1
|
Sasaki H, Nakagawa I, Furuta T, Yokoyama S, Morisaki Y, Saito Y, Nakase H. Mitochondrial Calcium Uniporter (MCU) is Involved in an Ischemic Postconditioning Effect Against Ischemic Reperfusion Brain Injury in Mice. Cell Mol Neurobiol 2024; 44:32. [PMID: 38568450 PMCID: PMC10991049 DOI: 10.1007/s10571-024-01464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
The phenomenon of ischemic postconditioning (PostC) is known to be neuroprotective against ischemic reperfusion (I/R) injury. One of the key processes in PostC is the opening of the mitochondrial ATP-dependent potassium (mito-KATP) channel and depolarization of the mitochondrial membrane, triggering the release of calcium ions from mitochondria through low-conductance opening of the mitochondrial permeability transition pore. Mitochondrial calcium uniporter (MCU) is known as a highly sensitive transporter for the uptake of Ca2+ present on the inner mitochondrial membrane. The MCU has attracted attention as a new target for treatment in diseases, such as neurodegenerative diseases, cancer, and ischemic stroke. We considered that the MCU may be involved in PostC and trigger its mechanisms. This research used the whole-cell patch-clamp technique on hippocampal CA1 pyramidal cells from C57BL mice and measured changes in spontaneous excitatory post-synaptic currents (sEPSCs), intracellular Ca2+ concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents under inhibition of MCU by ruthenium red 265 (Ru265) in PostC. Inhibition of MCU increased the occurrence of sEPSCs (p = 0.014), NMDAR currents (p < 0.001), intracellular Ca2+ concentration (p < 0.001), and dead cells (p < 0.001) significantly after reperfusion, reflecting removal of the neuroprotective effects in PostC. Moreover, mitochondrial depolarization in PostC with Ru265 was weakened, compared to PostC (p = 0.004). These results suggest that MCU affects mitochondrial depolarization in PostC to suppress NMDAR over-activation and prevent elevation of intracellular Ca2+ concentrations against I/R injury.
Collapse
Affiliation(s)
- Hiromitsu Sasaki
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan.
| | - Takanori Furuta
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| | - Shohei Yokoyama
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| | - Yudai Morisaki
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Shijo-Cho 840, Kashihara City, Nara, 634-8522, Japan
| |
Collapse
|
2
|
Mrkvicová A, Peterová E, Nemec I, Křikavová R, Muthná D, Havelek R, Kazimírová P, Řezáčová M, Štarha P. Rh(III) and Ru(II) complexes with phosphanyl-alkylamines: inhibition of DNA synthesis induced by anticancer Rh complex. Future Med Chem 2023; 15:1583-1602. [PMID: 37750220 DOI: 10.4155/fmc-2023-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Aim: This investigation was designed to synthesize half-sandwich Rh(III) and Ru(II) complexes and study their antiproliferative activity in human cancer cell lines. Materials & methods: Nine compounds were prepared and tested by various assays for their anticancer activity and mechanism of action. Results: Hit Rh(III) complex 6 showed low-micromolar potency in cisplatin-sensitive (A2780) and -resistant (A2780cis) ovarian carcinoma cell lines, promising selectivity toward these cancer cells over normal lung fibroblasts and an unprecedented mechanism of action in the treated cells. DNA synthesis was decreased and CDKN1A expression was upregulated, but p21 expression was not induced. Conclusion: Rh complex 6 showed high antiproliferative activity, which is induced through a p21-independent mechanism of action.
