing China.
| |
Collapse
|
22
|
Sim W, Kang H, Jung J, Lee J, Ko GY, Park HS, Choi J, Park K, Oh EJ. Comparison of humoral and cellular immune responses between ChAd-BNT heterologous vaccination and BNT-BNT homologous vaccination following the third BNT dose: A prospective cohort study. Front Immunol 2023; 14:1120556. [PMID: 36936965 PMCID: PMC10017529 DOI: 10.3389/fimmu.2023.1120556] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction The differential immune responses after two additional BNT162b2 (BNT) booster doses between ChAdOx1 nCoV-10 (ChAd)-primed and BNT-primed groups have not been elucidated. The aim of this study was to compare vaccine-induced humoral and cellular immune responses and evaluate breakthrough infection between the two vaccination strategies. Methods In 221 healthy subjects (111 in the ChAd group), longitudinal immune responses were monitored at 3, 4, and 6 months after the 2nd dose and 1, 3, and 6 months after the 3rd dose. Humoral immunity was measured by two fully automated chemiluminescent immunoassays (Elecsys and Abbott) and a surrogate virus neutralization test (sVNT). Cellular immunity was assessed by two interferon-γ (IFN-γ) release assays (QuantiFERON SARS-CoV-2 and Covi-FERON). Results After the 2nd dose of BNT vaccination, total antibody levels were higher in the ChAd group, but IgG antibody and sVNT results were higher in the BNT group. Following the 3rd dose vaccination, binding antibody titers were significantly elevated in both groups (ChAD-BNT; 15.4 to 17.8-fold, BNT-BNT; 22.2 to 24.6-fold), and the neutralizing capacity was increased by 1.3-fold in both cohorts. The ChAd-BNT group had lower omicron neutralization positivity than the BNT-BNT group (P = 0.001) at 6 months after the 3rd dose. Cellular responses to the spike antigen also showed 1.7 to 3.0-fold increases after the 3rd dose, which gradually declined to the levels equivalent to before the 3rd vaccination. The ChAd cohort tended to have higher IFN-γ level than the BNT cohort for 3-6 months after the 2nd and 3rd doses. The frequency of breakthrough infection was higher in the ChAd group (44.8%) than in the BNT group (28.1%) (P = 0.0219). Breakthrough infection induced increased humoral responses in both groups, and increase of cellular response was significant in the ChAd group. Discussion Our study showed differential humoral and cellular immune responses between ChAd-BNT-BNT heterologous and BNT-BNT-BNT homologous vaccination cohorts. The occurrence of low antibody levels in the ChAd-primed cohort in the humoral immune response may be associated with an increased incidence of breakthrough infections. Further studies are needed on the benefits of enhanced cellular immunity in ChAd-primed cohorts.
Collapse
Affiliation(s)
- Wooho Sim
- Department of Internal Medicines, The Armed Forces Capital Hospital, Seongnam, Republic of Korea
| | - Hyunhye Kang
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Resesarch and Development Institute for In Vitro Diagnostic Medical Devices, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Jung
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Resesarch and Development Institute for In Vitro Diagnostic Medical Devices, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jihyun Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Geon Young Ko
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hye-Sun Park
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeewan Choi
- Infectious Disease Response Division, Armed Forces Medical Command, Seongnam, Republic of Korea
| | - Kinam Park
- Medical Corps, Republic of Korea Army, Gapyeong, Republic of Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Resesarch and Development Institute for In Vitro Diagnostic Medical Devices, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- *Correspondence: Eun-Jee Oh,
| |
Collapse
|
23
|
Hannawi S, Saifeldin L, Abuquta A, Alamadi A, Mahmoud SA, Hassan A, Liu D, Yan L, Xie L. Safety and immunogenicity of a bivalent SARS-CoV-2 protein booster vaccine, SCTV01C, in adults previously vaccinated with mRNA vaccine: a randomized, double-blind, placebo-controlled phase 1/2 clinical trial. EBioMedicine 2022; 87:104386. [PMID: 36470077 PMCID: PMC9720098 DOI: 10.1016/j.ebiom.2022.104386] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Booster vaccination is an efficient way to address the waning protection of vaccines and immune escape of SARS-CoV-2 variants. We aimed to assess the safety and immunogenicity of SCTV01C, a novel bivalent protein vaccine as a booster for people who previously received two doses of mRNA vaccine. METHODS In this randomized, phase 1/2 trial, adults fully vaccinated with mRNA vaccines 3-24 month earlier were enrolled. Participants received SCTV01C at 20 μg, 40 μg or placebo. The primary endpoints were adverse reactions within 7 days and immunogenicity on Day 28 after vaccination. This trial was registered with ClinicalTrials.gov (NCT05043311). FINDINGS Between January 27 and April 28, 2022, 234 adults were randomly assigned to receive SCTV01C or placebo. The most common solicited adverse events (AEs) were Grade 1 injection-site pain (10.7%) and pyrexia (6.3%). There were no reports of Grade 3 or above solicited AE, serious AEs or AEs of special interests. On Day 28 post the booster, the geometric mean concentrations (GMCs) of the specific binding IgG antibodies to spike protein for placebo, 20 μg and 40 μg SCTV01C were 1649, 4153 and 5354 BAU/mL, with fold of increase from baseline of 1.0, 2.8 and 3.4-fold, respectively. GMTs of neutralizing antibodies against live Delta variant were 1280, 3542, and 4112, with fold of increase of 1.1, 3.9 and 4.1-fold, respectively; GMTs of neutralizing antibodies against live Omicron variant were 218, 640, and 1083, with fold of increase of 1.1, 4.4 and 5.1-fold, respectively. Participants with low neutralizing antibody titers at baseline (below the lower limit of quantitation) had 64.0 and 49.4-fold of increase in GMTs for Delta and Omicron, respectively. INTERPRETATION The heterologous booster of SCTV01C was safe, and induced uniformly high cross-neutralization antibody responses against Delta and Omicron variants. FUNDING Beijing Science and Technology Plan Project (Z221100007922012) and the National Key Research and Development Program of China (2022YFC0870600) supported this study.
