1
|
Garcia AC, Shavlik M, Harms MJ, Pluth MD. Structural Deformations in Cucurbit[n]urils: Analysis, Host-Guest Dependence, and Automated Ellipticity Measurements Using ElliptiCB[n]. Chemistry 2024; 30:e202401981. [PMID: 39136587 DOI: 10.1002/chem.202401981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 09/25/2024]
Abstract
Cucurbit[n]urils (CB[n]s) are cyclic macrocycles with rich host-guest chemistry. In many cases, guest binding in CB[n]s results in host structural deformations. Unfortunately, measuring such deformations remains a major challenge, with only a handful of manual estimations reported in the literature. To address this challenge, we have developed the public program ElliptiCB[n], which is available on GitHub, that provides a robust and automated method for measuring the elliptical deformations in CB[n] hosts. We outline the development and validation of this approach, apply ElliptiCB[n] to measure the ellipticity of the 1113 available CB[n] structures from the Cambridge Structural Database (CSD), and directly investigate the structural deformations of CB[5], CB[6], CB[7], CB[8], and CB[10] hosts. We also report the general landscape of accessible CB[n] elliptical deformations and compare ellipticity distributions across CB[n] hosts and host-guest complexes. We found that in almost all cases guest binding significantly impacts the distribution of host ellipticity distributions and that these distributions are dissimilar across host-guest complexes of differently sized CB[n]s. We anticipate that this work will provide a useful approach for understanding of the flexibility of CB[n] hosts and will also enable future measurement and standardization of ellipticity measurements of CB[n]s.
Collapse
Affiliation(s)
- Arman C Garcia
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael Shavlik
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael J Harms
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
2
|
Alešković M, Šekutor M. Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[ n]uril assemblies for medical applications. RSC Med Chem 2024; 15:433-471. [PMID: 38389878 PMCID: PMC10880950 DOI: 10.1039/d3md00596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Adamantane, a staple in medicinal chemistry, recently became a cornerstone of a supramolecular host-guest drug delivery system, ADA/CB[n]. Owing to a good fit between the adamantane cage and the host cavity of the cucurbit[n]uril macrocycle, formed strong inclusion complexes find applications in drug delivery and controlled drug release. Note that the cucurbit[n]uril host is not solely a delivery vehicle of the ADA/CB[n] system but rather influences the bioactivity and bioavailability of drug molecules and can tune drug properties. Namely, as host-guest interactions are capable of changing the intrinsic properties of the guest molecule, inclusion complexes can become more soluble, bioavailable and more resistant to metabolic conditions compared to individual non-complexed molecules. Such synergistic effects have implications for practical bioapplicability of this complex system and provide a new viewpoint to therapy, beyond the traditional single drug molecule approach. By achieving a balance between guest encapsulation and release, the ADA/CB[n] system has also found use beyond just drug delivery, in fields like bioanalytics, sensing assays, bioimaging, etc. Thus, chemosensing in physiological conditions, indicator displacement assays, in vivo diagnostics and hybrid nanostructures are just some recent examples of the ADA/CB[n] applicability, be it for displacements purposes or as cargo vehicles.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
3
|
Chowdhury A, Goswami S. Study of Drug Delivery Using Purely Organic Macrocyclic Containers-Cucurbit[7]uril and Pillararene. ACS OMEGA 2023; 8:47340-47366. [PMID: 38144095 PMCID: PMC10733925 DOI: 10.1021/acsomega.3c05465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
An impaired immune system is the root of various human ailments provoking the urge to find vehicle-mediated quick delivery of small drug molecules and other vital metabolites to specific tissues and organs. Thus, drug delivery strategies are in need of improvement in therapeutic efficacy. It can be achieved only by increasing the drug-loading capacity, increasing the sustained release of a drug to its target site, easy relocation of drug molecules associated with facile complexation-induced properties of molecular vehicles, and high stimuli-responsive drug administration. Supramolecular drug delivery systems (SDDS) provide a much needed robust yet facile platform for fabricating innovative drug nanocarriers assembled by thermodynamically noncovalent interaction with the tunable framework and above-mentioned properties. Measures of cytotoxicity and biocompatibility are the two main criteria that lie at the root of any promising medicinal applications. This Review features significant advancements in (i) supramolecular host-guest complexation using cucurbit[7]uril (CB[7]), (ii) encapsulation of the drug and its delivery application tailored for CB[7], (iii) self-assembly of supramolecular amphiphiles, (iv) supramolecular guest relay using host-protein nanocavities, (v) pillararene (a unique macrocyclic host)-mediated SDDS for the delivery of smart nanodrugs for siRNA, fluorescent molecules, and insulin for juvenile diabetes. Furthermore, fundamental questions and future hurdles related to smart SDDS based on CB[7] and pillararenes and their future promising breakthrough implementations are also distinctly outlined in this Review.
Collapse
Affiliation(s)
- Arnab
Roy Chowdhury
- Department of Chemistry, Amity
University Kolkata, Kolkata, West Bengal 700135, India
| | - Soumyabrata Goswami
- Department of Chemistry, Amity
University Kolkata, Kolkata, West Bengal 700135, India
| |
Collapse
|
4
|
Yang X, Varini K, Godard M, Gassiot F, Sonnette R, Ferracci G, Pecqueux B, Monnier V, Charles L, Maria S, Hardy M, Ouari O, Khrestchatisky M, Lécorché P, Jacquot G, Bardelang D. Preparation and In Vitro Validation of a Cucurbit[7]uril-Peptide Conjugate Targeting the LDL Receptor. J Med Chem 2023. [PMID: 37339060 DOI: 10.1021/acs.jmedchem.3c00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Here we report the coupling of a cyclic peptide (VH4127) targeting the low density lipoprotein (LDL) receptor (LDLR) noncompetitively to cucurbit[7]uril (CB[7]) to develop a new kind of drug delivery system (DDS), namely, CB[7]-VH4127, with maintained binding affinity to the LDLR. To evaluate the uptake potential of this bismacrocyclic compound, another conjugate was prepared comprising a high-affinity group for CB[7] (adamantyl(Ada)-amine) coupled to the fluorescent tracker Alexa680 (A680). The resulting A680-Ada·CB[7]-VH4127 supramolecular complex demonstrated conserved LDLR-binding potential and improved LDLR-mediated endocytosis and intracellular accumulation potential in LDLR-expressing cells. The combination of two technologies, namely, monofunctionalized CB[7] and the VH4127 LDLR-targeting peptide, opens new avenues in terms of targeting and intracellular delivery to LDLR-expressing tissues or tumors. The versatile transport capacity of CB[7], known to bind a large spectrum of bioactive or functional compounds, makes this new DDS suitable for a wide range of therapeutic or imaging applications.
