1
|
Differential Impact of Random GC Tetrad Binding and Chromatin Events on Transcriptional Inhibition by Olivomycin A. Int J Mol Sci 2022; 23:ijms23168871. [PMID: 36012127 PMCID: PMC9408465 DOI: 10.3390/ijms23168871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Olivomycin A (OA), an antibiotic of the aureolic acid family, interferes with gene transcription upon forming complexes with GC-rich regions in the DNA minor groove. We demonstrate that the mechanism of transcriptional deregulation is not limited to OA interaction with GC-containing binding sites for transcription factors. Using electrophoretic mobility shift assays and DNAse I footprinting of cytomegalovirus (CMV) promoter fragments carrying OA-preferred GC tetrads (CMVwt), we showed OA binding specifically to GC islands. Replacement of G for A in these tetrads (CMVmut) abrogated OA binding. Furthermore, OA decreased RNA polymerase II (RNAPII) binding to the CMVwt promoter and inhibited the reporter gene expression. In line with the absence of OA binding sites in CMVmut DNA, the expression driven from this promoter was weakly sensitive to OA. In the endogenous genes OA decreased RNAPII on promoters and coding regions. In certain cases this phenomenon was concomitant with the increased histone 3 abundance. However, the sensitivity to OA did not correlate with GC patterns around transcription start sites, suggesting that certain GC stretches play unequal roles in OA-induced transcriptional perturbations. Thus, OA affects transcription via complex mechanisms in which GC tetranucleotide binding causes RNAPII/chromatin alterations differentially manifested in individual gene contexts.
Collapse
|
2
|
Self-assembled DNA nanotrains for targeted delivery of mithramycin dimers coordinated by different metal ions: Effect of binding affinity on drug loading, release and cytotoxicity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Karmakar J, Nandy P, Das S, Bhattacharya D, Karmakar P, Bhattacharya S. Utilization of Guanidine-Based Ancillary Ligands in Arene-Ruthenium Complexes for Selective Cytotoxicity. ACS OMEGA 2021; 6:8226-8238. [PMID: 33817481 PMCID: PMC8015125 DOI: 10.1021/acsomega.0c06265] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
A family of three water-soluble half-sandwich arene-ruthenium complexes, depicted as C 1 -C 3 , having the general formula [Ru(p-cymene)(L)Cl]Cl has been synthesized, where L represents (1H-benzo[d]imidazol-2-yl)guanidine (L 1 ) or (benzo[d]oxazol-2-yl)guanidine (L 2 ) or (benzo[d]thiazol-2-yl)guanidine (L 3 ). The crystal structure of complex C 3 has been determined. The complexes show several absorption bands in the visible and ultraviolet regions, and they also show prominent emission in the visible region while excited near 400 nm. Studies on the interaction of ligands L 1 -L 3 and complexes C 1 -C 3 with calf thymus DNA reveal that the complexes are better DNA binders than the ligands, which is attributable to the imposed planarity of the ruthenium-bound guanidine-based ligand, enabling it to serve as a better intercalator. Molecular docking studies show that the complexes effectively bind with DNA through electrostatic and H-bonding interactions and partial intercalation of the guanidine-based ligands. Cytotoxicity studies carried out on two carcinoma cell lines (PC3 and A549) and on two non-cancer cell lines (BPH1 and WI-38) show a marked improvement in antitumor activity owing to complex formation, which is attributed to improvement in cellular uptake on complex formation. The C 1 complex is found to exhibit the most prominent activity against the PC3 cell line. Inclusion of the guanidine-based ligands in the half-sandwich ruthenium-arene complexes is found to be effective for displaying selective cytotoxicity to cancer cells and also for convenient tracing of the complexes in cells due to their prominent emissive nature.