Collapse
Affiliation(s)
- Suad Hannawi
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Linda Saifeldin
- General Surgery Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Alaa Abuquta
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Ahmad Alamadi
- Ear, Nose and Throat Department (ENT), Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | | | - Aala Hassan
- Internal Medicine Department, Al Kuwait-Dubai (ALBaraha) Hospital, Dubai, United Arab Emirates
| | - Dongfang Liu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Lixin Yan
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China; Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Palin AC, Alter G, Crotty S, Ellebedy AH, Lane MC, Lee FEH, Locci M, Malaspina A, Mallia C, McElrath MJ, Pulendran B, Singh A, D'Souza MP. The persistence of memory: defining, engineering, and measuring vaccine durability. Nat Immunol 2022; 23:1665-1668. [PMID: 36456737 PMCID: PMC9916179 DOI: 10.1038/s41590-022-01359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Amy C Palin
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Shane Crotty
- Center for Infectious Diseases and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.,Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.,The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - M Chelsea Lane
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA.,Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angela Malaspina
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Conrad Mallia
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anjali Singh
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - M Patricia D'Souza
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
25
|
Hardt K, Vandebosch A, Sadoff J, Le Gars M, Truyers C, Lowson D, Van Dromme I, Vingerhoets J, Kamphuis T, Scheper G, Ruiz-Guiñazú J, Faust SN, Spinner CD, Schuitemaker H, Van Hoof J, Douoguih M, Struyf F. Efficacy, safety, and immunogenicity of a booster regimen of Ad26.COV2.S vaccine against COVID-19 (ENSEMBLE2): results of a randomised, double-blind, placebo-controlled, phase 3 trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:1703-1715. [PMID: 36113538 PMCID: PMC9639796 DOI: 10.1016/s1473-3099(22)00506-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Despite the availability of effective vaccines against COVID-19, booster vaccinations are needed to maintain vaccine-induced protection against variant strains and breakthrough infections. This study aimed to investigate the efficacy, safety, and immunogenicity of the Ad26.COV2.S vaccine (Janssen) as primary vaccination plus a booster dose. METHODS ENSEMBLE2 is a randomised, double-blind, placebo-controlled, phase 3 trial including crossover vaccination after emergency authorisation of COVID-19 vaccines. Adults aged at least 18 years without previous COVID-19 vaccination at public and private medical practices and hospitals in Belgium, Brazil, Colombia, France, Germany, the Philippines, South Africa, Spain, the UK, and the USA were randomly assigned 1:1 via a computer algorithm to receive intramuscularly administered Ad26.COV2.S as a primary dose plus a booster dose at 2 months or two placebo injections 2 months apart. The primary endpoint was vaccine efficacy against the first occurrence of molecularly confirmed moderate to severe-critical COVID-19 with onset at least 14 days after booster vaccination, which was assessed in participants who received two doses of vaccine or placebo, were negative for SARS-CoV-2 by PCR at baseline and on serology at baseline and day 71, had no major protocol deviations, and were at risk of COVID-19 (ie, had no PCR-positive result or discontinued the study before day 71). Safety was assessed in all participants; reactogenicity, in terms of solicited local and systemic adverse events, was assessed as a secondary endpoint in a safety subset (approximately 6000 randomly selected participants). The trial is registered with ClinicalTrials.gov, NCT04614948, and is ongoing. FINDINGS Enrolment began on Nov 16, 2020, and the primary analysis data cutoff was June 25, 2021. From 34 571 participants screened, the double-blind