Collapse
Affiliation(s)
- Xue Yang
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | | | | | | | | | - Géraldine Ferracci
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | | | - Valérie Monnier
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, 13013 Marseille, France
| | | | | | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | | | | | | | | |
Collapse
|
5
|
Zhou H, Meng Q, Li B, Liu Y, Li Z, Li X, Sun Z, Chen Y. Supramolecular Combination Chemotherapy: Cucurbit[8]uril Complex Enhanced Platinum Drug Infiltration and Modified Nanomechanical Property of Colorectal Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14326-14334. [PMID: 36355865 DOI: 10.1021/acs.langmuir.2c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Combination chemotherapy is recognized as a vital medical treatment for cancer, but it has not achieved clinical ideal effects of combination therapy. Herein, we designed a supramolecular combination chemotherapy strategy based on cucurbit[8]uril (CB[8]), which can be facilely assembled into dual platinum drugs. Interestingly, employing the CB[8] carrier led to a greater than 10-fold intracellular Pt content compared to that of dual drugs at 4 h, and the CB[8] complex (CLE) can enhance the infiltration of platinum drugs in colorectal tumor cells tremendously. The platinum drugs can be released from CLE through consuming more tumor biomarker spermidine. Through analyzing the nanomechanical property of the colorectal tumor cellular surface by bioscope AFM, it was revealed that CLE modified the property by decreasing the adhesion and increasing the stiffness. This study provided a facile and sensitive strategy for improving combination chemotherapy by supramolecular materials.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Qingtao Meng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Bin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Yikai Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Zhaoxiang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Xiaobo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
6
|
Heravi T, Arslanian AJ, Johnson SD, Dearden DV. Ion Mobility and Fourier Transform Ion Cyclotron Resonance Collision Cross Section Techniques Yield Long-Range and Hard-Sphere Results, Respectively. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1644-1652. [PMID: 35960880 DOI: 10.1021/jasms.2c00112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We determined collision cross section (CCS) values for singly and doubly charged cucurbit[n]uril (n = 5-7), decamethylcucurbit[5]uril, and cyclohexanocucurbit[5]uril complexes of alkali metal cations (Li+-Cs+). These hosts are relatively rigid. CCS values calculated using the projection approximation (PA) for computationally modeled structures of a given host are nearly identical for +1 and +2 complexes, with weak metal ion dependence, whereas trajectory method (TM) calculations of CCS for the same structures consistently yield values 7-10% larger for the +2 complexes than for the corresponding +1 complexes and little metal ion dependence. Experimentally, we measured relative CCS values in SF6 for pairs of +1 and +2 complexes of the cucurbituril hosts using the cross-sectional areas by Fourier transform ion cyclotron resonance ("CRAFTI") method. At center-of-mass collision energies <∼30 eV, CRAFTI CCS values are sensitive to the relative binding energies in the +1 and +2 complexes, but at collision energies >∼40 eV (sufficient that ion decoherence occurs on essentially every collision) that dependence is not evident. Consistent with the PA calculations, these experiments found that the +2 complex ions have CCS values ranging between 94 and 105% of those of their +1 counterparts (increasing with metal ion size). In contrast, but consistent with the TM CCS calculations, ion mobility measurements of the same complexes at close to thermal energies in much less polarizable N2 find the CCS of +2 complexes to be in all cases 9-12% larger than those of the corresponding +1 complexes, with little metal ion dependence.
Collapse
Affiliation(s)
- Tina Heravi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Andrew J Arslanian
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Spencer D Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - David V Dearden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| |
Collapse
|
7
|
Rakrai W, Tabtimsai C, Kaewtong C, Wanno B. Theoretical investigation of the complexation, structural, and electronic properties of complexes between oseltamivir drug and cucurbit[n = 6–9]urils. Struct Chem 2022. [DOI: 10.1007/s11224-022-01888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Yang Y, Pei X, Zhang S, Li Y, Yuan Y, Huang X. Dynamic reversible hydrogel-bearing cucurbit[6]uril units: Unique recognition of copper ions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Sojka M, Chyba J, Paul SS, Wawrocka K, Hönigová K, Cuyacot BJR, Castro AC, Vaculovič T, Marek J, Repisky M, Masařík M, Novotný J, Marek R. Supramolecular Coronation of Platinum(II) Complexes by Macrocycles: Structure, Relativistic DFT Calculations, and Biological Effects. Inorg Chem 2021; 60:17911-17925. [PMID: 34738800 DOI: 10.1021/acs.inorgchem.1c02467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platinum-based anticancer drugs are actively developed utilizing lipophilic ligands or drug carriers for the efficient penetration of biomembranes, reduction of side effects, and tumor targeting. We report the development of a supramolecular host-guest system built on cationic platinum(II) compounds bearing ligands anchored in the cavity of the macrocyclic host. The host-guest binding and hydrolysis process on the platinum core were investigated in detail by using NMR, MS, X-ray diffraction, and relativistic DFT calculations. The encapsulation process in cucurbit[7]uril unequivocally promotes the stability of hydrolyzed dicationic cis-[PtII(NH3)2(H2O)(NH2-R)]2+ compared to its trans isomer. Biological screening on the ovarian cancer lines A2780 and A2780/CP shows time-dependent toxicity. Notably, the reported complex and its β-cyclodextrin (β-CD) assembly achieve the same cellular uptake as cisplatin and cisplatin@β-CD, respectively, while maintaining a significantly lower toxicity profile.
Collapse
Affiliation(s)
- Martin Sojka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Chyba
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Shib Shankar Paul
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Karolina Wawrocka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Kateřina Hönigová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Ben Joseph R Cuyacot
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Abril C Castro
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jaromír Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
10
|
Ferrera-González J, Francés-Soriano L, Galiana-Roselló C, González-Garcia J, González-Béjar M, Fröhlich E, Pérez-Prieto J. Initial Biological Assessment of Upconversion Nanohybrids. Biomedicines 2021; 9:1419. [PMID: 34680536 PMCID: PMC8533627 DOI: 10.3390/biomedicines9101419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
Nanoparticles for medical use should be non-cytotoxic and free of bacterial contamination. Upconversion nanoparticles (UCNPs) coated with cucurbit[7]uril (CB[7]) made by combining UCNPs free of oleic acid, here termed bare UCNPs (UCn), and CB[7], i.e., UC@CB[7] nanohybrids, could be used as photoactive inorganic-organic hybrid scaffolds for biological applications. UCNPs, in general, are not considered to be highly toxic materials, but the release of fluorides and lanthanides upon their dissolution may cause cytotoxicity. To identify potential adverse effects of the nanoparticles, dehydrogenase activity of endothelial cells, exposed to various concentrations of the UCNPs, was determined. Data were verified by measuring lactate dehydrogenase release as the indicator of loss of plasma membrane integrity, which indicates necrotic cell death. This assay, in combination with calcein AM/Ethidium homodimer-1 staining, identified induction of apoptosis as main mode of cell death for both particles. The data showed that the UCNPs are not cytotoxic to endothelial cells, and the samples did not contain endotoxin contamination. Higher cytotoxicity, however, was seen in HeLa and RAW 264.7 cells. This may be explained by differences in lysosome content and particle uptake rate. Internalization of UCn and UC@CB[7] nanohybrids by cells was demonstrated by NIR laser scanning microscopy.