Collapse
Affiliation(s)
- Jit Karmakar
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700 032, India
| | - Promita Nandy
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700 032, India
| | - Saurabh Das
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700 032, India
| | - Debalina Bhattacharya
- Department
of Microbiology, Maulana Azad College, Kolkata 700 013, India
- Department
of Life Science and Biotechnology, Jadavpur
University, Kolkata 700 032, India
| | - Parimal Karmakar
- Department
of Life Science and Biotechnology, Jadavpur
University, Kolkata 700 032, India
| | - Samaresh Bhattacharya
- Department
of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
4
|
Saha T, Singha S, Kumar S, Das S. Spectroscopy driven DFT computation for a structure of the monomeric Cu2+-Curcumin complex and thermodynamics driven evaluation of its binding to DNA: Pseudo-binding of Curcumin to DNA. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Ganguly D, Jain CK, Santra RC, Roychoudhury S, Majumder HK, Mondal TK, Das S. Anticancer Activity of a Complex of CuIIwith 2-(2-hydroxyphenylazo)-indole-3/-acetic Acid on three different Cancer Cell Lines: A Novel Feature for Azo Complexes. ChemistrySelect 2017. [DOI: 10.1002/slct.201601270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Durba Ganguly
- Department of Chemistry (Inorganic Section); Jadavpur University; Kolkata-700 032 India
| | - Chetan Kumar Jain
- Cancer Biology & Inflammatory Disorder Division; Indian Institute of Chemical Biology; Kolkata-700032, India
- Infectious Diseases and Immunology Division; Indian Institute of Chemical Biology; Kolkata-700032 India
| | - Ramesh Chandra Santra
- Department of Chemistry (Inorganic Section); Jadavpur University; Kolkata-700 032 India
| | - Susanta Roychoudhury
- Cancer Biology & Inflammatory Disorder Division; Indian Institute of Chemical Biology; Kolkata-700032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division; Indian Institute of Chemical Biology; Kolkata-700032 India
| | - Tapan Kumar Mondal
- Department of Chemistry (Inorganic Section); Jadavpur University; Kolkata-700 032 India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section); Jadavpur University; Kolkata-700 032 India
| |
Collapse
|
6
|
Mandal B, Singha S, Dey SK, Mazumdar S, Kumar S, Karmakar P, Das S. CuIIcomplex of emodin with improved anticancer activity as demonstrated by its performance on HeLa and Hep G2 cells. RSC Adv 2017. [DOI: 10.1039/c7ra06696a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structure of CuIIcomplex of emodin was solved from PXRD data. [CuII(emod)2]2−binds DNA better than emodin. Thermodynamic parameters for binding were found. Complex performs better than emodin on HeLa & Hep G2 cells; not affecting WI 38 normal cells.
Collapse
Affiliation(s)
- Bitapi Mandal
- Department of Chemistry (Inorganic Section)
- Jadavpur University
- Kolkata-700032
- India
| | - Soumen Singha
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | | | - Swagata Mazumdar
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata-700032
- India
| | - Sanjay Kumar
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata-700032
- India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section)
- Jadavpur University
- Kolkata-700032
- India
| |
Collapse
|
7
|
Mandal B, Singha S, Dey SK, Mazumdar S, Mondal TK, Karmakar P, Kumar S, Das S. Synthesis, crystal structure from PXRD of a MnII(purp)2complex, interaction with DNA at different temperatures and pH and lack of stimulated ROS formation by the complex. RSC Adv 2016. [DOI: 10.1039/c6ra09387f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MnII(purpurin)2crystal structure done from PXRD is the second report on hydroxy-9,10-anthraquinone with a 3d-transition metal. DNA binding of complex is better and ROS generation less than purpurin. Complex maintains biological activity of purpurin.
