1
|
Aqilah Zahirah Norazmi N, Hafizah Mukhtar N, Ravindar L, Suhaily Saaidin A, Huda Abd Karim N, Hamizah Ali A, Kartini Agustar H, Ismail N, Yee Ling L, Ebihara M, Izzaty Hassan N. Exploring antimalarial potential: Conjugating organometallic moieties with organic fragments for enhanced efficacy. Bioorg Chem 2024; 149:107510. [PMID: 38833991 DOI: 10.1016/j.bioorg.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
In the search for novel ligands with efficacy against various diseases, particularly parasitic diseases, molecular hybridization of organometallic units into biologically active scaffolds has been hailed as an appealing strategy in medicinal chemistry. The conjugation to organometallic fragments can be achieved by an appropriate linker or by directly coordinating the existing drugs to a metal. The success of Ferroquine (FQ, SR97193), an effective chloroquine-ferrocene conjugate currently undergoing the patient-exploratory phase as a combination therapy with the novel triaminopyrimidine ZY-19489 for malaria, has sparked intense interest in organometallic compound drug discovery. We present the evolution of organometallic antimalarial agents over the last decade, focusing on the parent moiety's class and the type of organometallics involved. Four main organometallic antimalarial compounds have been chosen based on conjugated organic moieties: existing antimalarial drugs, other clinical drugs, hybrid drugs, and promising scaffolds of thiosemicarbazones, benzimidazoles, and chalcones, in particular. The presented insights contribute to the ongoing discourse on organometallic compound drug development for malaria diseases.
Collapse
Affiliation(s)
- Nur Aqilah Zahirah Norazmi
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nur Hafizah Mukhtar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Center of Foundation Studies, Universiti Teknologi Mara, 43800 Dengkil, Selangor, Malaysia
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medicinal Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Masahiro Ebihara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
2
|
Sovari SN, Golding TM, Mbaba M, Mohunlal R, Egan TJ, Smith GS, Zobi F. Rhenium(I) derivatives of aminoquinoline and imidazolopiperidine-based ligands: Synthesis, in vitro and in silico biological evaluation against Plasmodium falciparum. J Inorg Biochem 2022; 234:111905. [PMID: 35752063 DOI: 10.1016/j.jinorgbio.2022.111905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/23/2022] [Accepted: 06/12/2022] [Indexed: 12/31/2022]
Abstract
A small library of aminoquinoline and imidazolopiperidine (IMP)-based ligands, containing the 1,2,3-triazole moiety, and their corresponding tricarbonyl rhenium complexes were synthesised and their inhibitory activities evaluated against the chloroquine-sensitive (CQS) and multidrug-resistant (MDR) strains (NF54 and K1, respectively) of P. falciparum. The quinoline-based compounds (L1, L2, ReL1, and ReL2) were at least six-fold more potent than their IMP-based counterparts (L3, L4, ReL3, and ReL4) against both strains of P. falciparum, with the most promising compound (L1) displaying activity comparable to chloroquine diphosphate (CQDP) in the MDR strain. Additionally, all of the synthesised compounds have resistance indices less than CQDP. To gain insight into a possible mechanism of action, in silico hemozoin docking simulations were performed. These studies proposed that the tested compounds may act via hemozoin inhibition, as the new aminoquinoline-derivatives, with the exception of complex ReL2 (binding affinity: -12.62 kcal/mol), showed higher binding affinities than the reference drug chloroquine (CQ, -13.56 kcal/mol). Furthermore, the ligands exhibited superior binding affinity relative to their corresponding Re(I) complexes, which is reflected in their antiplasmodial activity.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland
| | - Taryn M Golding
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Mziyanda Mbaba
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Roxanne Mohunlal
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
3
|
