1
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
2
|
Fansher D, Besna JN, Fendri A, Pelletier JN. Choose Your Own Adventure: A Comprehensive Database of Reactions Catalyzed by Cytochrome P450 BM3 Variants. ACS Catal 2024; 14:5560-5592. [PMID: 38660610 PMCID: PMC11036407 DOI: 10.1021/acscatal.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
Cytochrome P450 BM3 monooxygenase is the topic of extensive research as many researchers have evolved this enzyme to generate a variety of products. However, the abundance of information on increasingly diversified variants of P450 BM3 that catalyze a broad array of chemistry is not in a format that enables easy extraction and interpretation. We present a database that categorizes variants by their catalyzed reactions and includes details about substrates to provide reaction context. This database of >1500 P450 BM3 variants is downloadable and machine-readable and includes instructions to maximize ease of gathering information. The database allows rapid identification of commonly reported substitutions, aiding researchers who are unfamiliar with the enzyme in identifying starting points for enzyme engineering. For those actively engaged in engineering P450 BM3, the database, along with this review, provides a powerful and user-friendly platform to understand, predict, and identify the attributes of P450 BM3 variants, encouraging the further engineering of this enzyme.
Collapse
Affiliation(s)
- Douglas
J. Fansher
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Jonathan N. Besna
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| | - Ali Fendri
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
| | - Joelle N. Pelletier
- Chemistry
Department, Université de Montréal, Montreal, QC, Canada H2V 0B3
- PROTEO,
The Québec Network for Research on Protein Function, Engineering,
and Applications, 201
Av. du Président-Kennedy, Montréal, QC, Canada H2X 3Y7
- CGCC,
Center in Green Chemistry and Catalysis, Montreal, QC, Canada H2V 0B3
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada H3T 1J4
| |
Collapse
|
3
|
Emmanuel MA, Bender SG, Bilodeau C, Carceller JM, DeHovitz JS, Fu H, Liu Y, Nicholls BT, Ouyang Y, Page CG, Qiao T, Raps FC, Sorigué DR, Sun SZ, Turek-Herman J, Ye Y, Rivas-Souchet A, Cao J, Hyster TK. Photobiocatalytic Strategies for Organic Synthesis. Chem Rev 2023; 123:5459-5520. [PMID: 37115521 PMCID: PMC10905417 DOI: 10.1021/acs.chemrev.2c00767] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.
Collapse
Affiliation(s)
- Megan A Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie G Bender
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Catherine Bilodeau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jose M Carceller
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Institute of Chemical Technology (ITQ), Universitat Politècnica de València, València 46022,Spain
| | - Jacob S DeHovitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yi Liu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bryce T Nicholls
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yao Ouyang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Claire G Page
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Felix C Raps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Damien R Sorigué
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Shang-Zheng Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua Turek-Herman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuxuan Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ariadna Rivas-Souchet
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jingzhe Cao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Todd K Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Wang Z, Hu Y, Zhang S, Sun Y. Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chem Soc Rev 2022; 51:6704-6737. [PMID: 35815740 DOI: 10.1039/d1cs01008e] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In natural photosynthesis, photosynthetic organisms such as green plants realize efficient solar energy conversion and storage by integrating photosynthetic components on the thylakoid membrane of chloroplasts. Inspired by natural photosynthesis, researchers have developed many artificial photosynthesis systems (APS's) that integrate various photocatalysts and biocatalysts to convert and store solar energy in the fields of resource, environment, food, and energy. To improve the system efficiency and reduce the operation cost, reaction platforms are introduced in APS's since they allow for great stability and continuous processing. A systematic understanding of how a reaction platform affects the performance of artificial photosynthesis is conducive for designing an APS with superb solar energy utilization. In this review, we discuss the recent APS's researches, especially those confined on/in platforms. The importance of different platforms and their influences on APS's performance are emphasized. Generally, confined platforms can enhance the stability and repeatability of both photocatalysts and biocatalysts in APS's as well as improve the photosynthetic performance due to the proximity effect. For functional platforms that can participate in the artificial photosynthesis reactions as active parts, a high integration of APS's components on/in these platforms can lead to efficient electron transfer, enhanced light-harvesting, or synergistic catalysis, resulting in superior photosynthesis performance. Therefore, the integration of APS's components is beneficial for the transfer of substrates and photoexcited electrons in artificial photosynthesis. We finally summarize the current challenges of APS's development and further efforts on the improvement of APS's.