Collapse
Affiliation(s)
- Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - Laura Francés-Soriano
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, CEDEX, 76821 Mont-Saint-Aignan, France
| | - Cristina Galiana-Roselló
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - Jorge González-Garcia
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, University of Valencia, Catedrático José Beltrán, 2, Paterna, 46980 Valencia, Spain; (J.F.-G.); (L.F.-S.); (C.G.-R.); (J.G.-G.)
| |
Collapse
|
11
|
Pashkina E, Aktanova A, Mirzaeva I, Kovalenko E, Andrienko I, Knauer N, Pronkina N, Kozlov V. The Effect of Cucurbit[7]uril on the Antitumor and Immunomodulating Properties of Oxaliplatin and Carboplatin. Int J Mol Sci 2021; 22:ijms22147337. [PMID: 34298956 PMCID: PMC8303694 DOI: 10.3390/ijms22147337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cucurbit[7]uril (CB[7]) is a molecular container that may form host–guest complexes with platinum(II) anticancer drugs and modulate their efficacy and safety. In this paper, we report our studies of the effect of CB[7]–oxaliplatin complex and the mixture of CB[7] and carboplatin (1:1) on viability and proliferation of a primary cell culture (peripheral blood mononuclear cells), two tumor cell lines (B16 and K562) and their activity in the animal model of melanoma. At the same time, we studied the impact of platinum (II) drugs with CB[7] on T cells and B cells in vitro. Although the stable CB[7]–carboplatin complex was not formed, the presence of cucurbit[7]uril affected the biological properties of carboplatin. In vivo, CB[7] increased the antitumor effect of carboplatin, but, at the same time, increased its acute toxicity. Compared to free oxaliplatin, its complex with CB[7] shows a greater cytotoxic effect on tumor cell lines B16 and K562, while in vivo, the effects of the free drug and encapsulated drug were comparable. However, in vivo studies also demonstrated that the encapsulation of oxaliplatin in CB[7] lowered the toxicity of the drug.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52 Krasny Prospect, 630091 Novosibirsk, Russia
- Correspondence:
| | - Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
| | - Irina Mirzaeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, 630090 Novosibirsk, Russia; (I.M.); (E.K.); (I.A.)
| | - Ekaterina Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, 630090 Novosibirsk, Russia; (I.M.); (E.K.); (I.A.)
| | - Irina Andrienko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, 630090 Novosibirsk, Russia; (I.M.); (E.K.); (I.A.)
| | - Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
| | - Natalya Pronkina
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52 Krasny Prospect, 630091 Novosibirsk, Russia
| |
Collapse
|
12
|
Pashkina EA, Grishina LV, Aktanova AA, Kozlov VA. Antitumor activity of supramolecular complexes of cucurbituril with platinum(II) compounds. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
|
14
|
Fahmy SA, Ponte F, Fawzy IM, Sicilia E, Bakowsky U, Azzazy HMES. Host-Guest Complexation of Oxaliplatin and Para-Sulfonatocalix[n]Arenes for Potential Use in Cancer Therapy. Molecules 2020; 25:E5926. [PMID: 33327642 PMCID: PMC7765097 DOI: 10.3390/molecules25245926] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023] Open
Abstract
P-sulfonatocalix[n]arenes have demonstrated a great potential for encapsulation of therapeutic drugs via host-guest complexation to improve solubility, stability, and bioavailability of encapsulated drugs. In this work, guest-host complexes of a third-generation anticancer drug (oxaliplatin) and p-4-sulfocalix[n]arenes (n = 4 and 6; p-SC4 and p-SC6, respectively) were prepared and investigated, using 1H NMR, UV, Job's plot analysis, and DFT calculations, for use as cancer therapeutics. The peak amplitude of the prepared host-guest complexes was linearly proportional to the concentration of oxaliplatin in the range of 1.0 × 10-5 M-1 to 2.1 × 10-4 M-1. The reaction stoichiometry between either p-SC4 or p-SC6 and oxaliplatin in the formed complexes was 1:1. The stability constants for the complexes were 5.07 × 104 M-1 and 6.3 × 104 M-1. These correspond to complexation free energy of -6.39 and -6.52 kcal/mol for p-SC4 and p-SC6, respectively. Complexation between oxaliplatin and p-SC4 or p-SC6 was found to involve hydrogen bonds. Both complexes exhibited enhanced biological and high cytotoxic activities against HT-29 colorectal cells and MCF-7 breast adenocarcinoma compared to free oxaliplatin, which warrants further investigation for cancer therapy.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt;
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.P.); (E.S.)
| | - Iten M. Fawzy
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 12311, Egypt;
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.P.); (E.S.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt;
| |
Collapse
|
15
|
Fahmy S, Ponte F, Sicilia E, El-Said Azzazy HM. Experimental and Computational Investigations of Carboplatin Supramolecular Complexes. ACS OMEGA 2020; 5:31456-31466. [PMID: 33324858 PMCID: PMC7726934 DOI: 10.1021/acsomega.0c05168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 05/28/2023]
Abstract
Supramolecular systems (macromolecules), such as calix[n]arenes (SCn), cyclodextrins (CDs), and cucurbiturils (CBs), are promising vehicles for anticancer drugs. In this work, guest-host complexes of carboplatin, a second-generation platinum-based anticancer drug, and p-4-sulfocalix[n]arenes (n = 4 and 6; PS4 and PS6, respectively) were prepared and studied using 1H NMR, UV, Job's plot analysis, HPLC, and density-functional theory calculations. The experimental and the computational studies suggest the formation of 1:1 complexes between carboplatin and each of PS4 and PS6. The stability constants of the formed complexes were estimated to be 5.3 × 104 M-1 and 9.8 × 104 M-1, which correspond to free energy of complexation of -6.40 and -6.81 kcal mol-1, in the case of PS4 and PS6, respectively. The interaction free energy depends on the different inclusion modes of carboplatin in the host cavities. UV-vis findings and atoms in molecules analysis showed that hydrogen bond interactions stabilize the host-guest complexes without the full inclusion in the host cavity. The in vitro anticancer study revealed that both complexes exhibited stronger anticancer activities against breast adenocarcinoma cells (MCF-7) and lung cancer cells (A-549) compared to free carboplatin, preluding to their potential use in cancer therapy.