Abid M, Singh S, Egan TJ, Joshi MC. Structural activity relationship of metallo-aminoquines as a next generation antimalarials. Curr Top Med Chem 2022; 22:436-472. [PMID: 34986771 DOI: 10.2174/1568026622666220105103751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Apicomplexian parasite of the genus Plasmodium is the causative agent of malaria, one of the most devastating, furious and common infectious disease throughout the world. According to the latest World malaria report, there were 229 million cases of malaria in 2019 majorly consisting of children under 5 years of age. Some of known analogues viz. quinine, quinoline-containing compounds have been used for last century in the clinical treatment of malaria. Past few decades have witnessed the emergence of multi-drug resistance (MDR) strains of Plasmodium species to existing antimalarials pressing the need for new drug candidates. For the past few decades bioorganometallic approach to malaria therapy has been introduced which led to the discovery of noval metalcontaining aminoquinolines analogues viz. ferroquine (FQ or 1), Ruthenoquine (RQ or 2) and other related potent metal-analogues. It observed that some metal containing analogues (Fe-, Rh-, Ru-, Re-, Au-, Zn-, Cr-, Pd-, Sn-, Cd-, Ir-, Co-, Cu-, and Mn-aminoquines) were more potent; however, some were equally potent as Chloroquine (CQ) and 1. This is probably due to the intertion of metals in the CQ via various approaches, which might be a very attractive strategy to develop a SAR of novel metal containing antimalarials. Thus, this review aims to summarize the SAR of metal containing aminoquines towards the discovery of potent antimalarial hybrids to provide an insight for rational designs of more effective and less toxic metal containing amoniquines.
Collapse
Affiliation(s)
- Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia University, Jamia Nagar, New Delhi-110025, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Mehroli Road, New Delhi-110067, India
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town-7700, South Africa
| | - Mukesh C Joshi
- Dept. of Chemistry, Motilal Nehru College, University of Delhi, Benito Juarez marg, South Campus, New Delhi-110021. India
| |
Collapse
|
4
|
Abstract
Organometallic compounds are molecules that contain at least one metal-carbon bond. Due to resistance of the Plasmodium parasite to traditional organic antimalarials, the use of organometallic compounds has become widely adopted in antimalarial drug discovery. Ferroquine, which was developed due to the emergence of chloroquine resistance, is currently the most advanced organometallic antimalarial drug and has paved the way for the development of new organometallic antimalarials. In this review, a general overview of organometallic antimalarial compounds and their antimalarial activity in comparison to purely organic antimalarials are presented. Furthermore, recent developments in the field are discussed, and future applications of this emerging class of therapeutics in antimalarial drug discovery are suggested.
Collapse
|
5
|
Erkan S, Karakaş D. Computational investigation of structural, nonlinear optical and anti-tumor properties of dinuclear metal carbonyls bridged by pyridyl ligands with alkyne unit. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
|
7
|
DFT investigation and molecular docking studies on dinuclear metal carbonyls containing pyridyl ligands with alkyne unit. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00784-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Nemytov AI, Utepova IA, Chupakhin ON, Slepukhin PA, Charushin VN. Lithium benzenechromiumtricarbonyl as C-nucleophile in the cross-dehydrogenative coupling reactions of azaaromatics. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Chloroquine-containing organoruthenium complexes are fast-acting multistage antimalarial agents. Parasitology 2016; 143:1543-56. [PMID: 27439976 DOI: 10.1017/s0031182016001153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the pharmacological activity of organoruthenium complexes containing chloroquine (CQ) as a chelating ligand. The complexes displayed intraerythrocytic activity against CQ-sensitive 3D7 and CQ-resistant W2 strains of Plasmodium falciparum, with potency and selectivity indexes similar to those of CQ. Complexes displayed activity against all intraerythrocytic stages, but moderate activity against Plasmodium berghei liver stages. However, unlike CQ, organoruthenium complexes impaired gametocyte viability and exhibited fast parasiticidal activity against trophozoites for P. falciparum. This functional property results from the ability of complexes to quickly induce oxidative stress. The parasitaemia of P. berghei-infected mice was reduced by treatment with the complex. Our findings demonstrated that using chloroquine for the synthesis of organoruthenium complexes retains potency and selectivity while leading to an increase in the spectrum of action and parasite killing rate relative to CQ.