Collapse
Affiliation(s)
- Zhenfu Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Yang Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Peng Y, Chen Z, Xu J, Wu Q. Recent Advances in Photobiocatalysis for Selective Organic Synthesis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yongzhen Peng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
6
|
Li Y, Yuan B, Sun Z, Zhang W. C–H bond functionalization reactions enabled by photobiocatalytic cascades. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Eidenschenk C, Cheruzel L. Ru(II)-diimine complexes and cytochrome P450 working hand-in-hand. J Inorg Biochem 2020; 213:111254. [PMID: 32979791 PMCID: PMC7686262 DOI: 10.1016/j.jinorgbio.2020.111254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
With a growing interest in utilizing visible light to drive biocatalytic processes, several light-harvesting units and approaches have been employed to harness the synthetic potential of heme monooxygenases and carry out selective oxyfunctionalization of a wide range of substrates. While the fields of cytochrome P450 and Ru(II) photochemistry have separately been prolific, it is not until the turn of the 21st century that they converged. Non-covalent and subsequently covalently attached Ru(II) complexes were used to promote rapid intramolecular electron transfer in bacterial P450 enzymes. Photocatalytic activity with Ru(II)-modified P450 enzymes was achieved under reductive conditions with a judicious choice of a sacrificial electron donor. The initial concept of Ru(II)-modified P450 enzymes was further improved using protein engineering, photosensitizer functionalization and was successfully applied to other P450 enzymes. In this review, we wish to present the recent contributions from our group and others in utilizing Ru(II) complexes coupled with P450 enzymes in the broad context of photobiocatalysis, protein assemblies and chemoenzymatic reactions. The merging of chemical catalysts with the synthetic potential of P450 enzymes has led to the development of several chemoenzymatic approaches. Moreover, strained Ru(II) compounds have been shown to selectively inhibit P450 enzymes by releasing aromatic heterocycle containing molecules upon visible light excitation taking advantage of the rapid ligand loss feature in those complexes.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department Biochemical and Cellular Pharmacology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|
8
|
Edwards EH, Bren KL. Light-driven catalysis with engineered enzymes and biomimetic systems. Biotechnol Appl Biochem 2020; 67:463-483. [PMID: 32588914 DOI: 10.1002/bab.1976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023]
Abstract
Efforts to drive catalytic reactions with light, inspired by natural processes like photosynthesis, have a long history and have seen significant recent growth. Successfully engineering systems using biomolecular and bioinspired catalysts to carry out light-driven chemical reactions capitalizes on advantages offered from the fields of biocatalysis and photocatalysis. In particular, driving reactions under mild conditions and in water, in which enzymes are operative, using sunlight as a renewable energy source yield environmentally friendly systems. Furthermore, using enzymes and bioinspired systems can take advantage of the high efficiency and specificity of biocatalysts. There are many challenges to overcome to fully capitalize on the potential of light-driven biocatalysis. In this mini-review, we discuss examples of enzymes and engineered biomolecular catalysts that are activated via electron transfer from a photosensitizer in a photocatalytic system. We place an emphasis on selected forefront chemical reactions of high interest, including CH oxidation, proton reduction, water oxidation, CO2 reduction, and N2 reduction.
Collapse
Affiliation(s)
- Emily H Edwards
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Kara L Bren
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
9
|
Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem 2020; 295:833-849. [PMID: 31811088 PMCID: PMC6970918 DOI: 10.1074/jbc.rev119.008758] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 enzymes (P450s) are broadly distributed among living organisms and play crucial roles in natural product biosynthesis, degradation of xenobiotics, steroid biosynthesis, and drug metabolism. P450s are considered as the most versatile biocatalysts in nature because of the vast variety of substrate structures and the types of reactions they catalyze. In particular, P450s can catalyze regio- and stereoselective oxidations of nonactivated C-H bonds in complex organic molecules under mild conditions, making P450s useful biocatalysts in the production of commodity pharmaceuticals, fine or bulk chemicals, bioremediation agents, flavors, and fragrances. Major efforts have been made in engineering improved P450 systems that overcome the inherent limitations of the native enzymes. In this review, we focus on recent progress of different strategies, including protein engineering, redox-partner engineering, substrate engineering, electron source engineering, and P450-mediated metabolic engineering, in efforts to more efficiently produce pharmaceuticals and other chemicals. We also discuss future opportunities for engineering and applications of the P450 systems.