Collapse
Affiliation(s)
- Sherif
Ashraf Fahmy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| | - Fortuna Ponte
- Department
of Chemistry and Chemical Technologies, University of Calabria, Arcavacata
di Rende 87036, Italy
| | - Emilia Sicilia
- Department
of Chemistry and Chemical Technologies, University of Calabria, Arcavacata
di Rende 87036, Italy
| | - Hassan Mohamed El-Said Azzazy
- Department
of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
16
|
Luo Q, Gu W. Novel borospherenes as cisplatin anticancer drug delivery systems. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1774088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qi Luo
- School of Continuing Education, Chengdu Normal University, Chengdu, Sichuan Province, China
| | - Wei Gu
- College of Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
17
|
Hooper CAJ, Cardo L, Craig JS, Melidis L, Garai A, Egan RT, Sadovnikova V, Burkert F, Male L, Hodges NJ, Browning DF, Rosas R, Liu F, Rocha FV, Lima MA, Liu S, Bardelang D, Hannon MJ. Rotaxanating Metallo-supramolecular Nano-cylinder Helicates to Switch DNA Junction Binding. J Am Chem Soc 2020; 142:20651-20660. [DOI: 10.1021/jacs.0c07750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Catherine A. J. Hooper
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Lucia Cardo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - James S. Craig
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Lazaros Melidis
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Aditya Garai
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ross T. Egan
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Viktoriia Sadovnikova
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Florian Burkert
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Nikolas J. Hodges
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Douglas F. Browning
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille 13007, France
| | - Fengbo Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Fillipe V. Rocha
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Mauro A. Lima
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | | | - Michael J. Hannon
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Physical Sciences for Health Centre, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
18
|
Hasanzade Z, Raissi H. Molecular mechanism for the encapsulation of the doxorubicin in the cucurbit[n]urils cavity and the effects of diameter, protonation on loading and releasing of the anticancer drug:Mixed quantum mechanical/ molecular dynamics simulations. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105563. [PMID: 32531653 DOI: 10.1016/j.cmpb.2020.105563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Doxorubicin is a common apoptotic chemotherapeutic which has shown an obvious inhibitory effect in cancer chemotherapy. Here, cucurbit[n]urils (n = 7,10) have been proposed as a doxorubicin carrier, and the effects of diameter, protonation on loading and releasing of the anticancer drug doxorubicin has been studied. METHODS The Density Functional Theory (DFT) calculation and Molecular Dynamics (MD) simulation are performed to study the adsorption process of the (guest) Doxorubicin molecule in the neutral and protonated states within the (host) cucurbit[n]urils (n = 7,10). RESULTS DFT results show that the adsorption process in water is thermodynamically favorable. It is found that the binding energies for protonated drug encapsulation in cucurbit[n]urils are weaker than those of the neutral drug, implying the protonation of doxorubicin can promote the drug release from the adsorption situation. The electron density values and their Laplacian are evaluated to identify the nature of the intermolecular interactions through the topological parameters using the Bader's theory of atoms in molecules. Furthermore, the natural bond orbital analysis shows that the electrons aretransferred from cucurbit[n]urils to drug in all complexes. MD simulation results indicate that value of drug diffusion coefficient is small, therefore, we expect DOX to be slowly released from the CB cavity. CONCLUSIONS Based on obtained results, cucurbit[n]urils may be a prominent nano-carrier to loading and release drug on to target cells.
Collapse
Affiliation(s)
| | - Heidar Raissi
- Chemistry Department, University of Birjand, Birjand, Iran.
| |
Collapse
|
19
|
Zeng Z, Xie J, Luo G, Tao Z, Zhang Q. Host-guest interaction of cucurbit[8]uril with oroxin A and its effect on the properties of oroxin A. Beilstein J Org Chem 2020; 16:2332-2337. [PMID: 33029251 PMCID: PMC7522457 DOI: 10.3762/bjoc.16.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, we investigated the host-guest interactions between oroxin A (OA) and cucurbit[8]uril (Q[8]) using 1H NMR, MS, UV-vis and IR spectroscopy. The results showed that OA and Q[8] formed an inclusion compound (OA@Q[8]) with a molar ratio of 1:1 and a binding constant of 1.299 × 107 L·mol-1. In addition, the effect of Q[8] on the properties of OA was investigated through comparative experiments. The solubility of OA in water increased 22.47-fold when the concentration of Q[8] was 1 × 10-4 mol·L-1. Q[8] hardly affected the antioxidant capacity of OA, while the cumulative release of OA in gastric juice increased 2.3-fold after forming the inclusion compound with Q[8].
Collapse
Affiliation(s)
- Zhishu Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 2708, South Section of Huaxi Avenue, Huaxi, Guiyang 550025, China
| | - Jun Xie
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 2708, South Section of Huaxi Avenue, Huaxi, Guiyang 550025, China
| | - Guangyan Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 2708, South Section of Huaxi Avenue, Huaxi, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 2708, South Section of Huaxi Avenue, Huaxi, Guiyang 550025, China
| | - Qianjun Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, No. 2708, South Section of Huaxi Avenue, Huaxi, Guiyang 550025, China
| |
Collapse
|
20
|
Reshadi MAM, Bazargan A, McKay G. A review of the application of adsorbents for landfill leachate treatment: Focus on magnetic adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138863. [PMID: 32446150 DOI: 10.1016/j.scitotenv.2020.138863] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 05/12/2023]
Abstract
Landfill leachate is a significant environmental threat due to the complexity and variety of its pollutants. There are various physical, chemical, and biological treatment methods proposed for leachate treatment. Adsorption with conventional adsorbents such as activated carbon is a process which has been widely employed with relative success. Magnetic adsorbents are a special type of adsorbents with favorable stability, high adsorption capacities, and excellent recycling and reuse capabilities when compared to conventional sorbents. Research regarding the synthesis and use of magnetic adsorbents has been growing at a rapid pace, exhibiting >8-fold increase in publications in the decade of 2010 to 2020. In the current study, both conventional and magnetic adsorbents for landfill leachate treatment have been comprehensively reviewed and discussed. The application of magnetic adsorbents for landfill leachate treatment is relatively new, with numerous avenues of research open to study. Although the production of magnetic adsorbents is significantly more expensive than conventional adsorbents, when taking into consideration all life cycle costs, they are much more competitive than it initially appears. If environmental impacts are of concern, research should shift towards the use of greener chemicals and processes for magnetic adsorbent synthesis, because preliminary analysis of the current synthesis processes shows a much higher environmental impact compared to conventional adsorbents, in particular in terms of global warming potential and energy use.
Collapse
Affiliation(s)
| | - Alireza Bazargan
- School of Environment, College of Engineering, University of Tehran, Iran.
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Qatar
| |
Collapse
|
21
|
Luis ET, Day AI, König B, Beves JE. Photophysical Activity and Host-Guest Behavior of Ruthenium Polypyridyl Catalysts Encapsulated in Cucurbit[10]uril. Inorg Chem 2020; 59:9135-9142. [PMID: 32578987 DOI: 10.1021/acs.inorgchem.0c00986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work outlines a strategy to combine the use of visible light and confined spaces to form a supramolecular photocatalyst system. Polypyridyl ruthenium(II) complexes [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine), [Ru(bpy)2(bpm)]2+ (bpm = 2,2'-bipyrimidine), and [Ru(bpy)2(bpz)]2+ (bpz = 2,2'-bipyrazine) are encapsulated in cucurbit[10]uril to form host-guest systems in aqueous solution. The photophysical properties of the complexes are altered by encapsulation, with improved emissive behavior for the heteroleptic complexes. Oxidative quenching of the photocatalyst's excited state via intermolecular charge transfer to methyl viologen can occur within the internal cavity, which acts to preorganize the reagents. The host-guest system containing [Ru(bpy)3]2+ can bind suitable substrates, and essential criteria for its use as a supramolecular photocatalyst are investigated.