Collapse
Affiliation(s)
- Bitapi Mandal
- Department of Chemistry (Inorganic Section)
- Jadavpur University
- Kolkata-700032
- India
| | - Soumen Singha
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | | | - Swagata Mazumdar
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata-700032
- India
| | - Tapan Kumar Mondal
- Department of Chemistry (Inorganic Section)
- Jadavpur University
- Kolkata-700032
- India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata-700032
- India
| | - Sanjay Kumar
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section)
- Jadavpur University
- Kolkata-700032
- India
| |
Collapse
|
8
|
Lahiri S, Panja A, Dasgupta D. Association of a Zn(2+) containing metallo β-lactamase with the anticancer antibiotic mithramycin. J Inorg Biochem 2014; 142:75-83. [PMID: 25450021 DOI: 10.1016/j.jinorgbio.2014.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Pathogenic bacteria that are resistant to β-lactam antibiotics mostly utilize serine β-lactamases to degrade the antibiotics. Current studies have shown that different subclasses of metallo β-lactamases (E[MBL]) are involved in the defense mechanism of drug resistant bacteria. Here we report that the Zn(2+) containing subclass B1 E[MBL] from Bacillus cereus binds to a naturally occurring anti-cancer drug mithramycin (MTR). Spectroscopic (CD and fluorescence) and isothermal titration calorimetry studies show that MTR forms a high affinity complex with the Zn(2+) ion containing E[MBL]. Abolished interaction of MTR with apo E[MBL] suggests that the formation of this high affinity complex occurs due to the potential of MTR to bind bivalent metal ions like Zn(2+). Furthermore, CD spectroscopy, dynamic light scattering and differential scanning calorimetry studies indicate that the strong association with sub-micromolar dissociation constant leads to an alteration in the enzyme conformation at both secondary and tertiary structural levels. The enzyme activity decreases as a consequence to this conformational disruption arising from the formation of a ternary complex involving MTR, catalytic Zn(2+) and the enzyme. Our results suggest that the naturally occurring antibiotic MTR, a generic drug, has the potential as an E[MBL] inhibitor.
Collapse
Affiliation(s)
- Shibojyoti Lahiri
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Sector-1, Bidhannagar, Kolkata 700064, India.
| | - Amrita Panja
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Sector-1, Bidhannagar, Kolkata 700064, India
| | - Dipak Dasgupta
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Sector-1, Bidhannagar, Kolkata 700064, India.
| |
Collapse
|
9
|
Dutta S, Lahiri S, Banerjee A, Saha S, Dasgupta D. Association of antitumor antibiotic Mithramycin with Mn2+ and the potential cellular targets of Mithramycin after association with Mn2+. J Biomol Struct Dyn 2014; 33:434-46. [PMID: 24559512 DOI: 10.1080/07391102.2014.887031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mithramycin (MTR), an aureolic acid group of antitumor antibiotic is used for the treatment of several types of tumors. We have reported here the association of MTR with an essential micronutrient, manganese (Mn(2+)). Spectroscopic methods have been used to characterize and understand the kinetics and mechanism of complex formation between them. MTR forms a single type of complex with Mn(2+) in the mole ratio of 2:1 [MTR: Mn(2+)] via a two step kinetic process. Circular dichroism (CD) spectroscopic study indicates that the complex [(MTR)2 Mn(2+)] has a right-handed twist conformation similar in structure with the complexes reported for Mg(2+) and Zn(2+). This conformation allows binding via minor groove of DNA with (G, C) base preference during the interaction with double-stranded B-DNA. Using absorbance, fluorescence, and CD spectroscopy we have shown that [(MTR)2 Mn(2+)] complex binds to double-stranded DNA with an apparent dissociation constant of 32 μM and binding site size of 0.2 (drug/nucleotide). It binds to chicken liver chromatin with apparent dissociation constant value 298 μM. Presence of histone proteins in chromatin inhibits the accessibility of the complex for chromosomal DNA. We have also shown that MTR binds to Mn(2+) containing metalloenzyme manganese superoxide dismutase from Escherichia coli.