Collapse
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| |
Collapse
|
10
|
|
11
|
Rajput S, McLean KJ, Poddar H, Selvam IR, Nagalingam G, Triccas JA, Levy CW, Munro AW, Hutton CA. Structure-Activity Relationships of cyclo(l-Tyrosyl-l-tyrosine) Derivatives Binding to Mycobacterium tuberculosis CYP121: Iodinated Analogues Promote Shift to High-Spin Adduct. J Med Chem 2019; 62:9792-9805. [PMID: 31618032 DOI: 10.1021/acs.jmedchem.9b01199] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A series of analogues of cyclo(l-tyrosyl-l-tyrosine), the substrate of the Mycobacterium tuberculosis enzyme CYP121, have been synthesized and analyzed by UV-vis and electron paramagnetic resonance spectroscopy and by X-ray crystallography. The introduction of iodine substituents onto cyclo(l-tyrosyl-l-tyrosine) results in sub-μM binding affinity for the CYP121 enzyme and a complete shift to the high-spin state of the heme FeIII. The introduction of halogens that are able to interact with heme groups is thus a feasible approach to the development of next-generation, tight binding inhibitors of the CYP121 enzyme, in the search for novel antitubercular compounds.
Collapse
Affiliation(s)
- Sunnia Rajput
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , 30 Flemington Road , Parkville , Victoria 3010 , Australia
| | - Kirsty J McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry , University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Harshwardhan Poddar
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry , University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Irwin R Selvam
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry , University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Gayathri Nagalingam
- Department of Infectious Diseases and Immunology, Sydney Medical School , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - James A Triccas
- Department of Infectious Diseases and Immunology, Sydney Medical School , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Colin W Levy
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry , University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Andrew W Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry , University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Craig A Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute , University of Melbourne , 30 Flemington Road , Parkville , Victoria 3010 , Australia
| |
Collapse
|
12
|
Seel CJ, Gulder T. Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes. Chembiochem 2019; 20:1871-1897. [PMID: 30864191 DOI: 10.1002/cbic.201800806] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Enzymes catalyze a plethora of highly specific transformations under mild and environmentally benign reaction conditions. Their fascinating performances attest to high synthetic potential that is often hampered by operational obstacles such as in vitro cofactor supply and regeneration. Exploiting light and combining it with biocatalysis not only helps in overcoming these drawbacks, but the fruitful liaison of these two fields of "green chemistry" also offers opportunities to unlock new synthetic reactivities. In this review we provide an overview of the wide variety of photo-biocatalysis, ranging from the photochemical delivery of electrons required in redox biocatalysis and photochemical cofactor and reagent (re)generation to direct photoactivation of enzymes enabling reactions unknown in nature. We highlight synthetically relevant transformations such as asymmetric reactions facilitated by the combination of light as energy source and enzymes' catalytic power.
Collapse
Affiliation(s)
- Catharina J Seel
- Department of Chemistry and Catalysis Research Center (CRC), Technical University Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tanja Gulder
- Department of Chemistry and Catalysis Research Center (CRC), Technical University Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
13
|
Zhang W, Hollmann F. Nonconventional regeneration of redox enzymes - a practical approach for organic synthesis? Chem Commun (Camb) 2018; 54:7281-7289. [PMID: 29714371 DOI: 10.1039/c8cc02219d] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidoreductases have become useful tools in the hands of chemists to perform selective and mild oxidation and reduction reactions. Instead of mimicking native catalytic cycles, generally involving costly and unstable nicotinamide cofactors, more direct, NAD(P)-independent methodologies are being developed. The promise of these approaches not only lies with simpler and cheaper reaction schemes but also with higher selectivity as compared to whole cell approaches and their mimics.