Collapse
Affiliation(s)
- Ena T Luis
- School of Chemistry, UNSW Sydney, Sydney, Australia
| | - Anthony I Day
- School of Physical, Environmental and Mathematical Sciences, UNSW Canberra, Canberra, Australia
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
22
|
Jia C, Zhong Y, Zhang X, Liao X, Li Y, Yang B, Gao C. Host–guest inclusion systems of nedaplatin with cucurbit[7]uril for improved in vitro antitumour activity. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-00988-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Fink S, Reddersen K, Wiegand C, Elsner P, Hipler UC. Evaluation of cell and hemocompatibility of Cucurbiturils. Eur J Pharm Sci 2020; 146:105271. [PMID: 32084586 DOI: 10.1016/j.ejps.2020.105271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/06/2020] [Accepted: 02/16/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Cucurbiturils (CB) are pumpkin-shaped macrocyclic molecules consisting of methylen-bridged glycoluril units. Because of their complexing characteristics, they can be used as drug containers for medical purposes. For future biomedical and dermal application of CB, the investigation of cell compatibility is essential. Little is known about the influence of CB on eukaryotic cells, especially on dermal keratinocytes. The structurally related cyclodextrins are known to induce cell death by apoptosis in HaCaT keratinocytes as well as hemolysis in erythrocytes. OBJECTIVE To examine cytotoxic effects of different CB. METHODS Different cytotoxicity tests were performed on HaCaT keratinocytes and erythrocytes incubated with CB[5], CB[6], and CB[7]. RESULTS CB[5] and CB[6] did not lead to cytotoxic reactions at high concentrations up to 30 mg/mL whereas incubation with CB[7] triggered apoptosis at a concentration of 3.75 mg/mL. None of the investigated CB caused hemolytic effects on erythrocytes. CONCLUSION These results confirm the high potential of CB as host-complexes for biomedical and dermal applications.
Collapse
Affiliation(s)
- Sarah Fink
- Department of Dermatology, Jena University Hospital, Jena, Germany.
| | | | - Cornelia Wiegand
- Department of Dermatology, Jena University Hospital, Jena, Germany
| | - Peter Elsner
- Department of Dermatology, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
24
|
Wu H, Chen H, Tang B, Kang Y, Xu JF, Zhang X. Host-Guest Interactions between Oxaliplatin and Cucurbit[7]uril/Cucurbit[7]uril Derivatives under Pseudo-Physiological Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1235-1240. [PMID: 31941282 DOI: 10.1021/acs.langmuir.9b03325] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Compared with conventional drug delivery systems (DDSs), DDSs based on host-guest interactions possess unique advantages, such as high selectivity, tunable binding ability, and controllable release of drugs. It is important to study the host-guest interactions between the carrier and drug under physiological conditions for constructing DDSs. In this work, we have studied the host-guest interaction between cucurbit[7]uril (CB[7]) and oxaliplatin (OxPt), a clinical antitumor drug, in the cell culture medium. The results show that amino acids such as phenylalanine in the 1640 culture medium can partially occupy the cavity of CB[7], which leads to the decrease of enthalpy changes of the host-guest interaction between OxPt and CB[7]. In addition, inorganic salts such as NaCl in the medium reduce the enthalpy change and increase the entropy change of the binding because of the preorganization of the portal of CB[7] and sodium cation. As a result, the binding constant of CB[7] with OxPt in the 1640 culture medium is 1/20 of that in pure water. When CB[7] is modified at the terminal of star-type PEG to construct the star-PEGylated CB[7], it is shown that the molecular weight and topological structure of the PEG polymer backbone exhibit little effect on the host-guest interactions between CB[7] and OxPt. This study enriches the host-guest chemistry of cucurbiturils and may provide guidance for constructing novel DDSs based on host-guest interactions with high loading and releasing efficiency.
Collapse
Affiliation(s)
- Han Wu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Hao Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Bohan Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yuetong Kang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
25
|
Chernikova EY, Ruleva AY, Tsvetkov VB, Fedorov YV, Novikov VV, Aliyeu TM, Pavlov AA, Shepel NE, Fedorova OA. Cucurbit[7]uril-driven modulation of ligand-DNA interactions by ternary assembly. Org Biomol Chem 2020; 18:755-766. [PMID: 31912862 DOI: 10.1039/c9ob02543j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of small organic molecules with a predictable and desirable DNA-binding mechanism is a topical research task for biomedicine application. Herein, we demonstrate an attractive supramolecular strategy for controlling the non-covalent ligand-DNA interaction by binding with cucurbituril as a synthetic receptor. With a combination of UV/vis, CD and NMR experiments, we demonstrate that the bis-styryl dye with two suitable binding sites can involve double stranded DNA and cucurbituril in the formation of the supramolecular triad. The ternary assembly is formed as a result of the interaction of macrocyclic cucurbituril with one pyridinium fragment of the bis-styryl dye, while the second pyridinium fragment of the dye is effectively associated with DNA backbones, which leads to a change in the ligand-DNA binding mode from aggregation to a minor groove. This exciting outcome was supported by molecular docking studies that help to understand the molecular orientation of the supramolecular triad and elucidate the destruction of dye aggregates caused by cucurbituril. These studies provide valuable information on the mechanisms of DNA binding to small molecules and recognition processes in bioorganic supramolecular assemblies constructed from multiple non-covalent interactions.
Collapse
Affiliation(s)
- Ekaterina Y Chernikova
- Laboratory of Photoactive Supramolecular Systems, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, 119991, Russia.
| | - Anna Y Ruleva
- Laboratory of Photoactive Supramolecular Systems, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, 119991, Russia.
| | - Vladimir B Tsvetkov
- Computational Oncology Group, I.M. Sechenov First Moscow State Medical University, Trubetskaya str, 8/2, Moscow, 119146 Russia and Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia and Polyelectrolytes and Biomedical Polymers Laboratory, A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky prospect str. 29, Moscow, 119991, Russia
| | - Yuri V Fedorov
- Laboratory of Photoactive Supramolecular Systems, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, 119991, Russia.
| | - Valentin V Novikov
- Laboratory of Nuclear Magnetic Resonances, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, 119991, Russia
| | - Tseimur M Aliyeu
- Center for Molecule Composition Studies, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, 119991, Russia
| | - Alexander A Pavlov
- Laboratory of Nuclear Magnetic Resonances, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, 119991, Russia
| | - Nikolay E Shepel
- Laboratory of Photoactive Supramolecular Systems, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, 119991, Russia.
| | - Olga A Fedorova
- Laboratory of Photoactive Supramolecular Systems, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, 119991, Russia.
| |
Collapse
|
26
|
Zdarova Karasova J, Hepnarova V, Andrys R, Lisa M, Jost P, Muckova L, Pejchal J, Herman D, Jun D, Kassa J, Kuca K. Encapsulation of oxime K027 into cucurbit[7]uril: In vivo evaluation of safety, absorption, brain distribution and reactivation effectiveness. Toxicol Lett 2019; 320:64-72. [PMID: 31794810 DOI: 10.1016/j.toxlet.2019.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Oxime-based acetylcholinesterase reactivators (briefly oximes) regenerate organophosphate-inactivated acetylcholinesterase and restore its function. Poor blood-brain-barrier passage and fast elimination from blood limit their actual use in treatment of patients exposed to organophosphates. Previous in vitro results implicated further testing of cucurbit[7]uril as a delivery vehicle for bisquaternary oximes. The present paper focuses on cell toxicity, in vivo safety and influence of cucurbit[7]uril on oxime pharmacokinetics and pharmacodynamics. Neither the K027 nor the complex caused any cell toxicity, changes in blood biochemistry or hepato- or nephrotoxicity in tested concentrations. The encapsulation of K027 increased and accelerated the blood-brain-barrier penetration. The peripheral oxime exposure also increased, supporting the suggestion that cucurbit[7]uril protects the circulating oxime from rapid renal clearance. Contrary to the comparable in vitro reactivation power of K027 and the encapsulated K027, we failed to confirm this in vivo. In theory, this might result from the non-specific binding of molecules to the cucurbit[7]uril or the interaction of K027 with cucurbit[7]uril being too strong for acetylcholinesterase reactivation. Precise explanation requires additional in silico, in vitro and also in vivo experiments.