Collapse
Affiliation(s)
- Alena Mrkvicová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Eva Peterová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Radka Křikavová
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Darina Muthná
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Petra Kazimírová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Martina Řezáčová
- Department of Medical Biochemistry, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Palacký University Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| |
Collapse
|
3
|
Herrera-Ramírez P, Berger SA, Josa D, Aguilà D, Caballero AB, Fontova P, Soto-Cerrato V, Martínez M, Gamez P. Steric hindrance, ligand ejection and associated photocytotoxic properties of ruthenium(II) polypyridyl complexes. J Biol Inorg Chem 2023; 28:403-420. [PMID: 37059909 PMCID: PMC10149480 DOI: 10.1007/s00775-023-01998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/23/2023] [Indexed: 04/16/2023]
Abstract
Two ruthenium(II) polypyridyl complexes were prepared with the {Ru(phen)2}2+ moiety and a third sterically non-hindering bidentate ligand, namely 2,2'-dipyridylamine (dpa) and N-benzyl-2,2'-dipyridylamine (Bndpa). Hence, complexes [Ru(phen)2(dpa)](PF6)2 (1) and [Ru(phen)2(Bndpa)](PF6)2 (2) were characterized and their photochemical behaviour in solution (acetonitrile and water) was subsequently investigated. Compounds 1 and 2, which do not exhibit notably distorted octahedral coordination environments, contrarily to the homoleptic "parent" compound [Ru(phen)3](PF6)2, experience two-step photoejection of the dpa and Bndpa ligand upon irradiation (1050-430 nm) for several hours. DNA-binding studies revealed that compounds 1 and 2 affect the biomolecule differently upon irradiation; while 2 solely modifies its electrophoretic mobility, complex 1 is also capable of cleaving it. In vitro cytotoxicity studies with two cancer-cell lines, namely A549 (lung adenocarcinoma) and A375 (melanoma), showed that both 1 and 2 are not toxic in the dark, while only 1 is significantly cytotoxic if irradiated, 2 remaining non-toxic under these conditions. Light irradiation of the complex cation [Ru(phen)2(dpa)]2+ leads to the generation of transient Ru species that is present in the solution medium for several hours, and that is significantly cytotoxic, ultimately producing non-toxic free dpa and [Ru(phen)(OH2)2]2+.
Collapse
Affiliation(s)
- Piedad Herrera-Ramírez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Sarah Alina Berger
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Dana Josa
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - David Aguilà
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Ana B Caballero
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Pere Fontova
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Chemistry, Universidad de Burgos, 09001, Burgos, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.
| | - Patrick Gamez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
4
|
Kuznetcova I, Bacher F, Vegh D, Chuang HY, Arion VB. Ready access to 7,8-dihydroindolo[2,3-d][1]benzazepine-6(5H)-one scaffold and analogues via early-stage Fischer ring-closure reaction. Beilstein J Org Chem 2022; 18:143-151. [PMID: 35140815 PMCID: PMC8805037 DOI: 10.3762/bjoc.18.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Paullone isomers are known as inhibitors of tubulin polymerase and cyclin dependent kinases (Cdks), which are potential targets for cancer chemotherapy. Herein we report an efficient and clean pathway to the fourth isomer, which remained elusive so far, namely 7,8-dihydroindolo[2,3-d][1]benzazepin-6(5H)-one. Moreover, we demonstrate the generality of our pathway by synthesizing two closely related analogues, one containing a bromo substituent and the other one incorporating an 8-membered instead of a 7-membered ring. The key transformation in this four-step synthesis, with an overall yield of 29%, is the Fischer indole reaction of 2-nitrophenylacetyl acetoacetate with 1-benzyl-1-phenylhydrazine in acetic acid that delivers methyl 2-(1-benzyl-3-(2-nitrophenyl)-1H-indol-2-yl)acetate in 55% yield.
Collapse
Affiliation(s)
- Irina Kuznetcova
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Felix Bacher
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Daniel Vegh
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Department of Organic Chemistry, Slovak Techmical University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Hsiang-Yu Chuang
- Institute of Organic Chemistry of the University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
5
|
Marloye M, Inam H, Moore CJ, Mertens TR, Ingels A, Koch M, Nowicki MO, Mathieu V, Pritchard JR, Awuah SG, Lawler SE, Meyer F, Dufrasne F, Berger G. Self-assembled ruthenium and osmium nanosystems display a potent anticancer profile by interfering with metabolic activity. Inorg Chem Front 2022; 9:2594-2607. [PMID: 36311556 PMCID: PMC9610622 DOI: 10.1039/d2qi00423b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic ruthenium and osmium complexes auto-assemble to nanosystems that poison mitochondria and show highly promising in vitro and in vivo anticancer activity.