Collapse
|
10
|
Raj R, Land KM, Kumar V. 4-Aminoquinoline-hybridization en route towards the development of rationally designed antimalarial agents. RSC Adv 2015. [DOI: 10.1039/c5ra16361g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent developments in 4-aminoquinoline-hybridization, as an attractive strategy for averting and delaying the drug resistance along with improvement in efficacy of new antimalarials, are described.
Collapse
Affiliation(s)
- Raghu Raj
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Kirkwood M. Land
- Department of Biological Sciences
- University of the Pacific
- Stockton
- USA
| | - Vipan Kumar
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar-143005
- India
| |
Collapse
|
11
|
Li Y, de Kock C, Smith PJ, Chibale K, Smith GS. Synthesis and Evaluation of a Carbosilane Congener of Ferroquine and Its Corresponding Half-Sandwich Ruthenium and Rhodium Complexes for Antiplasmodial and β-Hematin Inhibition Activity. Organometallics 2014. [DOI: 10.1021/om500622p] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yiqun Li
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Carmen de Kock
- Division
of Pharmacology, Department of Medicine, University of Cape Town, K45, OMB, Groote
Schuur Hospital, Observatory 7925, South Africa
| | - Peter J. Smith
- Division
of Pharmacology, Department of Medicine, University of Cape Town, K45, OMB, Groote
Schuur Hospital, Observatory 7925, South Africa
| | - Kelly Chibale
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Gregory S. Smith
- Department
of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
12
|
Arifin K, Daud WRW, Kassim MB. A DFT analyses for molecular structure, electronic state and spectroscopic property of a dithiolene tungsten carbonyl complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 124:375-382. [PMID: 24508875 DOI: 10.1016/j.saa.2013.12.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/07/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Bis(dithiolene) tungsten carbonyl complex, W(S2C2Ph2)2(CO)2 was successfully synthesized and the structure, frontier molecular orbital and optical properties of the complex were investigated theoretically using density functional theory calculations. The investigation started with a molecular structure construction, followed by an optimization of the structural geometry using generalized-gradient approximation (GGA) in a double numeric plus polarization (DNP) basis set at three different functional calculation approaches. Vibrational frequency analysis was used to confirm the optimized geometry of two possible conformations of [W(S2C2Ph2)2(CO)2], which showed distorted octahedral geometry. Electronic structure and optical characterization were done on the ground states. Metal to ligand and ligand to metal charge transfer were dominant in this system.
Collapse
Affiliation(s)
- Khuzaimah Arifin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Wan Ramli Wan Daud
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohammad B Kassim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
13
|
|
14
|
Affiliation(s)
- Paloma F. Salas
- Medicinal Inorganic Chemistry
Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia
V6T 1Z1, Canada
| | - Christoph Herrmann
- Medicinal Inorganic Chemistry
Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia
V6T 1Z1, Canada
- Advanced
Applied Physics Solutions, TRIUMF, 4004
Wesbrook Mall, Vancouver, British Columbia
V6T 2A3, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry
Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia
V6T 1Z1, Canada
| |
Collapse
|
15
|
Patra M, Ingram K, Pierroz V, Ferrari S, Spingler B, Gasser RB, Keiser J, Gasser G. [(η6-Praziquantel)Cr(CO)3] Derivatives with Remarkable In Vitro Anti-schistosomal Activity. Chemistry 2013; 19:2232-5. [PMID: 23296750 DOI: 10.1002/chem.201204291] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Malay Patra