Collapse
Affiliation(s)
- Shreyasi Dutta
- a Biophysics & Structural Genomics Division , Saha Institute of Nuclear Physics , Block-AF, Sector-I, Bidhan Nagar, Kolkata - 700 064 , India
| | | | | | | | | |
Collapse
|
10
|
Lahiri S, Takao T, Devi PG, Ghosh S, Ghosh A, Dasgupta A, Dasgupta D. Association of aureolic acid antibiotic, chromomycin A3 with Cu2+ and its negative effect upon DNA binding property of the antibiotic. Biometals 2011; 25:435-50. [PMID: 22205111 DOI: 10.1007/s10534-011-9516-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
Here we have examined the association of an aureolic acid antibiotic, chromomycin A3 (CHR), with Cu(2+). CHR forms a high affinity 2:1 (CHR:Cu(2+)) complex with dissociation constant of 0.08 × 10(-10) M(2) at 25°C, pH 8.0. The affinity of CHR for Cu(2+) is higher than those for Mg(2+) and Zn(2+) reported earlier from our laboratory. CHR binds preferentially to Cu(2+) in presence of equimolar amount of Zn(2+). Complex formation between CHR and Cu(2+) is an entropy driven endothermic process. Difference between calorimetric and van't Hoff enthalpies indicate the presence of multiple equilibria, supported from biphasic nature of the kinetics of association. Circular dichroism spectroscopy show that [(CHR)(2):Cu(2+)] complex assumes a structure different from either of the Mg(2+) and Zn(2+) complex reported earlier. Both [(CHR)(2):Mg(2+)] and [(CHR)(2):Zn(2+)] complexes are known to bind DNA. In contrast, [(CHR)(2):Cu(2+)] complex does not interact with double helical DNA, verified by means of Isothermal Titration Calorimetry of its association with calf thymus DNA and the double stranded decamer (5'-CCGGCGCCGG-3'). In order to interact with double helical DNA, the (antibiotic)(2) : metal (Mg(2+) and Zn(2+)) complexes require a isohelical conformation. Nuclear Magnetic Resonance spectroscopy shows that the Cu(2+) complex adopts a distorted octahedral structure, which cannot assume the required conformation to bind to the DNA. This report demonstrates the negative effect of a bivalent metal upon the DNA binding property of CHR, which otherwise binds to DNA in presence of metals like Mg(2+) and Zn(2+). The results also indicate that CHR has a potential for chelation therapy in Cu(2+) accumulation diseases. However cytotoxicity of the antibiotic might restrict the use.
Collapse
Affiliation(s)
- Shibojyoti Lahiri
- Biophysics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | | | | | | | | | | |
Collapse
|
11
|
Proteomic approaches in understanding action mechanisms of metal-based anticancer drugs. Met Based Drugs 2011; 2008:716329. [PMID: 18670610 PMCID: PMC2486358 DOI: 10.1155/2008/716329] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 04/20/2008] [Accepted: 06/17/2008] [Indexed: 12/13/2022] Open
Abstract
Medicinal inorganic chemistry has been stimulating largely by the success of the anticancer drug, cisplatin. Various metal complexes are currently used as therapeutic agents (e.g., Pt, Au, and Ru) in the treatment of malignant diseases, including several types of cancers. Understanding the mechanism of action of these metal-based drugs is for the design of more effective drugs. Proteomic approaches combined with other biochemical methods can provide comprehensive understanding of responses that are involved in metal-based anticancer drugs-induced cell death, including insights into cytotoxic effects of metal-based anticancer drugs, correlation of protein alterations to drug targets, and prediction of drug resistance and toxicity. This information, when coupled with clinical data, can provide rational basses for the future design and modification of present used metal-based anticancer drugs.