Collapse
Affiliation(s)
- Jana Zdarova Karasova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic.
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Miroslav Lisa
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petr Jost
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno Hradec Kralove, Czech Republic
| | - David Herman
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic
| | - Jiri Kassa
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence in Brno Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
27
|
Guo Q, Liu M, Zhao Y, Wu Y, Liu J, Cai C, Shi Y, Han J. Spectroscopic and cytotoxicity studies on the combined interaction of (-)-epigallocatechin-3-gallate and anthracycline drugs with human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117213. [PMID: 31177010 DOI: 10.1016/j.saa.2019.117213] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/26/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The interactions of (-)-epigallocatechin-3-Gallate (EGCG) and anthracycline drugs (doxorubicin, DOX and epirubicin, EPI) alone or in combination with human serum albumin (HSA) under physiological condition were studied by fluorescence spectroscopy, UV-vis absorption spectroscopy, circular dichroism (CD) spectroscopy, and dynamic light scattering (DLS). The cytotoxic activity of the single drug, combined drugs, and their complexes with HSA against human cervical cancer HeLa cell line was determined by MTT assay. Fluorescence quenching result and difference spectra of UV absorption revealed the formation of static complex between EGCG, DOX, or EPI and HSA. The binding of EGCG with HSA was driven by both enthalpy and entropy while the binding of DOX or EPI was mainly entropy driven. The nature of binding was expounded based on the effect of sodium chloride, tetrabutylammonium bromide, and sucrose which interfere in electrostatic, hydrophobic, and hydrogen bonding interactions, respectively. Site marker competitive experiments combined with synchronous fluorescence spectra showed that these three ligands mainly bound to subdomain IIA of HSA and were closer to tryptophan residues. In EGCG + DOX/EPI + HSA ternary system, the effect of one drug on the binding ability of another drug was discussed. The influences of the individual and combined binding of EGCG and DOX/EPI on the secondary structure and particle size of HSA were investigated by CD spectroscopy and DLS, respectively. Moreover, the synergistic cytotoxicity of EGCG and DOX/EPI as well as their complexes with HSA were discussed. Obtained results would provide beneficial information on the combination of EGCG and anthracyclines in clinic.
Collapse
Affiliation(s)
- Qingying Guo
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Yanna Zhao
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yushu Wu
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Chang Cai
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Yabo Shi
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
28
|
Singh VK, Pillai V, Patel SK, Buch L. Improving Cytotoxicity by Changing a Linker from Diphenylether to Diphenylmethane and now to Phenylene in Binuclear Dithiocarbamate Complexes: Synthesis and Cytotoxicity Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201900938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Vinay K Singh
- Department of ChemistryFaculty of ScienceThe M. S. University of Baroda Vadodara- 390 002 India
| | - Vineeta Pillai
- Department of ChemistryFaculty of ScienceThe M. S. University of Baroda Vadodara- 390 002 India
| | - Shailykumari K. Patel
- Department of ChemistryFaculty of ScienceThe M. S. University of Baroda Vadodara- 390 002 India
| | - Lipi Buch
- Department of ZoologyFaculty of ScienceThe M. S. University of Baroda Vadodara- 390 002 India
| |
Collapse
|
29
|
Sojka M, Fojtu M, Fialova J, Masarik M, Necas M, Marek R. Locked and Loaded: Ruthenium(II)-Capped Cucurbit[ n]uril-Based Rotaxanes with Antimetastatic Properties. Inorg Chem 2019; 58:10861-10870. [PMID: 31355636 DOI: 10.1021/acs.inorgchem.9b01203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report here the first coupling of Ru(II) units with cucurbit[6/7]uril-based pseudorotaxane ligands meant for biological application. The resulting ruthenium-capped rotaxanes were fully characterized, and a structure of one supramolecular system was determined by X-ray diffraction. Because the biological properties of Ru-based metallodrugs are tightly linked to the ligand-exchange processes, the effect of salt concentration on the hydrolysis of chlorides from the Ru(II) center was monitored by using 1H NMR spectroscopy. The biological activity of Ru(II)-based rotaxanes was evaluated for three selected mammalian breast cell lines, HBL-100, MCF-7, and MDA-MB-231. The antimetastatic activity of the assembled cationic Ru(II)-rotaxane systems, evaluated in migration assays against MCF-7 and MDA-MB-231 cell lines, is notably enhanced compared to that of RAPTA-C, a reference that was used. The indicated synergistic effect of combining Ru(II) with a pseudorotaxane unit opens a new direction in searching for anticancer supramolecular metallodrugs.
Collapse
Affiliation(s)
- Martin Sojka
- Department of Chemistry, Faculty of Science , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| | - Michaela Fojtu
- CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,Department of Pathological Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,Department of Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| | - Jindriska Fialova
- Department of Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| | - Michal Masarik
- CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,Department of Pathological Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,Department of Physiology, Faculty of Medicine , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| | - Marek Necas
- Department of Chemistry, Faculty of Science , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| | - Radek Marek
- Department of Chemistry, Faculty of Science , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia.,CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5 , CZ-62500 Brno , Czechia
| |
Collapse
|
30
|
Abd El-Rahman MK, Mazzone G, Mahmoud AM, Sicilia E, Shoeib T. Spectrophotometric determination of choline in pharmaceutical formulations via host-guest complexation with a biomimetic calixarene receptor. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Fan Y, Gao RH, Huang Y, Bian B, Tao Z, Xiao X. Supramolecular Fluorescence Probe Based on Twisted Cucurbit[14]uril for Sensing Fungicide Flusilazole. Front Chem 2019; 7:154. [PMID: 30949474 PMCID: PMC6437033 DOI: 10.3389/fchem.2019.00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
The host-guest complex of the common dye, thioflavin T (ThT), and twisted cucurbit[14]uril (tQ[14]) was selected as a fluorescent probe to determine non-fluorescent triazole fungicides, including flusilazole, azaconazole, triadimefon, tebuconazole, tricyclazole, flutriafol, penconazole, and triadimenol isomer A, in an aqueous solution. The experimental results reveal that the ThT@tQ[14] probe selectively responded to flusilazole with significant fluorescence quenching and a detection limit of 1.27 × 10-8 mol/L. In addition, the response mechanism involves not only a cooperation interaction-ThT occupies a side-cavity of the tQ[14] host and the triazole fungicide occupies another side-cavity of the tQ[14] host-but also a competition interaction in which both ThT and the triazole fungicide occupy the side-cavities of the tQ[14] host.