Collapse
Affiliation(s)
- Mickaël Marloye
- Microbiology, Bioorganic & Macromolecular Chemistry Unit, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Haider Inam
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Connor J. Moore
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Tyler R. Mertens
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Aude Ingels
- Department of Pharmacotherapy and Pharmaceutics, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Marilin Koch
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michal O. Nowicki
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
- ULB Cancer Research Center (UCRC), Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Justin R. Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Sean E. Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Franck Meyer
- Microbiology, Bioorganic & Macromolecular Chemistry Unit, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - François Dufrasne
- Microbiology, Bioorganic & Macromolecular Chemistry Unit, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Gilles Berger
- Microbiology, Bioorganic & Macromolecular Chemistry Unit, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Elsayed SA, Badr HE, di Biase A, El-Hendawy AM. Synthesis, characterization of ruthenium(II), nickel(II), palladium(II), and platinum(II) triphenylphosphine-based complexes bearing an ONS-donor chelating agent: Interaction with biomolecules, antioxidant, in vitro cytotoxic, apoptotic activity and cell cycle analysis. J Inorg Biochem 2021; 223:111549. [PMID: 34315119 DOI: 10.1016/j.jinorgbio.2021.111549] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023]
Abstract
Four new transition metal complexes, [M(PPh3)(L)].CH3OH (M = Ni(II) (1), Pd(II) (2)) [Pt (PPh3)2(HL)]Cl (3) and [Ru(CO)(PPh3)2(L)] (4) (H2L = 2,4-dihydroxybenzaldehyde-S-methyldithiocarbazate, PPh3 = triphenylphosphine) have been synthesized and characterized by elemental analyses (C, H, N), FTIR, NMR (1H, 31P), ESI-MS and UV-visible spectroscopy. The molecular structure of (1) and (2) complexes was confirmed by single-crystal X-ray crystallography. It showed a distorted square planar geometry for both complexes around the metal center, and the H2L adopt a bi-negative tridentate chelating mode. The interaction with biomolecules viz., calf thymus DNA (ct DNA), yeast RNA (tRNA), and BSA (bovine serum albumin) was examined by both UV-visible and fluorescence spectroscopies. The antioxidant activity of all compounds is discussed on basis of DPPH• (2,2-diphenyl-1-picrylhydrazyl) scavenging activity and showed better antioxidant activity for complexes compared to the ligand. The in vitro cytotoxicity of the compounds was tested on human (breast cancer (MCF7), colon cancer (HCT116), liver cancer (HepG2), and normal lung fibroblast (WI38)) cell lines, showing that complex (1) the most potent against MCF7 and complex (4) against HCT116 cell lines based on IC50 and selective indices (SI) values. So, both complexes were chosen for further studies such as DNA fragmentation, cell apoptosis, and cell cycle analyses. Complex (1) induced MCF7 cell death by cellular apoptosis and arrest cells at S phase. Complex (4) induced HCT116 cell death predominantly by cellular necrosis and arrested cell division at G2/M phase due to DNA damage.
Collapse
Affiliation(s)
- Shadia A Elsayed
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| | - Hagar E Badr
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Armando di Biase
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Ahmed M El-Hendawy
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
8
|
Geisler H, Westermayr J, Cseh K, Wenisch D, Fuchs V, Harringer S, Plutzar S, Gajic N, Hejl M, Jakupec MA, Marquetand P, Kandioller W. Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies. Inorg Chem 2021; 60:9805-9819. [PMID: 34115482 PMCID: PMC8261824 DOI: 10.1021/acs.inorgchem.1c01083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of nine RuII arene complexes bearing tridentate naphthoquinone-based N,O,O-ligands was synthesized and characterized. Aqueous stability and their hydrolysis mechanism were investigated via UV/vis photometry, HPLC-MS, and density functional theory calculations. Substituents with a positive inductive effect improved their stability at physiological pH (7.4) intensely, whereas substituents such as halogens accelerated hydrolysis and formation of dimeric pyrazolate and hydroxido bridged dimers. The observed cytotoxic profile is unusual, as complexes exhibited much higher cytotoxicity in SW480 colon cancer cells than in the broadly chemo- (incl. platinum-) sensitive CH1/PA-1 teratocarcinoma cells. This activity pattern as well as reduced or slightly enhanced ROS generation and the lack of DNA interactions indicate a mode of action different from established or previously investigated classes of metallodrugs.
Collapse
Affiliation(s)
- Heiko Geisler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Julia Westermayr
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, United Kingdom
| | - Klaudia Cseh
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Dominik Wenisch
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Valentin Fuchs
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sophia Harringer
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sarah Plutzar
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Natalie Gajic
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michaela Hejl
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michael A. Jakupec
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria,Research
Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Faculty
of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Waehringer Str. 17, A-1090 Vienna, Austria,Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Wien, Austria
| | - Wolfgang Kandioller
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria,Research
Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria,. Phone: +43 1 4277
52609
| |
Collapse
|
9
|
Kladnik J, Coverdale JPC, Kljun J, Burmeister H, Lippman P, Ellis FG, Jones AM, Ott I, Romero-Canelón I, Turel I. Organoruthenium Complexes with Benzo-Fused Pyrithiones Overcome Platinum Resistance in Ovarian Cancer Cells. Cancers (Basel) 2021; 13:2493. [PMID: 34065335 PMCID: PMC8160969 DOI: 10.3390/cancers13102493] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Drug resistance to existing anticancer agents is a growing clinical concern, with many first line treatments showing poor efficacy in treatment plans of some cancers. Resistance to platinum agents, such as cisplatin, is particularly prevalent in the treatment of ovarian cancer, one of the most common cancers amongst women in the developing world. Therefore, there is an urgent need to develop next generation of anticancer agents which can overcome resistance to existing therapies. We report a new series of organoruthenium(II) complexes bearing structurally modified pyrithione ligands with extended aromatic scaffold, which overcome platinum and adriamycin resistance in human ovarian cancer cells. The mechanism of action of such complexes appears to be unique from that of cisplatin, involving G1 cell cycle arrest without generation of cellular ROS, as is typically associated with similar ruthenium complexes. The complexes inhibit the enzyme thioredoxin reductase (TrxR) in a model system and reduce cell motility towards wound healing. Importantly, this work highlights further development in our understanding of the multi-targeting mechanism of action exhibited by transition metal complexes.