Collapse
Affiliation(s)
- Wuyuan Zhang
- Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands.
| | | |
Collapse
|
14
|
Bains RK, Miller JJ, van der Roest HK, Qu S, Lute B, Warren JJ. Light-Activated Electron Transfer and Turnover in Ru-Modified Aldehyde Deformylating Oxygenases. Inorg Chem 2018; 57:8211-8217. [PMID: 29939728 DOI: 10.1021/acs.inorgchem.8b00673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conversion of biological molecules into fuels or other useful chemicals is an ongoing chemical challenge. One class of enzymes that has received attention for such applications is aldehyde deformylating oxygenase (ADO) enzymes. These enzymes convert aliphatic aldehydes to the alkanes and formate. In this work, we prepared and investigated ADO enzymes modified with RuII(tris-diimine) photosensitizers as a starting point for probing intramolecular electron transfer events. Three variants were prepared, with RuII-modification at the wild type (WT) residue C70, at the R62C site in one mutant ADO, and at both C62 and C70 in a second mutant ADO protein. The single-site modification of WT ADO at C70 using a cysteine-reactive label is an important observation and opens a way forward for new studies of electron flow, mechanism, and redox catalysis in ADO. These Ru-ADO constructs can perform the ADO catalytic cycle in the presence of light and a sacrificial reductant. In this work, the Ru photosensitizer serves as a tethered, artificial reductase that promotes turnover of aldehyde substrates with different carbon chain lengths. Peroxide side products were detected for shorter chain aldehydes, concomitant with less productive turnover. Analysis using semiclassical electron transfer theory supports proposals for hopping pathway for electron flow in WT ADO and in our new Ru-ADO proteins.
Collapse
Affiliation(s)
- Rajneesh K Bains
- Department of Chemistry , Simon Fraser University , 8888 University Drive , Burnaby , British Columbia V5A 1S6 , Canada
| | - Jessica J Miller
- Department of Chemistry , Simon Fraser University , 8888 University Drive , Burnaby , British Columbia V5A 1S6 , Canada
| | - Hannah K van der Roest
- Department of Chemistry , Simon Fraser University , 8888 University Drive , Burnaby , British Columbia V5A 1S6 , Canada
| | - Sheng Qu
- Department of Chemistry , Simon Fraser University , 8888 University Drive , Burnaby , British Columbia V5A 1S6 , Canada
| | - Brad Lute
- Department of Chemistry , Simon Fraser University , 8888 University Drive , Burnaby , British Columbia V5A 1S6 , Canada
| | - Jeffrey J Warren
- Department of Chemistry , Simon Fraser University , 8888 University Drive , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
15
|
Ni Y, Hollmann F. Artificial Photosynthesis: Hybrid Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 158:137-158. [PMID: 26987806 DOI: 10.1007/10_2015_5010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidoreductases are promising catalysts for organic synthesis. To sustain their catalytic cycles they require efficient supply with redox equivalents. Today classical biomimetic approaches utilizing natural electron supply chains prevail but artificial regeneration approaches bear the promise of simpler and more robust reaction schemes. Utilizing visible light can accelerate such artificial electron transport chains and even enable thermodynamically unfeasible reactions such as the use of water as reductant.This contribution critically summarizes the current state of the art in photoredoxbiocatalysis (i.e. light-driven biocatalytic oxidation and reduction reactions).
Collapse
Affiliation(s)
- Yan Ni
- Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
16
|
Panneerselvam S, Shehzad A, Mueller-Dieckmann J, Wilmanns M, Bocola M, Davari MD, Schwaneberg U. Crystallographic insights into a cobalt (III) sepulchrate based alternative cofactor system of P450 BM3 monooxygenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:134-140. [PMID: 28739446 DOI: 10.1016/j.bbapap.2017.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022]
Abstract
P450 BM3 is a multi-domain heme-containing soluble bacterial monooxygenase. P450 BM3 and variants are known to oxidize structurally diverse substrates. Crystal structures of individual domains of P450 BM3 are available. However, the spatial organization of the full-length protein is unknown. In this study, crystal structures of the P450 BM3 M7 heme domain variant with and without cobalt (III) sepulchrate are reported. Cobalt (III) sepulchrate acts as an electron shuttle in an alternative cofactor system employing zinc dust as the electron source. The crystal structure shows a binding site for the mediator cobalt (III) sepulchrate at the entrance of the substrate access channel. The mediator occupies an unusual position which is far from the active site and distinct from the binding of the natural redox partner (FAD/NADPH binding domain).