Collapse
Affiliation(s)
- Ying Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| | - Rui-Han Gao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| | - Ying Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| | - Bing Bian
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| |
Collapse
|
32
|
Zheng YC, Zhao YY, Zheng ML, Chen SL, Liu J, Jin F, Dong XZ, Zhao ZS, Duan XM. Cucurbit[7]uril-Carbazole Two-Photon Photoinitiators for the Fabrication of Biocompatible Three-Dimensional Hydrogel Scaffolds by Laser Direct Writing in Aqueous Solutions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1782-1789. [PMID: 30608644 DOI: 10.1021/acsami.8b15011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have introduced a novel water-soluble two-photon photoinitiator based on the host-guest interaction between 3,6-bis[2-(1-methyl-pyridinium)vinyl]-9-pentyl-carbazole diiodide (BMVPC) and cucurbit[7]uril (CB7) because most of the commercial photoinitiators have poor two-photon initiating efficiency in aqueous solutions. The binding ratio of BMVPC and CB7 was determined as 1:1 by isothermal titration calorimetry and quantum chemical calculation. The formation of the host-guest complex increases the two-photon absorption cross-section about five times, and improves the water solubility required as the photoinitiator for hydrogel fabrication. The BMVPC-CB7 inclusion complex was used as the one-component photoinitiator, and the polyethylene glycol diacrylate with promising biocompatibility was used as the hydrogel monomer to form the aqueous-phase photoresist system applied to two-photon polymerization microfabrication. A relatively low laser threshold of 4.5 mW, a high fabricating resolution of 180 nm, and the true three-dimensional (3D) fabricating capability in the aqueous solution have been obtained by using the as-prepared photoresist system. Finally, 3D engineering hydrogel scaffold microstructures with low toxicity and good biocompatibility have been fabricated and cocultured with living HeLa cells, which demonstrates the potential for further application in tissue engineering.
Collapse
Affiliation(s)
- Yong-Chao Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , No. 29, Zhongguancun East Road , Beijing 100190 , P. R. China
- Research Institute of Chemical Defense , Academy of Military Sciences , Changping District, Beijing 102205 , P. R. China
- State Key Laboratory of NBC Protection for Civilian , Beijing 102205 , P. R. China
| | | | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , No. 29, Zhongguancun East Road , Beijing 100190 , P. R. China
| | | | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , No. 29, Zhongguancun East Road , Beijing 100190 , P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , No. 29, Zhongguancun East Road , Beijing 100190 , P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , No. 29, Zhongguancun East Road , Beijing 100190 , P. R. China
| | - Zhen-Sheng Zhao
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , No. 29, Zhongguancun East Road , Beijing 100190 , P. R. China
| | | |
Collapse
|
33
|
|
34
|
Xiao H, Yan L, Dempsey EM, Song W, Qi R, Li W, Huang Y, Jing X, Zhou D, Ding J, Chen X. Recent progress in polymer-based platinum drug delivery systems. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Singh VK, Pillai V, Gohil P, Patel SK, Buch L. New binuclear dithiocarbamate complexes [M2-µ2-bis-{(κ2S,S-S2CN(R)CH2CONHC6H4)2CH2}] (M=NiII, CuII, and ZnII): synthesis, characterization, DFT, and in vitro cytotoxic study. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1525610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Vinay K. Singh
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| | - Vineeta Pillai
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| | - Prakash Gohil
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| | - Shailykumari K. Patel
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| | - Lipi Buch
- Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| |
Collapse
|
36
|
Interaction between carboplatin and cucurbit[7]uril studied by means of multinuclear NMR spectroscopy and DFT calculations. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Fahmy SA, Ponte F, Abd El-Rahman MK, Russo N, Sicilia E, Shoeib T. Investigation of the host-guest complexation between 4-sulfocalix[4]arene and nedaplatin for potential use in drug delivery. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:528-536. [PMID: 29306207 DOI: 10.1016/j.saa.2017.12.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/10/2017] [Accepted: 12/26/2017] [Indexed: 05/28/2023]
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende, 87036, Italy
| | - Mohamed K Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo, Egypt 11562
| | - Nino Russo
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende, 87036, Italy; Division de Ciencias Basicas e Ingenieria, Departamento de Quimica, Universidad, Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, CP 09340 Mexico, Distrito Federal, Mexico
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende, 87036, Italy.
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
38
|
Yang X, Zhao W, Wang Z, Huang Y, Lee SM, Tao Z, Wang R. Toxicity of hemimethyl-substituted cucurbit[7]uril. Food Chem Toxicol 2017; 108:510-518. [DOI: 10.1016/j.fct.2017.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
|
39
|
Kovalenko EA, Pashkina EA, Kanazhevskaya LY, Masliy AN, Kozlov VA. Chemical and biological properties of a supramolecular complex of tuftsin and cucurbit[7]uril. Int Immunopharmacol 2017; 47:199-205. [PMID: 28427014 DOI: 10.1016/j.intimp.2017.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/26/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022]
Abstract
Cucurbit[7]uril (CB7) is an uncharged and water-soluble macrocyclic host. CB7 binds to doubly protonated tuftsin, which is the tetrapeptide Thr-Lys-Pro-Arg, with moderate affinity (Ka=2.1×103M-1). In this study, the host-guest complexation was confirmed by fluorescence titration. This affinity would allow for easy release of the peptide under physiological conditions. According to density functional theory calculations, the structural binding motif involves hydrogen bonding. The most energetically stable form had the Arg side chain inside the CB7 cavity. The effects of the tuftsin-CB7 complex on the proliferation and cytokine activity of immune cells were studied. The complex had broader spectrum immunomodulation than free peptides, and caused statistically significant (p<0,05) changes in cytokine production (tumor necrosis factor-α, interleukin-2, interferon-γ, and interleukin-10) by mononuclear cells. By contrast, the free peptide only activated tumor necrosis factor-α production.
Collapse
Affiliation(s)
- Ekaterina A Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, Novosibirsk 630090, Russia.
| | - Ekaterina A Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, Novosibirsk 630099, Russia.
| | - Lyubov Y Kanazhevskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave, Novosibirsk 630090, Russia.
| | - Alexey N Masliy
- Kazan National Research Technological University, 68 K. Marx St., Kazan 420015, Russia.
| | - Vladimir A Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, Novosibirsk 630099, Russia.