phase enrolled 31 300 participants, 14 492 of whom received two doses (7484 in the Ad26.COV2.S group and 7008 in the placebo group) and 11 639 of whom were eligible for inclusion in the assessment of the primary endpoint (6024 in the Ad26.COV2.S group and 5615 in the placebo group). The median (IQR) follow-up post-booster vaccination was 36·0 (15·0-62·0) days. Vaccine efficacy was 75·2% (adjusted 95% CI 54·6-87·3) against moderate to severe-critical COVID-19 (14 cases in the Ad26.COV2.S group and 52 cases in the placebo group). Most cases were due to the variants alpha (B.1.1.7) and mu (B.1.621); endpoints for the primary analysis accrued from Nov 16, 2020, to June 25, 2021, before the global dominance of delta (B.1.617.2) or omicron (B.1.1.529). The booster vaccine exhibited an acceptable safety profile. The overall frequencies of solicited local and systemic adverse events (evaluated in the safety subset, n=6067) were higher among vaccine recipients than placebo recipients after the primary and booster doses. The frequency of solicited adverse events in the Ad26.COV2.S group were similar following the primary and booster vaccinations (local adverse events, 1676 [55·6%] of 3015 vs 896 [57·5%] of 1559, respectively; systemic adverse events, 1764 [58·5%] of 3015 vs 821 [52·7%] of 1559, respectively). Solicited adverse events were transient and mostly grade 1-2 in severity. INTERPRETATION A homologous Ad26.COV2.S booster administered 2 months after primary single-dose vaccination in adults had an acceptable safety profile and was efficacious against moderate to severe-critical COVID-19. Studies assessing efficacy against newer variants and with longer follow-up are needed. FUNDING Janssen Research & Development.
Collapse
Affiliation(s)
- Karin Hardt
- Janssen Research & Development, Beerse, Belgium
| | | | | | | | | | - David Lowson
- Janssen Research & Development, High Wycombe, UK
| | | | | | | | - Gert Scheper
- Janssen Vaccines & Prevention, Leiden, Netherlands
| | | | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | | | | | | | - Frank Struyf
- Janssen Research & Development, Beerse, Belgium.
| |
Collapse
|
26
|
Kodali L, Budhiraja P, Gea-Banacloche J. COVID-19 in kidney transplantation-implications for immunosuppression and vaccination. Front Med (Lausanne) 2022; 9:1060265. [PMID: 36507509 PMCID: PMC9727141 DOI: 10.3389/fmed.2022.1060265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
COVID-19 pandemic continues to challenge the transplant community, given increased morbidity and mortality associated with the disease and poor response to prevention measures such as vaccination. Transplant recipients have a diminished response to both mRNA and vector-based vaccines compared to dialysis and the general population. The currently available assays to measure response to vaccination includes commercially available antibody assays for anti-Spike Ab, or anti- Receptor Binding Domain Ab. Positive antibody testing on the assays does not always correlate with neutralizing antibodies unless the antibody levels are high. Vaccinations help with boosting polyfunctional CD4+ T cell response, which continues to improve with subsequent booster doses. Ongoing efforts to improve vaccine response by using additional booster doses and heterologous vaccine combinations are underway. There is improved antibody response in moderate responders; however, the ones with poor response to initial vaccination doses, continue to have a poor response to sequential boosters. Factors associated with poor vaccine response include diabetes, older age, specific immunosuppressants such as belatacept, and high dose mycophenolate. In poor responders, a decrease in immunosuppression can increase response to vaccination. COVID infection or vaccination has not been associated with an increased risk of rejection. Pre- and Post-exposure monoclonal antibodies are available to provide further protection against COVID infection, especially in poor vaccine responders. However, the efficacy is challenged by the emergence of new viral strains. A recently approved bivalent vaccine offers better protection against the Omicron variant.