Collapse
Affiliation(s)
| | - Aamir Shehzad
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | | | - Matthias Wilmanns
- European Molecular Biology Laboratory-Hamburg, c/o DESY, Hamburg, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52056 Aachen, Germany.
| |
Collapse
|
17
|
Ducharme J, Auclair K. Use of bioconjugation with cytochrome P450 enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28625736 DOI: 10.1016/j.bbapap.2017.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioconjugation, defined as chemical modification of biomolecules, is widely employed in biological and biophysical studies. It can expand functional diversity and enable applications ranging from biocatalysis, biosensing and even therapy. This review summarizes how chemical modifications of cytochrome P450 enzymes (P450s or CYPs) have contributed to improving our understanding of these enzymes. Genetic modifications of P450s have also proven very useful but are not covered in this review. Bioconjugation has served to gain structural information and investigate the mechanism of P450s via photoaffinity labeling, mechanism-based inhibition (MBI) and fluorescence studies. P450 surface acetylation and protein cross-linking have contributed to the investigation of protein complexes formation involving P450 and its redox partner or other P450 enzymes. Finally, covalent immobilization on polymer surfaces or electrodes has benefited the areas of biocatalysis and biosensor design. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Julie Ducharme
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
18
|
Shalan H, Kato M, Cheruzel L. Keeping the spotlight on cytochrome P450. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:80-87. [PMID: 28599858 DOI: 10.1016/j.bbapap.2017.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/26/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
Abstract
This review describes the recent advances utilizing photosensitizers and visible light to harness the synthetic potential of P450 enzymes. The structures of the photosensitizers investigated to date are first presented along with their photophysical and redox properties. Functional photosensitizers range from organic and inorganic complexes to nanomaterials as well as the biological photosystem I complex. The focus is then on the three distinct approaches that have emerged for the activation of P450 enzymes. The first approach utilizes the in situ generation of reactive oxygen species entering the P450 mechanism via the peroxide shunt pathway. The other two approaches are sustained by electron injections into catalytically competent heme domains either facilitated by redox partners or through direct heme domain reduction. Achievements as well as pitfalls of each approach are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Hadil Shalan
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States.
| |
Collapse
|
19
|
Kato M, Lam Q, Bhandarkar M, Banh T, Heredia J, U A, Cheruzel L. Selective C–H bond functionalization with light-driven P450 biocatalysts. CR CHIM 2017. [DOI: 10.1016/j.crci.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Spradlin J, Lee D, Mahadevan S, Mahomed M, Tang L, Lam Q, Colbert A, Shafaat OS, Goodin D, Kloos M, Kato M, Cheruzel LE. Insights into an efficient light-driven hybrid P450 BM3 enzyme from crystallographic, spectroscopic and biochemical studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1732-1738. [PMID: 27639964 DOI: 10.1016/j.bbapap.2016.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND In order to perform selective CH functionalization upon visible light irradiation, Ru(II)-diimine functionalized P450 heme enzymes have been developed. The sL407C-1 enzyme containing the Ru(bpy)2PhenA (bpy=2,2'-bipyridine and PhenA=5-acetamido-1,10-phenanthroline) photosensitizer (1) covalently attached to the non-native single cysteine L407C of the P450BM3 heme domain mutant, displays high photocatalytic activity in the selective CH bond hydroxylation of several substrates. METHODS A combination of X-ray crystallography, site-directed mutagenesis, transient absorption measurements and enzymatic assays was used to gain insights into its photocatalytic activity and electron transfer pathway. RESULTS The crystal structure of the sL407C-1 enzyme was solved in the open and closed conformations revealing a through-space electron transfer pathway involving highly conserved, F393 and Q403, residues. Several mutations of these residues (F393A, F393W or Q403W) were introduced to probe their roles in the overall reaction. Transient absorption measurements confirm rapid electron transfer as heme reduction is observed in all four hybrid enzymes. Compared to the parent sL407C-1, photocatalytic activity was negligible in the dF393A-1 enzyme while 60% increase in activity with total turnover numbers of 420 and 90% product conversion was observed with the dQ403W-1 mutant. CONCLUSIONS In the sL407C-1 enzyme, the photosensitizer is ideally located to rapidly deliver electrons, using the naturally occurring electron transfer pathway, to the heme center in order to activate molecular dioxygen and sustain photocatalytic activity. GENERAL SIGNIFICANCE The results shed light on the design of efficient light-driven biocatalysts and the approach can be generalized to other members of the P450 superfamily.