| |
Collapse
|
40
|
Fong CW. Cucurbiturils as potential free radical chemoradiosensitizers for enhanced cisplatin treatment of cancers: a quantum mechanical study. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Kahwajy N, Nematollahi A, Kim RR, Church WB, Wheate NJ. Comparative macrocycle binding of the anticancer drug phenanthriplatin by cucurbit[n]urils, β-cyclodextrin and para-sulfonatocalix[4]arene: a 1H NMR and molecular modelling study. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0694-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Zhao J, Yang L, Tang Y, Yang Y, Yin Y. Supramolecular Chemistry-Assisted Electrochemical Method for the Assay of Endogenous Peptidylarginine Deiminases Activities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:152-158. [PMID: 27958698 DOI: 10.1021/acsami.6b13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Peptidylarginine deiminase 4 (PAD4) is the only isoform of PADs located within the cell nucleus, which has been known to be related to several human diseases. In this work, we have proposed an electrochemical method for the assay of endogenous PAD4 activities as well as the studies of PAD4 inhibitors by making use of the supramolecular chemistry-assisted signal labeling. Specifically, peptide probes P1 and P2, which separately contain cysteine residues and tripeptides FGG (Phe-Gly-Gly), can be self-assembled onto the surface of the gold electrode and silver nanoparticles, respectively. In the meantime, the peptide probes can be connected together through cucurbit[8]uril-mediated host-guest interaction. Nevertheless, after trypsin-catalyzed digestion, FGG at the N-terminal of P1 will be removed from the electrode surface, thereby inhibiting the connection of P1 and P2. Since PAD4 catalyzes the citrullination of arginine residue within P1, trypsin-catalyzed digestion of P1 can be prohibited by the addition of PAD4. Consequently, an obvious change of the electrochemical response can be obtained from the silver nanoparticles (AgNPs) immobilized on the electrode surface. Experimental results have shown that our method can display an improved sensitivity and specificity for both PAD4 assay and inhibitor screening, which may effectively trace endogenous PAD4 and the inhibitors in the cancer cells. Therefore, our method may have great potential for the diagnosis and treatment of PAD4-related diseases in the future.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P. R. China
| | - Lili Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P. R. China
| | - Yingying Tang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University , Shanghai 200444, P. R. China
| | - Yucai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, P. R. China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029, P. R. China
| |
Collapse
|
43
|
de Azevedo LA, da Luz LL, de Souza Ferro JN, Barreto E, Oliveira Silva R, Alves S, Alves IBV. The new supramolecular nano-aggregate curcumin-cucurbit[7]uril: synthesis, photophysical properties and biocompatibility evaluation. Photochem Photobiol Sci 2017; 16:663-671. [PMID: 28225114 DOI: 10.1039/c6pp00408c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The supramolecular nano-aggregate CUR–CB[7] was efficiently prepared by mixing curcumin (CUR) and cucurbit[7]uril (CB[7]) in ethanol at room temperature.
Collapse
Affiliation(s)
| | | | | | - Emiliano Barreto
- Instituto de Ciências Biológica e da Saúde
- Universidade Federal de Alagoas
- Maceió-Al
- Brazil
| | | | - Severino Alves
- Programa de Pós-Graduação em Ciências de Materiais
- UFPE
- Recife-PE
- Brazil
- Departamento de Química Fundamental
| | | |
Collapse
|
44
|
Hassanzadeh K, Akhtari K, Esmaeili SS, Vaziri A, Zamani H, Maghsoodi M, Noori S, Moradi A, Hamidi P. Encapsulation of Thiotepa and Altretamine as neurotoxic anticancer drugs in Cucurbit[n]uril (n=7, 8) nanocapsules: A DFT study. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The encapsulation of Altretamine (ALT) and Thiotepa (THI) as neurotoxic anticancer drugs in Cucurbit[[Formula: see text]]uril (CB[[Formula: see text]]) family of macrocycles ([Formula: see text],8) have been investigated and their potential in drug delivery, ability to provide physical and chemical stability, improving water solubility and decreasing the side effects have been studied using density functional theory (DFT) approach with B3LYP and the dispersion corrected functional WB97XD methods by employing the 3-21G* basis set. All the calculations were evaluated for gas phase and water as a pharmaceutical and biological solvent according to the polarizable continuum model (PCM). The non-covalent inter-molecular interactions between the host and guest parts were visualized using reduced density gradient analysis. The molecular characteristics for drugs, CB[[Formula: see text]] and their complexes calculated and the global and local descriptors were employed to study the chemical stability of the host–guest complexes. The results show that the encapsulation of THI and ALT for both CB[7] and CB[8] energetically favorable and this can decrease the central nervous system (CNS) neurotoxicity, and increase the stability of THI in electrophilic and nucleophilic. Beside the CNS neurotoxicity reduction and increasing the stability in electrophilic and nucleophilic attacks, the solubility in water for ALT was improved.
Collapse
Affiliation(s)
- Keyumars Hassanzadeh
- Young Researchers and Elites Club, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, P. O. Box 416, Sanandaj, Iran
| | | | - Azin Vaziri
- Farzanegan 2 Educational Center, National Organization for Development of Exceptional Talents, Sanandaj, Iran
| | - Hedyeh Zamani
- Farzanegan 2 Educational Center, National Organization for Development of Exceptional Talents, Sanandaj, Iran
| | - Mobina Maghsoodi
- Farzanegan 2 Educational Center, National Organization for Development of Exceptional Talents, Sanandaj, Iran
| | - Shamim Noori
- Farzanegan 2 Educational Center, National Organization for Development of Exceptional Talents, Sanandaj, Iran
| | - Atefeh Moradi
- Paramedical Faculty, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Pardis Hamidi
- Farzanegan 2 Educational Center, National Organization for Development of Exceptional Talents, Sanandaj, Iran
| |
Collapse
|
45
|
Qiu SC, Li Q, Chen K, Zhang YQ, Zhu QJ, Tao Z. Absorption properties of an inverted cucurbit[7]uril-based porous coordination polymer induced by [ZnCl 4 ] 2− anions. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
|
47
|
Alrawashdeh LR, Cronin MP, Woodward CE, Day AI, Wallace L. Iridium Cyclometalated Complexes in Host–Guest Chemistry: A Strategy for Maximizing Quantum Yield in Aqueous Media. Inorg Chem 2016; 55:6759-69. [DOI: 10.1021/acs.inorgchem.6b01037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lubna R. Alrawashdeh
- School of Physical, Environmental
and Mathematical Sciences, UNSW Australia, Australian Defence Force Academy, Canberra, Australia
| | - Michael P. Cronin
- School of Physical, Environmental
and Mathematical Sciences, UNSW Australia, Australian Defence Force Academy, Canberra, Australia
| | - Clifford E. Woodward
- School of Physical, Environmental
and Mathematical Sciences, UNSW Australia, Australian Defence Force Academy, Canberra, Australia
| | - Anthony I. Day
- School of Physical, Environmental
and Mathematical Sciences, UNSW Australia, Australian Defence Force Academy, Canberra, Australia
| | - Lynne Wallace
- School of Physical, Environmental
and Mathematical Sciences, UNSW Australia, Australian Defence Force Academy, Canberra, Australia
| |
Collapse
|
48
|
Shewale MN, Lande DN, Gejji SP. Encapsulation of benzimidazole derivatives within cucurbit[7]uril: Density functional investigations. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Gomes AC, Magalhães CIR, Oliveira TSM, Lopes AD, Gonçalves IS, Pillinger M. Solid-state study of the structure and host–guest chemistry of cucurbituril-ferrocene inclusion complexes. Dalton Trans 2016; 45:17042-17052. [DOI: 10.1039/c6dt02811j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Solid-state host–guest interactions have been investigated for cucurbit[n]uril-ferrocene inclusion compounds (n = 7, 8) prepared via a microwave-assisted hydrothermal approach.
Collapse
Affiliation(s)
- Ana C. Gomes
- Department of Chemistry
- CICECO - Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Clara I. R. Magalhães
- Department of Chemistry
- CICECO - Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Tânia S. M. Oliveira
- Faculty of Science and Technology
- CIQA
- University of the Algarve
- 8005-136 Faro
- Portugal
| | - André D. Lopes
- Faculty of Science and Technology
- CIQA
- University of the Algarve
- 8005-136 Faro
- Portugal
| | - Isabel S. Gonçalves
- Department of Chemistry
- CICECO - Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Martyn Pillinger
- Department of Chemistry
- CICECO - Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
50
|
Aderibigbe BA. Polymeric Prodrugs Containing Metal-Based Anticancer Drugs. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0220-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|