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Li Y, de Kock C, Smith PJ, Guzgay H, Hendricks DT, Naran K, Mizrahi V, Warner DF, Chibale K, Smith GS. Synthesis, Characterization, and Pharmacological Evaluation of Silicon-Containing Aminoquinoline Organometallic Complexes As Antiplasmodial, Antitumor, and Antimycobacterial Agents. Organometallics 2012. [DOI: 10.1021/om300945c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yiqun Li
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Carmen de Kock
- Division of Pharmacology, Department
of Medicine, University of Cape Town, K45,
OMB, Groote Schuur Hospital, Observatory 7925, South Africa
| | - Peter J. Smith
- Division of Pharmacology, Department
of Medicine, University of Cape Town, K45,
OMB, Groote Schuur Hospital, Observatory 7925, South Africa
| | - Hajira Guzgay
- Division of Medical Biochemistry, Department
of Clinical and Laboratory Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Denver T. Hendricks
- Division of Medical Biochemistry, Department
of Clinical and Laboratory Sciences, University of Cape Town, Rondebosch 7701, South Africa
| | - Krupa Naran
- MRC/NHLS/UCT Molecular Mycobacteriology Research
Unit, DST/NRF Centre of Excellence for Biomedical TB Research, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research
Unit, DST/NRF Centre of Excellence for Biomedical TB Research, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F. Warner
- MRC/NHLS/UCT Molecular Mycobacteriology Research
Unit, DST/NRF Centre of Excellence for Biomedical TB Research, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease
and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gregory S. Smith
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
18
|
Navarro M, Castro W, Biot C. Bioorganometallic Compounds with Antimalarial Targets: Inhibiting Hemozoin Formation. Organometallics 2012. [DOI: 10.1021/om300296n] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maribel Navarro
- School
of Chemical and Mathematical Sciences, Murdoch University, Western Australia 6150, Australia
| | - William Castro
- Lab. Quı́mica Bioinorgánica,
Centro de Quı́mica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas
1020-A, Venezuela
| | - Christophe Biot
- Unité
de Glycobiologie
Structurale et Fonctionnelle, UMR CNRS 8576, Université Lille 1, 59650 Villeneuve d’Ascq, France
| |
Collapse
|
19
|
Glans L, Hu W, Jöst C, de Kock C, Smith PJ, Haukka M, Bruhn H, Schatzschneider U, Nordlander E. Synthesis and biological activity of cymantrene and cyrhetrene 4-aminoquinoline conjugates against malaria, leishmaniasis, and trypanosomiasis. Dalton Trans 2012; 41:6443-50. [PMID: 22421887 DOI: 10.1039/c2dt30077j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organometallic analogues of chloroquine show promise as new antimalarial agents capable of overcoming resistance to the parent drug chloroquine. Here, the synthesis and characterization of three new cymantrene (CpMn(CO)(3)) and cyrhetrene (CpRe(CO)(3)) 4-aminoquinoline conjugates with either an amine or amide linker are reported. The antimalarial activity of the new organometallic conjugates N-(2-(7-chloroquinolin-4-ylamino)ethyl)-4-cymantrenylbutanamide (3), N-(2-(7-chloroquinolin-4-ylamino)ethyl)-4-cyrhetrenylbutanamide (4) and N-(7-chloroquinolin-4-yl)-N'-(cymantrenylmethyl)ethane-1,2-diamine (6) was evaluated against a chloroquine-sensitive (CQS) and a chloroquine-resistant strain (CQR) of the malaria parasite Plasmodium falciparum. The cymantrene complex with an amine linker (6) showed good activity against the CQS strain but was inactive against the CQR strain. In contrast, cymantrene and cyrhetrene compounds with an amide linker were active against both the CQS and the CQR strain. In addition, the antibacterial, anti-trypanosomal and anti-leishmanial activity of the compounds was evaluated. Compound 6 showed submicromolar activity against Trypanosoma brucei at a concentration where the toxicity to normal human cells is low. No significant effect was noticed on the exchange of manganese for rhenium in the CpM(CO)(3) moiety in any of the biological assays.