Collapse
Affiliation(s)
- Jessica Spradlin
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Diana Lee
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Sruthi Mahadevan
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Mavish Mahomed
- Department of Chemistry, One Shields Ave., University of California Davis, Davis, CA, United States
| | - Lawrence Tang
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Quan Lam
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Alexander Colbert
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Oliver S Shafaat
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - David Goodin
- Department of Chemistry, One Shields Ave., University of California Davis, Davis, CA, United States
| | - Marco Kloos
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States
| | - Lionel E Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA, United States.
| |
Collapse
|
21
|
Holtmann D, Hollmann F. The Oxygen Dilemma: A Severe Challenge for the Application of Monooxygenases? Chembiochem 2016; 17:1391-8. [PMID: 27194219 PMCID: PMC5096067 DOI: 10.1002/cbic.201600176] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/12/2022]
Abstract
Monooxygenases are promising catalysts because they in principle enable the organic chemist to perform highly selective oxyfunctionalisation reactions that are otherwise difficult to achieve. For this, monooxygenases require reducing equivalents, to allow reductive activation of molecular oxygen at the enzymes' active sites. However, these reducing equivalents are often delivered to O2 either directly or via a reduced intermediate (uncoupling), yielding hazardous reactive oxygen species and wasting valuable reducing equivalents. The oxygen dilemma arises from monooxygenases' dependency on O2 and the undesired uncoupling reaction. With this contribution we hope to generate a general awareness of the oxygen dilemma and to discuss its nature and some promising solutions.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL, Delft, The Netherlands.
| |
Collapse
|
22
|
Beauvilliers EE, Meyer GJ. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound. Inorg Chem 2016; 55:7517-26. [DOI: 10.1021/acs.inorgchem.6b00876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Evan E. Beauvilliers
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gerald J. Meyer
- Department
of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
23
|
Fukuzumi S, Nam W. Thermal and photoinduced electron-transfer catalysis of high-valent metal-oxo porphyrins in oxidation of substrates. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616300032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this manuscript, we have overviewed thermal and photoinduced electron transfer catalysis of high-valent metal-oxo porphyrins in oxidation of various substrates. The high-valent iron-oxo porphyrin in cytochrome P450 (P450) is produced by photoinduced electron transfer from electron donors, such as triethanolamine (TEOA), to the excited state of a photosensitizer such as eosin Y, followed by the reduction of the heme domain of P450 by the resulting radical anion of the photosensitizer and the subsequent reaction of the reduced heme with dioxygen (O[Formula: see text]. Various substrates were oxidized by O2 in this visible light-driven electron-transfer catalytic reaction with several P450s from bacteria and humans. A manganese(V)-oxo corrorazine was produced by photoinduced electron transfer from the excited state of manganese(III) corrorazine to O2, followed by hydrogen abstraction from toluene derivatives, catalyzing the oxidation of toluene derivatives with O2 in the presence of an acid via photoinduced electron transfer catalysis. High-valent manganese-oxo porphyrins are also produced by photoinduced electron transfer from the excited state of [Ru(bpy)3][Formula: see text] (bpy = 2,2′-bipyridine) to electron acceptors, followed by electron transfer oxidation of manganese(III) porphyrins with [Ru(bpy)3][Formula: see text], catalyzing oxidation of various substrates with O2. Finally photoinduced electron-transfer catalysis of cobalt porphyrins is discussed for the photocatalytic water oxidation with persulfate.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
- Faculty of Science and Engineering, ALCA and SENTAN, Japan Science and Technology Agency (JST), Meijo University, Nagoya, Aichi 468-0073, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
24
|
Lam Q, Cortez A, Nguyen TT, Kato M, Cheruzel L. Chromogenic nitrophenolate-based substrates for light-driven hybrid P450 BM3 enzyme assay. J Inorg Biochem 2015; 158:86-91. [PMID: 26712653 DOI: 10.1016/j.jinorgbio.2015.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 11/16/2022]
Abstract
The incorporation of a p-nitrophenoxy moiety in substrates has enabled the development of colorimetric assays to rapidly screen for O-demethylation activity of P450 enzymes. For the light-driven hybrid P450 BM3 enzymes, where a Ru(II) photosensitizer powers the enzyme upon visible light irradiation, we have investigated a family of p-nitrophenoxy derivatives as useful chromogenic substrates compatible with the light-driven approach. The validation of this assay and its adaptability to a 96-well plate format will enable the screening of the next generation of hybrid P450 BM3 enzymes towards C-H bond functionalization of non-natural substrates.