Collapse
Affiliation(s)
- Lavanya Kodali
- Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, United States
- Division of Nephrology, Transplant Center, Mayo Clinic, Phoenix, AZ, United States
| | - Pooja Budhiraja
- Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, United States
- Division of Nephrology, Transplant Center, Mayo Clinic, Phoenix, AZ, United States
| | - Juan Gea-Banacloche
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
27
|
Wang G, Zhao K, Han J, Hu Z, Zhang T, Wang Y, Shi R, Li Y, Song Q, Du H, He P, Xu S, Yang X, Fu Y, Cui Y, Xie L. Safety and immunogenicity of a bivalent SARS-CoV-2 recombinant protein vaccine, SCTV01C in unvaccinated adults: A randomized, double-blinded, placebo-controlled, phase I clinical trial. J Infect 2022; 86:154-225. [PMID: 36403700 PMCID: PMC9672836 DOI: 10.1016/j.jinf.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital; Department of Infectious Disease, Peking University International Hospital, Beijing, China
| | - Kexin Zhao
- Hebei Petro China Central Hospital, Langfang, China
| | - Jun Han
- State Key Laboratory of Infectious, Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhongyu Hu
- National Institutes for Food and Drug Control, Beijing, China
| | | | - Yanchao Wang
- Hebei Petro China Central Hospital, Langfang, China
| | - Rui Shi
- Hebei Petro China Central Hospital, Langfang, China
| | - Yanhua Li
- Hebei Petro China Central Hospital, Langfang, China
| | - Qinqin Song
- State Key Laboratory of Infectious, Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haijun Du
- State Key Laboratory of Infectious, Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng He
- National Institutes for Food and Drug Control, Beijing, China
| | - Shuping Xu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, Beijing, China
| | - Xinjie Yang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, Beijing, China
| | - Yongpan Fu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital; Institute of Clinical Pharmacology, Peking University Beijing, China.
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd, Beijing, China; Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
Lau CS, Oh MLH, Phua SK, Liang YL, Aw TC. 210-Day Kinetics of Total, IgG, and Neutralizing Spike Antibodies across a Course of 3 Doses of BNT162b2 mRNA Vaccine. Vaccines (Basel) 2022; 10:vaccines10101703. [PMID: 36298568 PMCID: PMC9607129 DOI: 10.3390/vaccines10101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: We tested the total spike antibody (S-Ab), IgG/IgM S-Ab, and neutralizing antibody (N-Ab) responses of COVID-19-naïve subjects from before their first BNT162b2 vaccination up to 210 days after boosting. Methods: We studied 136 COVID-19-naïve subjects who received three doses of the Pfizer mRNA vaccine (39 males, 97 females, mean age 43.8 ± 13.5 years) from January 2021 to May 2022. Serum was assessed for total S-Ab (Roche), IgG/M (Abbott), and N-Ab (Snibe). Results: Peak antibody levels were measured 20-30 days after each dose, with booster dosing eliciting significantly higher peak antibodies than the second dose: total S-Ab 2219 vs. 19,551 BAU/mL (difference 16,667 BAU/mL, p < 0.0001); IgG 2270 vs. 2932 BAU/mL (difference 660 BAU/mL, p = 0.04); and N-Ab 3.52 vs. 26.4 µg/mL (difference 21.4 µg/mL, p < 0.0001). Only IgM showed a lower peak post-booster antibody titer (COI 2.11 vs. 0.23, difference 1.63, 95% CI 1.05 to 2.38, p < 0.0001). By 180−210 days after the second or third vaccination, total S-Ab/IgG/N-Ab had decreased by 68.7/93.8/73.6% vs. 82.8/86.3/79.5%. The half-lives of IgG and N-Ab antibodies were longer after the third vaccination (IgG: 65 vs. 34 days, N-Ab: 99 vs. 78 days). Conclusion: Total S-Ab/IgG/N-Ab showed a greater increase post-booster, with IgG/N-Ab having a longer half-life.
Collapse
Affiliation(s)
- Chin Shern Lau
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
- Correspondence: ; Tel.: +65-68504927; Fax: +65-64269507
| | - May Lin Helen Oh
- Department of Infectious Diseases, Changi General Hospital, Singapore 529889, Singapore
| | - Soon Kieng Phua
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
| | - Ya-Li Liang
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
| | - Tar Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore 117599, Singapore
- Academic Pathology Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
29
|
Affiliation(s)
- Dan H Barouch
- From Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, and the Ragon Institute of MGH, MIT, and Harvard, Cambridge - both in Massachusetts
| |
Collapse
|
30
|
Lapointe HR, Mwimanzi F, Cheung PK, Sang Y, Yaseen F, Kalikawe R, Datwani S, Waterworth R, Umviligihozo G, Ennis S, Young L, Dong W, Kirkby D, Burns L, Leung V, Holmes DT, DeMarco ML, Simons J, Matic N, Montaner JS, Brumme CJ, Prystajecky N, Niikura M, Lowe CF, Romney MG, Brockman MA, Brumme ZL. Serial infection with SARS-CoV-2 Omicron BA.1 and BA.2 following three-dose COVID-19 vaccination. Front Immunol 2022; 13:947021. [PMID: 36148225 PMCID: PMC9485663 DOI: 10.3389/fimmu.2022.947021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
SARS-CoV-2 Omicron infections are common among individuals who are vaccinated or have recovered from prior variant infection, but few reports have immunologically assessed serial Omicron infections. We characterized SARS-CoV-2 humoral responses in an individual who acquired laboratory-confirmed Omicron BA.1.15 ten weeks after a third dose of BNT162b2, and BA.2 thirteen weeks later. Responses were compared to 124 COVID-19-naive vaccinees. One month post-second and -third vaccine doses, the participant's wild-type and BA.1-specific IgG, ACE2-displacement and virus neutralization activities were average for a COVID-19-naive triple-vaccinated individual. BA.1 infection boosted the participant's responses to the cohort ≥95th percentile, but even this strong "hybrid" immunity failed to protect against BA.2. Reinfection increased BA.1 and BA.2-specific responses only modestly. Though vaccines clearly protect against severe disease, results highlight the continued importance of maintaining additional protective measures to counteract the immune-evasive Omicron variant, particularly as vaccine-induced immune responses naturally decline over time.