Collapse
Affiliation(s)
- Lotta Glans
- Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Glans L, Ehnbom A, de Kock C, Martínez A, Estrada J, Smith PJ, Haukka M, Sánchez-Delgado RA, Nordlander E. Ruthenium(II) arene complexes with chelating chloroquine analogue ligands: synthesis, characterization and in vitro antimalarial activity. Dalton Trans 2012; 41:2764-73. [PMID: 22249579 PMCID: PMC3303165 DOI: 10.1039/c2dt12083f] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three new ruthenium complexes with bidentate chloroquine analogue ligands, [Ru(η(6)-cym)(L(1))Cl]Cl (1, cym = p-cymene, L(1) = N-(2-((pyridin-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine), [Ru(η(6)-cym)(L(2))Cl]Cl (2, L(2) = N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) and [Ru(η(6)-cym)(L(3))Cl] (3, L(3) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine) have been synthesized and characterized. In addition, the X-ray crystal structure of 2 is reported. The antimalarial activity of complexes 1-3 and ligands L(1), L(2) and L(3), as well as the compound N-(2-(bis((pyridin-2-yl)methyl)amino)ethyl)-7-chloroquinolin-4-amine (L(4)), against chloroquine sensitive and chloroquine resistant Plasmodium falciparum malaria strains was evaluated. While 1 and 2 are less active than the corresponding ligands, 3 exhibits high antimalarial activity. The chloroquine analogue L(2) also shows good activity against both the chloroquine sensitive and the chloroquine resistant strains. Heme aggregation inhibition activity (HAIA) at an aqueous buffer/n-octanol interface (HAIR(50)) and lipophilicity (D, as measured by water/n-octanol distribution coefficients) have been measured for all ligands and metal complexes. A direct correlation between the D and HAIR(50) properties cannot be made because of the relative structural diversity of the complexes, but it may be noted that these properties are enhanced upon complexation of the inactive ligand L(3) to ruthenium, to give a metal complex (3) with promising antimalarial activity.
Collapse
Affiliation(s)
- Lotta Glans
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Andreas Ehnbom
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Carmen de Kock
- Division of Pharmacology, Department of Medicine, University of Cape Town Medical School, Observatory 7925, South Africa
| | - Alberto Martínez
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, CUNY, 2900 Bedford Avenue, Brooklyn, New York 11210, U.S.A
| | - Jesús Estrada
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, CUNY, 2900 Bedford Avenue, Brooklyn, New York 11210, U.S.A
| | - Peter J. Smith
- Division of Pharmacology, Department of Medicine, University of Cape Town Medical School, Observatory 7925, South Africa
| | - Matti Haukka
- Department of Chemistry, University of Eastern Finland, Box 111, FIN-80101 Joensuu, Finland
| | - Roberto A. Sánchez-Delgado
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York, CUNY, 2900 Bedford Avenue, Brooklyn, New York 11210, U.S.A
| | - Ebbe Nordlander
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
21
|
Patra M, Gasser G, Wenzel M, Merz K, Bandow JE, Metzler-Nolte N. Sandwich and Half-Sandwich Derivatives of Platensimycin: Synthesis and Biological Evaluation. Organometallics 2012. [DOI: 10.1021/om201146c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Malay Patra
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
| | - Gilles Gasser
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich,
Switzerland
| | - Michaela Wenzel
- Lehrstuhl für
Biologie
der Mikroorganismen, Fakultät
für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstrasse
150, D-44801 Bochum, Germany
| | - Klaus Merz
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
| | - Julia E. Bandow
- Lehrstuhl für
Biologie
der Mikroorganismen, Fakultät
für Biologie und Biotechnologie, Ruhr-Universität Bochum, Universitätsstrasse
150, D-44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Lehrstuhl für Anorganische
Chemie I-Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Gebäude NC 3
Nord, Universitätsstrasse 150, D-44801 Bochum, Germany,
| |
Collapse
|
22
|
Saiai A, Bielig H, Velder J, Neudörfl JM, Menning M, Kufer TA, Schmalz HG. Hydrophenalene–Cr(CO)3 complexes as anti-inflammatory agents based on specific inhibition of NOD2 signalling: a SAR study. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20221b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Biot C, Castro W, Botté CY, Navarro M. The therapeutic potential of metal-based antimalarial agents: Implications for the mechanism of action. Dalton Trans 2012; 41:6335-49. [DOI: 10.1039/c2dt12247b] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Patra M, Merz K, Metzler-Nolte N. Planar chiral (η6-arene)Cr(CO)3containing carboxylic acid derivatives: Synthesis and use in the preparation of organometallic analogues of the antibiotic platensimycin. Dalton Trans 2012; 41:112-7. [DOI: 10.1039/c1dt10918a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|