Collapse
Affiliation(s)
- Quan Lam
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Alejandro Cortez
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Thanh Truc Nguyen
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Mallory Kato
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States.
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States.
| |
Collapse
|
25
|
Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:589-597. [PMID: 26392147 DOI: 10.1016/j.bbabio.2015.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 09/07/2015] [Indexed: 11/20/2022]
Abstract
The unique photochemical properties of Ru(II)-diimine complexes have helped initiate a series of seminal electron transfer studies in metalloenzymes. It has thus been possible to experimentally determine rate constants for long-range electron transfers. These studies have laid the foundation for the investigation of reactive intermediates in heme proteins and for the design of light-activated biocatalysts. Various metalloenzymes such as hydrogenase, carbon monoxide dehydrogenase, nitrogenase, laccase and cytochrome P450 BM3 have been functionalized with Ru(II)-diimine complexes. Upon visible light-excitation, these photosensitized metalloproteins are capable of sustaining photocatalytic activity to reduce small molecules such as protons, acetylene, hydrogen cyanide and carbon monoxide or activate molecular dioxygen to produce hydroxylated products. The Ru(II)-diimine photosensitizers are hence able to deliver multiple electrons to metalloenzymes buried active sites, circumventing the need for the natural redox partners. In this review, we will highlight the key achievements of the light-driven biocatalysts, which stem from the extensive electron transfer investigations. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
|
26
|
Holtmann D, Fraaije MW, Arends IWCE, Opperman DJ, Hollmann F. The taming of oxygen: biocatalytic oxyfunctionalisations. Chem Commun (Camb) 2015; 50:13180-200. [PMID: 24902635 DOI: 10.1039/c3cc49747j] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scope and limitations of oxygenases as catalysts for preparative organic synthesis is discussed.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
27
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
28
|
Park JH, Lee SH, Cha GS, Choi DS, Nam DH, Lee JH, Lee JK, Yun CH, Jeong KJ, Park CB. Cofactor-free light-driven whole-cell cytochrome P450 catalysis. Angew Chem Int Ed Engl 2014; 54:969-73. [PMID: 25430544 DOI: 10.1002/anie.201410059] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Indexed: 11/11/2022]
Abstract
Cytochromes P450 can catalyze various regioselective and stereospecific oxidation reactions of non-functionalized hydrocarbons. Here, we have designed a novel light-driven platform for cofactor-free, whole-cell P450 photo-biocatalysis using eosin Y (EY) as a photosensitizer. EY can easily enter into the cytoplasm of Escherichia coli and bind specifically to the heme domain of P450. The catalytic turnover of P450 was mediated through the direct transfer of photoinduced electrons from the photosensitized EY to the P450 heme domain under visible light illumination. The photoactivation of the P450 catalytic cycle in the absence of cofactors and redox partners is successfully conducted using many bacterial P450s (variants of P450 BM3) and human P450s (CYPs 1A1, 1A2, 1B1, 2A6, 2E1, and 3A4) for the bioconversion of different substrates, including marketed drugs (simvastatin, lovastatin, and omeprazole) and a steroid (17β-estradiol), to demonstrate the general applicability of the light-driven, cofactor-free system.