Collapse
|
12
|
Cheng E, Haque A, Rimmer MA, Hussein ITM, Sheema S, Little A, Mir MA. Characterization of the Interaction between hantavirus nucleocapsid protein (N) and ribosomal protein S19 (RPS19). J Biol Chem 2011; 286:11814-24. [PMID: 21296889 DOI: 10.1074/jbc.m110.210179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hantaviruses, members of the Bunyaviridae family, are negative-stranded emerging RNA viruses and category A pathogens that cause serious illness when transmitted to humans through aerosolized excreta of infected rodent hosts. Hantaviruses have evolved a novel translation initiation mechanism, operated by nucleocapsid protein (N), which preferentially facilitates the translation of viral mRNAs. N binds to the ribosomal protein S19 (RPS19), a structural component of the 40 S ribosomal subunit. In addition, N also binds to both the viral mRNA 5' cap and a highly conserved triplet repeat sequence of the viral mRNA 5' UTR. The simultaneous binding of N at both the terminal cap and the 5' UTR favors ribosome loading on viral transcripts during translation initiation. We characterized the binding between N and RPS19 and demonstrate the role of the N-RPS19 interaction in N-mediated translation initiation mechanism. We show that N specifically binds to RPS19 with high affinity and a binding stoichiometry of 1:1. The N-RPS19 interaction is an enthalpy-driven process. RPS19 undergoes a conformational change after binding to N. Using T7 RNA polymerase, we synthesized the hantavirus S segment mRNA, which matches the transcript generated by the viral RNA-dependent RNA polymerase in cells. We show that the N-RPS19 interaction plays a critical role in the translation of this mRNA both in cells and rabbit reticulocyte lysates. Our results demonstrate that the N-mediated translation initiation mechanism, which lures the host translation machinery for the preferential translation of viral transcripts, primarily depends on the N-RPS19 interaction. We suggest that the N-RPS19 interaction is a novel target to shut down the N-mediated translation strategy and hence virus replication in cells.
Collapse
Affiliation(s)
- Erdong Cheng
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66103, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Deb T, Choudhury D, Guin PS, Saha MB, Chakrabarti G, Das S. A complex of Co(II) with 2-hydroxyphenyl-azo-2′-naphthol (HPAN) is far less cytotoxic than the parent compound on A549-lung carcinoma and peripheral blood mononuclear cells: Reasons for reduction in cytotoxicity. Chem Biol Interact 2011; 189:206-14. [DOI: 10.1016/j.cbi.2010.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 02/01/2023]
|
14
|
Ghosh S, Majumder P, Pradhan SK, Dasgupta D. Mechanism of interaction of small transcription inhibitors with DNA in the context of chromatin and telomere. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:795-809. [PMID: 20638489 DOI: 10.1016/j.bbagrm.2010.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/23/2010] [Accepted: 06/30/2010] [Indexed: 01/13/2023]
Abstract
Small molecules from natural and synthetic sources have long been employed as human drugs. The transcription inhibitory potential of one class of these molecules has paved their use as anticancer drugs. The principal mode of action of these molecules is via reversible interaction with genomic DNA, double and multiple stranded. In this article we have revisited the mechanism of the interaction in the context of chromatin and telomere. The established modes of association of these molecules with double helical DNA provide a preliminary mechanism of their transcription inhibitory potential, but the scenario assumes a different dimension when the genomic DNA is associated with proteins in the transcription apparatus of both prokaryotic and eukaryotic organisms. We have discussed this altered scenario as a prelude to understand the chemical biology of their action in the cell. For the telomeric quadruplex DNA, we have reviewed the mechanism of their association with the quadruplex and resultant cellular consequence.