Collapse
Affiliation(s)
- Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - James P. C. Coverdale
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.B.); (P.L.); (I.O.)
| | - Petra Lippman
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.B.); (P.L.); (I.O.)
| | - Francesca G. Ellis
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Alan M. Jones
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.B.); (P.L.); (I.O.)
| | - Isolda Romero-Canelón
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| |
Collapse
|
10
|
Akunuri R, Vadakattu M, Bujji S, Veerareddy V, Madhavi YV, Nanduri S. Fused-azepinones: Emerging scaffolds of medicinal importance. Eur J Med Chem 2021; 220:113445. [PMID: 33901899 DOI: 10.1016/j.ejmech.2021.113445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Hymenialdisine an alkaloid of oroidin class has drawn the attention of researchers owing to its unique structural features and interesting biological properties. Hymenialdisine exhibited promising inhibitory activity against a number of therapeutically important kinases viz., CDKs, GSK-3β etc., and showed anti-cancer, anti-inflammatory, anti-HIV, neuroprotective, anti-fouling, anti-plasmodium properties. Hymenialdisine and other structurally related oroidin alkaloids such as dibromo-hymenialdisine, stevensine, hymenin, axinohydantoin, spongicidines A-D, latonduines and callyspongisines contain pyrrolo[2,3-c] azepin-8-one core in common. Keeping in view of the interesting structural and therapeutic features of HMD, several structural modifications were carried around the fused-azepinone core which resulted in a number of diverse structural motifs like indolo-azepinones, paullones, aza-paullones, darpones and 5,7-dihydro-6H-benzo[b]pyrimido[4,5-d] azepin-6-one. In this review, an attempt is made to collate and review the structures of diverse hymenialdisine and related fused-azepinones of synthetic/natural origin and their biological properties.
Collapse
Affiliation(s)
- Ravikumar Akunuri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Manasa Vadakattu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Sushmitha Bujji
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Vaishnavi Veerareddy
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
11
|
Sudhindra P, Ajay Sharma S, Roy N, Moharana P, Paira P. Recent advances in cytotoxicity, cellular uptake and mechanism of action of ruthenium metallodrugs: A review. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Antitumor Activity of Ruthenium(II) Terpyridine Complexes towards Colon Cancer Cells In Vitro and In Vivo. Molecules 2020; 25:molecules25204699. [PMID: 33066568 PMCID: PMC7587369 DOI: 10.3390/molecules25204699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Ruthenium complexes have attracted considerable interest as potential antitumor agents. Therefore, antitumor activity and systemic toxicity of ruthenium(II) terpyridine complexes were evaluated in heterotopic mouse colon carcinoma. In the present study, cytotoxic effects of recently synthesized ruthenium(II) terpyridine complexes [Ru(Cl-tpy)(en)Cl][Cl] (en = ethylenediamine, tpy = terpyridine, Ru-1) and [Ru(Cl-tpy)(dach)Cl][Cl] (dach = 1,2-diaminocyclohexane, Ru-2) towards human and murine colon carcinoma cells were tested in vitro and in vivo and compared with oxaliplatin, the most commonly used chemotherapeutic agent against colorectal carcinoma. Ruthenium(II) complexes showed moderate cytotoxicity with IC50 values ranging between 19.1 to 167.3 μM against two human, HCT116 and SW480, and one mouse colon carcinoma cell line, CT26. Both ruthenium(II) terpyridine complexes exerted a moderate apoptotic effect in colon carcinoma cells, but induced significant necrotic death. Additionally, both complexes induced cell cycle disturbances, but these effects were specific for the cell line. Further, Ru-1 significantly reduced the growth of primary heterotopic tumor in mice, similarly to oxaliplatin. Renal damage in Ru-1 treated mice was lower in comparison with oxaliplatin treated mice, as evaluated by serum levels of urea and creatinine and histological evaluation, but Ru-1 induced higher liver damage than oxaliplatin, evaluated by the serum levels of alanine aminotransferase. Additionally, the interaction of these ruthenium(II) terpyridine complexes with the tripeptide glutathione (GSH) was investigated by proton nuclear magnetic resonance (1H NMR) spectroscopy. All reactions led to the formation of monofunctional thiolate adducts [Ru(Cl-tpy)(en)GS-S] (3) and [Ru(Cl-tpy)(dach)GS-S] (4). Our data highlight the significant cytotoxic activity of [Ru(Cl-tpy)(en)Cl][Cl] against human and mouse colon carcinoma cells, as well as in vivo antitumor activity in CT26 tumor-bearing mice similar to standard chemotherapeutic oxaliplatin, accompanied with lower nephrotoxicity in comparison with oxaliplatin.