Collapse
Affiliation(s)
- Hope R. Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Francis Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Peter K. Cheung
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Yurou Sang
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Fatima Yaseen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Rebecca Kalikawe
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Sneha Datwani
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel Waterworth
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | - Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Landon Young
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Laura Burns
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
| | - Victor Leung
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Daniel T. Holmes
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janet Simons
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nancy Matic
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julio S.G. Montaner
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Natalie Prystajecky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, BC, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Christopher F. Lowe
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marc G. Romney
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mark A. Brockman
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
31
|
van der Togt CJT, Ten Cate DF, van den Bemt BJF, Rahamat-Langendoen J, den Broeder N, den Broeder AA. Seroconversion after a third COVID-19 vaccine is affected by rituximab dose but persistence is not in patients with rheumatoid arthritis. Rheumatology (Oxford) 2022; 62:1627-1630. [PMID: 36000861 PMCID: PMC9452149 DOI: 10.1093/rheumatology/keac486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives In patients with rheumatoid arthritis (RA) treated with (ultra-)low dose rituximab (RTX), we investigated (1) the association of dosing and timing of rituximab (RTX) on seroconversion after third COVID-19 vaccination, and (2) persistence of humoral response after two-dose vaccination. Methods In this monocentre observational study, patients from the COVAC-cohort were included in the third vaccine analysis if humoral response was obtained 2-6 weeks after third vaccination in previous non-responders, and in the persistence analysis if a follow-up humoral response was obtained before third vaccination in previous responders. Dichotomization between ‘positive’ and ‘negative’ response was based on the assay cut-off. The association between latest RTX dose before first vaccination, timing between latest rituximab and vaccination, and response was analysed with univariable logistic regression. Results Of the 196 patients in the cohort, 98 were included in the third vaccine analysis and 23 in the persistence analysis. Third vaccination response was 19/98 (19%) and higher for 200 mg RTX users (5/13, 38%) than 500 and 1000 mg (7/37, 19% and 7/48, 15%). Non-significant trends were seen for higher response with lower dosing (200 versus 1000 mg: OR 3.66, 95% CI 0.93-14.0) and later timing (per month since infusion: OR 1.16, 0.97-1.35). Humoral response persisted in 96% (22/23) and in 89% (8/9) of patients who received RTX between the two measurements. Conclusion Repeated vaccination as late as possible after the lowest RTX dose possible seems the best vaccination strategy. A once positive humoral response after COVID-19 vaccination persists irrespective of intercurrent rituximab infusion. Trial registration Netherlands Trial Register, https://www.trialregister.nl/, NL9342
Collapse
Affiliation(s)
- Céleste J T van der Togt
- Radboud Institute for Health Sciences, Department of Rheumatology, Radboud university medical center, Nijmegen, The Netherlands.,Department of Rheumatology, Sint Maartenskliniek, Ubbergen, The Netherlands
| | - David F Ten Cate
- Department of Rheumatology, Sint Maartenskliniek, Ubbergen, The Netherlands
| | - Bart J F van den Bemt
- Department of Pharmacy, Sint Maartenskliniek, Ubbergen, The Netherlands.,Department of Clinical Pharmacy, Radboudumc, Nijmegen, The Netherlands
| | | | - Nathan den Broeder
- Radboud Institute for Health Sciences, Department of Rheumatology, Radboud university medical center, Nijmegen, The Netherlands.,Department of Rheumatology, Sint Maartenskliniek, Ubbergen, The Netherlands
| | - Alfons A den Broeder