Collapse
Affiliation(s)
- Jong Hyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305-701 (Republic of Korea)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Park JH, Lee SH, Cha GS, Choi DS, Nam DH, Lee JH, Lee JK, Yun CH, Jeong KJ, Park CB. Cofactor-Free Light-Driven Whole-Cell Cytochrome P450 Catalysis. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Dwaraknath S, Tran NH, Dao T, Colbert A, Mullen S, Nguyen A, Cortez A, Cheruzel L. A facile and versatile methodology for cysteine specific labeling of proteins with octahedral polypyridyl d⁶ metal complexes. J Inorg Biochem 2014; 136:154-60. [PMID: 24468675 PMCID: PMC4058400 DOI: 10.1016/j.jinorgbio.2013.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 01/02/2023]
Abstract
We have synthesized and characterized four octahedral polypyridyl d(6) metal complexes bearing the 5,6-epoxy-5,6-dihydro-[1,10]phenanthroline ligand (L1) as cysteine specific labeling reagents. The proposed synthetic pathways allow the preparation of the metal complexes containing Re(I), Ru(II), Os(II) and Ir(III) while preserving the epoxide functionality. The complexes were characterized by (1)H and (13)C NMR, mass spectrometry, UV-visible and luminescence spectroscopies as well as cyclic voltammetry. As proof of concept, a set of non-native single cysteine P450 BM3 heme domain mutants previously developed in our laboratory was used to study the labeling reaction. We demonstrate that the proposed labels can selectively react, often in high yield, with cysteine residues of the protein via the nucleophilic thiol ring opening of the epoxide moiety. In addition, under basic conditions, subsequent loss of a water molecule led to the aromatization of the phenanthroline ring on the protein-bound label compounds, as observed by mass spectrometry and luminescence measurements.
Collapse
Affiliation(s)
- Sudharsan Dwaraknath
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Ngoc-Han Tran
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Thanh Dao
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Alexander Colbert
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Sarah Mullen
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Angelina Nguyen
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Alejandro Cortez
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, United States.
| |
Collapse
|
31
|
Regio- and stereoselective hydroxylation of 10-undecenoic acid with a light-driven P450 BM3 biocatalyst yielding a valuable synthon for natural product synthesis. Bioorg Med Chem 2014; 22:5687-91. [PMID: 24938497 DOI: 10.1016/j.bmc.2014.05.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/21/2014] [Indexed: 11/22/2022]
Abstract
We report herein the selective hydroxylation of 10-undecenoic acid with a light-activated hybrid P450 BM3 enzyme. Under previously developed photocatalytic reaction conditions, only a monohydroxylated product is detected by gas chromatography. Hydroxylation occurs exclusively at the allylic position as confirmed from a synthesized authentic standard. Investigation into the stereochemistry of the reaction indicates that the R enantiomer is obtained in 85% ee. The (R)-9-hydroxy-10-undecenoic acid obtained enzymatically is a valuable synthon en route to various natural products further expanding the light-activated P450 BM3 biocatalysis and highlighting the advantages over traditional methods.
Collapse
|
32
|
Tran NH, Nguyen D, Dwaraknath S, Mahadevan S, Chavez G, Nguyen A, Dao T, Mullen S, Nguyen TA, Cheruzel LE. An efficient light-driven P450 BM3 biocatalyst. J Am Chem Soc 2013; 135:14484-7. [PMID: 24040992 DOI: 10.1021/ja409337v] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
P450s are heme thiolate enzymes that catalyze the regio- and stereoselective functionalization of unactivated C-H bonds using molecular dioxygen and two electrons delivered by the reductase. We have developed hybrid P450 BM3 heme domains containing a covalently attached Ru(II) photosensitizer in order to circumvent the dependency on the reductase and perform P450 reactions upon visible light irradiation. A highly active hybrid enzyme with improved stability and a modified Ru(II) photosensitizer is able to catalyze the light-driven hydroxylation of lauric acid with total turnover numbers of 935 and initial reaction rate of 125 mol product/(mol enzyme/min).
Collapse
Affiliation(s)
- Ngoc-Han Tran
- Department of Chemistry, San José State University , One Washington Square, San José, California 95192-0101, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sadeghi SJ, Gilardi G. Chimeric P450 enzymes: Activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 2013; 60:102-10. [DOI: 10.1002/bab.1086] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022]
|