Collapse
Affiliation(s)
- Saptaparni Ghosh
- Biophysics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhan Nagar, Kolkata Pin, 700064, India
| | | | | | | |
Collapse
|
15
|
Banerjee S, Mondal S, Chakraborty W, Sen S, Gachhui R, Butcher RJ, Slawin AM, Mandal C, Mitra S. Syntheses, X-ray crystal structures, DNA binding, oxidative cleavage activities and antimicrobial studies of two Cu(II) hydrazone complexes. Polyhedron 2009. [DOI: 10.1016/j.poly.2009.05.071] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Banerjee S, Mondal S, Sen S, Das S, Hughes DL, Rizzoli C, Desplanches C, Mandal C, Mitra S. Four new dinuclear Cu(ii) hydrazone complexes using various organic spacers: syntheses, crystal structures, DNA binding and cleavage studies and selective cell inhibitory effect towards leukemic and normal lymphocytes. Dalton Trans 2009:6849-60. [PMID: 19690698 DOI: 10.1039/b903072g] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Inhibition of a Zn(II)-containing enzyme, alcohol dehydrogenase, by anticancer antibiotics, mithramycin and chromomycin A3. J Biol Inorg Chem 2008; 14:347-59. [DOI: 10.1007/s00775-008-0451-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 10/20/2008] [Indexed: 11/26/2022]
|
18
|
Nelson SM, Ferguson LR, Denny WA. Non-covalent ligand/DNA interactions: minor groove binding agents. Mutat Res 2007; 623:24-40. [PMID: 17507044 DOI: 10.1016/j.mrfmmm.2007.03.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 03/31/2007] [Indexed: 05/15/2023]
Abstract
An understanding of the mechanism by which minor groove binding agents interact with DNA has led to the design of agents that can reversibly bind with high selectivity to extended DNA target sequences. Simple compounds, such as the polypyrroles and the bis-benzimidazoles, have been used as carriers for alkylating agents effectively directing alkylation to specific DNA sequences. The spectrum of DNA alkylation and mutation by classical alkylators, such as nitrogen mustards, has been profoundly modified by such attachment. The observed "side-by-side" binding of small polypyrrole antibiotics has led to the design of synthetic hairpin polyamides with programmable DNA sequence selectivity. These compounds are able to compete with natural substrates, such as specific transcription factors, and alter gene expression. They are being developed as artificial transcription factors, able to deliver activating peptides to specific recognition sequences, and as potential protein-DNA dimerization agents. Hairpin polyamides are also being used as carriers for the delivery of alkylators to defined DNA sites. The degree of control of gene expression thus offered by the hairpin polyamides suggests enormous promise for their clinical utility. Recent developments with other minor groove binding small molecules and technological advances are also discussed.
Collapse
Affiliation(s)
- Stephanie M Nelson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 10000, New Zealand.
| | | | | |
Collapse
|
19
|
Mir MA, Brown B, Hjelle B, Duran WA, Panganiban AT. Hantavirus N protein exhibits genus-specific recognition of the viral RNA panhandle. J Virol 2006; 80:11283-92. [PMID: 16971445 PMCID: PMC1642145 DOI: 10.1128/jvi.00820-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A key genomic characteristic that helps define Hantavirus as a genus of the family Bunyaviridae is the presence of distinctive terminal complementary nucleotides that promote the folding of the viral genomic segments into "panhandle" hairpin structures. The hantavirus nucleocapsid protein (N protein), which is encoded by the smallest of the three negative-sense genomic RNA segments, undergoes in vivo and in vitro trimerization. Trimeric hantavirus N protein specifically recognizes the panhandle structure formed by complementary base sequence of 5' and 3' ends of viral genomic RNA. N protein trimers from the Andes, Puumala, Prospect Hill, Seoul, and Sin Nombre viruses recognize their individual homologous panhandles as well as other hantavirus panhandles with high affinity. In contrast, these hantavirus N proteins bind with markedly reduced affinity to the panhandles from the genera Bunyavirus, Tospovirus, and Phlebovirus or Nairovirus. Interactions between most hantavirus N and heterologous hantavirus viral RNA panhandles are mediated by the nine terminal conserved nucleotides of the panhandle, whereas Sin Nombre virus N requires the first 23 nucleotides for high-affinity binding. Trimeric hantavirus N complexes undergo a prominent conformational change while interacting with panhandles from members of the genus Hantavirus but not while interacting with panhandles from viruses of other genera of the family Bunyaviridae. These data indicate that high-affinity interactions between trimeric N and hantavirus panhandles are conserved within the genus Hantavirus.
Collapse
Affiliation(s)
- M A Mir
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|