- Department of Rheumatology, Sint Maartenskliniek, Ubbergen, The Netherlands.,Department of Rheumatic Diseases, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Munro APS, Feng S, Janani L, Cornelius V, Aley PK, Babbage G, Baxter D, Bula M, Cathie K, Chatterjee K, Dodd K, Enever Y, Qureshi E, Goodman AL, Green CA, Harndahl L, Haughney J, Hicks A, van der Klaauw AA, Kanji N, Libri V, Llewelyn MJ, McGregor AC, Maallah M, Minassian AM, Moore P, Mughal M, Mujadidi YF, Holliday K, Osanlou O, Osanlou R, Owens DR, Pacurar M, Palfreeman A, Pan D, Rampling T, Regan K, Saich S, Bawa T, Saralaya D, Sharma S, Sheridan R, Thomson EC, Todd S, Twelves C, Read RC, Charlton S, Hallis B, Ramsay M, Andrews N, Lambe T, Nguyen-Van-Tam JS, Snape MD, Liu X, Faust SN, Feng S, Janani L, Cornelius V, Aley PK, Babbage G, Baxter D, Bula M, Cathie K, Chatterjee K, Dodd K, Enever Y, Qureshi E, Goodman AL, Green CA, Harndahl L, Haughney J, Hicks A, van der Klaauw AA, Kanji N, Libri V, Llewelyn MJ, McGregor AC, Minassian AM, Moore P, Mughal M, Mujadidi YF, Holliday K, Osanlou O, Osanlou R, Owens DR, Pacurar M, Palfreeman A, Pan D, Rampling T, Regan K, Saich S, Bawa T, Saralaya D, Sharma S, Sheridan R, Maallah M, Thomson EC, Todd S, Twelves C, Read RC, Charlton S, Hallis B, Ramsay M, Andrews N, Lambe T, Nguyen-Van-Tam JS, Snape MD, Liu X, Faust SN, Riordan A, Ustianowski A, Rogers C, Katechia K, Cooper A, Freedman A, Hughes R, Grundy L, Tudor Jones L, Harrison E, Snashall E, Mallon L, Burton K, Storton K, Munusamy M, Tandy B, Egbo A, Cox S, Ahmed NN, Shenoy A, Bousfield R, Wixted D, Gutteridge H, Mansfield B, Herbert C, Murira J, Calderwood J, Barker D, Brandon J, Tulloch H, Colquhoun S, Thorp H, Radford H, Evans J, Baker H, Thorpe J, Batham S, Hailstone J, Phillips R, Kumar D, Westwell F, Sturdy A, Barcella L, Soussi N, Mpelembue M, Raj S, Sharma R, Corrah T, John L, Whittington A, Roche S, Wagstaff L, Farrier A, Bisnauthsing K, Abeywickrama M, Spence N, Packham A, Serafimova T, Aslam S, McGreevy C, Borca A, DeLosSantosDominguez P, Palmer E, Broadhead S, Farooqi S, Piper J, Weighell R, Pickup L, Shamtally D, Domingo J, Kourampa E, Hale C, Gibney J, Stackpoole M, Rashid-Gardner Z, Lyon R, McDonnell C, Cole C, Stewart A, McMillan G, Savage M, Beckett H, Moorbey C, Desai A, Brown C, Naker K, Gokani K, Trinham C, Sabine C, Moore S, Hurdover S, Justice E, Stone M, Plested E, Ferreira Da Silva C, White R, Robinson H, Turnbull I, Morshead G, Drake-Brockman R, Smith C, Li G, Kasanyinga M, Clutterbuck EA, Bibi S, Singh M, Champaneri T, Irwin M, Khan M, Kownacka A, Nabunjo M, Osuji C, Hladkiwskyj J, Galvin D, Patel G, Grierson J, Males S, Askoolam K, Barry J, Mouland J, Longhurst B, Moon M, Giddins B, Pereira Dias Alves C, Richmond L, Minnis C, Baryschpolec S, Elliott S, Fox L, Graham V, Baker N, Godwin K, Buttigieg K, Knight C, Brown P, Lall P, Shaik I, Chiplin E, Brunt E, Leung S, Allen L, Thomas S, Fraser S, Choi B, Gouriet J, Perkins J, Gowland A, Macdonald J, Seenan JP, Starinskij I, Seaton A, Peters E, Singh S, Gardside B, Bonnaud A, Davies C, Gordon E, Keenan S, Hall J, Wilkins S, Tasker S, James R, Seath I, Littlewood K, Newman J, Boubriak I, Suggitt D, Haydock H, Bennett S, Woodyatt W, Hughes K, Bell J, Coughlan T, van Welsenes D, Kamal M, Cooper C, Tunstall S, Ronan N, Cutts R, Dare T, Yim YTN, Whittley S, Hamal S, Ricamara M, Adams K, Baker H, Driver K, Turner N, Rawlins T, Roy S, Merida-Morillas M, Sakagami Y, Andrews A, Goncalvescordeiro L, Stokes M, Ambihapathy W, Spencer J, Parungao N, Berry L, Cullinane J, Presland L, Ross Russell A, Warren S, Baker J, Oliver A, Buadi A, Lee K, Haskell L, Romani R, Bentley I, Whitbred T, Fowler S, Gavin J, Magee A, Watson T, Nightingale K, Marius P, Summerton E, Locke E, Honey T, Lingwood A, de la Haye A, Elliott RS, Underwood K, King M, Davies-Dear S, Horsfall E, Chalwin O, Burton H, Edwards CJ, Welham B, Appleby K, Dineen E, Garrahy S, Hall F, Ladikou E, Mullan D, Hansen D, Campbell M, Dos Santos F, Lakeman N, Branney D, Vamplew L, Hogan A, Frankham J, Wiselka M, Vail D, Wenn V, Renals V, Ellis K, Lewis-Taylor J, Habash-Bailey H, Magan J, Hardy A. Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:1131-1141. [PMID: 35550261 PMCID: PMC9084623 DOI: 10.1016/s1473-3099(22)00271-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19. METHODS The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 μg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 μg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (anti-spike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing. FINDINGS Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6-77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3-214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030-27 162), which increased to 37 460 ELU/mL (31 996-43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41-1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996-30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826-64 452), with a geometric mean fold change of 2·19 (1·90-2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37-14·32) and 15·90 (12·92-19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24-16·54] in the BNT162b2 group and 6·22 [3·90-9·92] in the mRNA-1273 group). INTERPRETATION Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose. FUNDING UK Vaccine Task Force and National Institute for Health Research.
Collapse
Affiliation(s)
- Alasdair P S Munro
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Shuo Feng
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Leila Janani
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | | | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Gavin Babbage
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Marcin Bula
- NIHR Liverpool and Broadgreen Clinical Research Facility, Liverpool, UK
| | - Katrina Cathie
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Krishna Chatterjee
- NIHR Cambridge Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kate Dodd
- NIHR Liverpool and Broadgreen Clinical Research Facility, Liverpool, UK
| | | | - Ehsaan Qureshi
- NIHR/Wellcome Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Anna L Goodman
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK; MRC Clinical Trials Unit, University College London, London, UK
| | - Christopher A Green
- NIHR/Wellcome Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Linda Harndahl
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - John Haughney
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Alexander Hicks
- Wellcome-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Agatha A van der Klaauw
- Wellcome-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Nasir Kanji
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Vincenzo Libri
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Alastair C McGregor
- Department of Infectious Diseases and Tropical Medicine, London Northwest University Healthcare, London, UK
| | - Mina Maallah
- Department of Infectious Diseases and Tropical Medicine, London Northwest University Healthcare, London, UK
| | - Angela M Minassian
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | - Kyra Holliday
- NIHR Leeds Clinical Research Facility, Leeds Teaching Hospitals Trust and University of Leeds, Leeds, UK
| | - Orod Osanlou
- Public Health Wales, Betsi Cadwaladr University Health Board, Bangor University, Bangor, UK
| | | | - Daniel R Owens
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Mihaela Pacurar
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Adrian Palfreeman
- University Hospitals of Leicester NHS Trust, University of Leicester, Leicester, UK
| | - Daniel Pan
- University Hospitals of Leicester NHS Trust, University of Leicester, Leicester, UK
| | - Tommy Rampling
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Karen Regan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Stephen Saich
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Tanveer Bawa
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dinesh Saralaya
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Sunil Sharma
- University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Ray Sheridan
- Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK
| | - Emma C Thomson
- Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Shirley Todd
- Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK
| | - Chris Twelves
- NIHR Leeds Clinical Research Facility, Leeds Teaching Hospitals Trust and University of Leeds, Leeds, UK
| | - Robert C Read
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Sue Charlton
- UK Health Security Agency, Porton Down, Porton, UK
| | | | - Mary Ramsay
- UK Health Security Agency, Colindale, London, UK
| | - Nick Andrews
- UK Health Security Agency, Colindale, London, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jonathan S Nguyen-Van-Tam
- Division of Epidemiology and Public Health, University of Nottingham School of Medicine, University of Nottingham, Nottingham, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Herzberg J, Fischer B, Becher H, Becker AK, Honarpisheh H, Guraya SY, Strate T, Knabbe C. Cellular and Humoral Immune Response to a Third Dose of BNT162b2 COVID-19 Vaccine – A Prospective Observational Study. Front Immunol 2022; 13:896151. [PMID: 35844588 PMCID: PMC9286388 DOI: 10.3389/fimmu.2022.896151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 01/14/2023] Open
Abstract
BackgroundSince the introduction of various vaccines against SARS-CoV-2 at the end of 2020, infection rates have continued to climb worldwide. This led to the establishment of a third dose vaccination in several countries, known as a booster. To date, there has been little real-world data about the immunological effect of this strategy.MethodsWe compared the humoral- and cellular immune response before and after the third dose of BioNTech/Pfizer vaccine BNT162b2, following different prime-boost regimen in a prospective observational study. Humoral immunity was assessed by determining anti-SARS-CoV-2 binding antibodies using a standardized quantitative assay. In addition, neutralizing antibodies were measured using a commercial surrogate ELISA-assay. Interferon-gamma release was measured after stimulating blood-cells with SARS-CoV-2 specific peptides using a commercial assay to evaluate the cellular immune response.ResultsWe included 243 health-care workers who provided blood samples and questionnaires pre- and post- third vaccination. The median antibody level increased significantly after the third vaccination dose to 2663.1 BAU/ml vs. 101.4 BAU/ml (p < 0.001) before administration of the booster dose. This was also detected for neutralizing antibodies with a binding inhibition of 99.68% ± 0.36% vs. 69.06% ± 19.88% after the second dose (p < 0.001). 96.3% of the participants showed a detectable T-cell-response after the booster dose with a mean interferon-gamma level of 2207.07 mIU/ml ± 1905 mIU/ml.ConclusionThis study detected a BMI-dependent antibody increase after the third dose of BNT162b2 following different vaccination protocols. All participants showed a significant increase in their immune response. This, in combination with the low rate of post-vaccination-symptoms underlines the potential beneficial effect of a BNT162b2-booster dose.
Collapse
Affiliation(s)
- Jonas Herzberg
- Department of Surgery – Krankenhaus Reinbek St. Adolf-Stift, Reinbek, Germany
- *Correspondence: Jonas Herzberg,
| | - Bastian Fischer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Kristin Becker
- Asklepios Klinik Harburg, Abteilung für Psychiatrie und Psychotherapie, Hamburg, Germany
| | - Human Honarpisheh
- Department of Surgery – Krankenhaus Reinbek St. Adolf-Stift, Reinbek, Germany
| | - Salman Yousuf Guraya
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tim Strate
- Department of Surgery – Krankenhaus Reinbek St. Adolf-Stift, Reinbek, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| |
Collapse
|
34
|
Xu QY, Li QL, Jia ZJ, Wu MJ, Liu YY, Lin LR, Liu LL, Yang TC. Is the fourth COVID-19 vaccine dose urgently needed? Revelation from a prospective cohort study. J Infect 2022; 85:e66-e68. [PMID: 35691516 PMCID: PMC9181897 DOI: 10.1016/j.jinf.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Qiu-Yan Xu
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu-Ling Li
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | | | | | - Yan-Yun Liu
- Xiamen Boson Biotech Co., Ltd, Xiamen, China
| | - Li-Rong Lin
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Li-Li Liu
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| | - Tian-Ci Yang
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
35
|
Short-Term Drop in Antibody Titer after the Third Dose of SARS-CoV-2 BNT162b2 Vaccine in Adults. Vaccines (Basel) 2022; 10:vaccines10050805. [PMID: 35632564 PMCID: PMC9145913 DOI: 10.3390/vaccines10050805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Little is known about the longevity of antibodies after a third dose of the mRNA-based SARS-CoV-2 vaccine BNT162b2 (BioNTech/Pfizer, Mainz, Germany). Therefore, serum antibody levels were evaluated after a third dose of BNT162b2 in healthy adult healthcare workers in Germany. These antibody levels dropped significantly within a short period of 11 weeks from 4155.59 ± 2373.65 BAU/mL to 2389.10 ± 1433.90 BAU/mL, p-value < 0.001 but remained higher than after the second dose (611.92 ± 450.31 BAU/mL). To evaluate the quality of the humoral immune response, we additionally measured neutralizing antibodies, which also showed a small but significant decrease within this short period. These data underline the positive effect of a third dose of BNT162b2 concerning antibody re-induction but also shows a drop of Anti-SARS-CoV-2-IgG within a short span of time.
Collapse
|
36
|
Nishikimi A, Watanabe K, Watanabe A, Yasuoka M, Watanabe R, Fujiwara M, Oshima H, Nakagawa T, Kitagawa Y, Tokuda H, Washimi Y, Niida S, Kojima M. Immune responses to COVID-19 vaccine BNT162b2 in workers at a research institute in Japan: 6-month follow-up survey. J Infect 2022; 85:174-211. [PMID: 35605803 PMCID: PMC9121650 DOI: 10.1016/j.jinf.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Akihiko Nishikimi
- Biosafety Administration Division, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan.
| | - Ken Watanabe
- Bioresource Division, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan; Department of Musculoskeletal Disease, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Atsushi Watanabe
- Equipment Management Division, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Mikako Yasuoka
- Department of Frailty Research, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Ryota Watanabe
- Department of Frailty Research, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Mitsuhiro Fujiwara
- Biosafety Administration Division, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hironori Oshima
- Department of Clinical Laboratory, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Takeshi Nakagawa
- Department of Social Science, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yuichi Kitagawa
- Department of Infection Control, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Haruhiko Tokuda
- Bioresource Division, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan; Department of Clinical Laboratory, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yukihiko Washimi
- Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shumpei Niida
- Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Masayo Kojima
- Department of Frailty Research, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| |
Collapse
|