Collapse
|
13
|
Pursuwani BH, Bhatt BS, Vaidya FU, Pathak C, Patel MN. Tetrazolo[1,5-a]quinoline moiety-based Os(IV) complexes: DNA binding/cleavage, bacteriostatic and photocytotoxicity assay. J Biomol Struct Dyn 2020; 39:2894-2903. [PMID: 32299292 DOI: 10.1080/07391102.2020.1756912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biological applications of platinum group metal-based complexes have been widely explored in synthetic and inorganic chemistry. The compounds have been subjected to DNA binding, DNA cleavage, In-vivo and In-vitro photocytotoxicity (HCT-116 cell line) and bacteriostatic activities. Binding constant of complexes are 1.42-5.62 × 104 M-1, whereas that of ligands are 1.12-4.72 × 104 M-1. Ksv of complexes are about 1.32-5.21 × 103 M-1, whereas Kf is about 1.24-6.83 × 103 M-1. IC50 of compounds screened using HCT-116 cell line in dark are found to be 121-342 μg/mL. Whereas photocytotoxicity is found in the range of 48-316 μg/mL. Docking energy of molecules have been evaluated to evaluate efficacy of binding. Molecular docking energy of complexes are in the range of -286.00 to -303.11 kJ/mol. Whereas that of ligands are -254.03 to -282.96 kJ/mol. MIC of complexes are 47 ± 2.5 to 77.50 ± 7.5 μM. LC50 values of ligands fall in the range of 4.05-19.72 μg/mL and that of Os(IV) complexes fall in the range of 3.99-15.99 μg/mL. The Os(IV) complexes dominate in proving its potentiality compared to N, N-donor ligands in biological activities. [Formula: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharat H Pursuwani
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Bhupesh S Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Foram U Vaidya
- Indian Institute of Advanced Research Koba, Gandhinagar, Gujarat, India
| | | | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
14
|
Bacher F, Wittmann C, Nové M, Spengler G, Marć MA, Enyedy EA, Darvasiová D, Rapta P, Reiner T, Arion VB. Novel latonduine derived proligands and their copper(ii) complexes show cytotoxicity in the nanomolar range in human colon adenocarcinoma cells and in vitro cancer selectivity. Dalton Trans 2020; 48:10464-10478. [PMID: 31125040 DOI: 10.1039/c9dt01238a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four Schiff bases derived from 7-hydrazin-yl-5,8-dihydroindolo[2,3-d][2]benzazepin-(6H)-one and its bromo-substituted analogue (HL1-HL4) and four copper(ii) complexes 1-4 have been synthesised and fully characterised by standard spectroscopic methods (1H and 13C NMR, UV-vis), ESI mass spectrometry, single crystal X-ray diffraction and spectroelectrochemistry. In addition, two previously reported complexes with paullone ligands 5 and 6 were prepared and studied for comparison reasons. The CuII ion in 1-4 is five-coordinate and adopts a square-pyramidal or slightly distorted square-pyramidal coordination geometry. The ligands HL1-4 act as tridentate, the other two coordination places are occupied by two chlorido co-ligands. The organic ligands in 2 and 3 are bound tighter to copper(ii) when compared to related paullone ligands in 5 and 6. The new compounds show very strong cytotoxic activity against human colon adenocarcinoma doxorubicin-sensitive Colo 205 and multidrug resistant Colo 320 cancer cell lines with IC50 values in the low micromolar to nanomolar concentration range.
Collapse
Affiliation(s)
- Felix Bacher
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Christopher Wittmann
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | - Márta Nové
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Małgorzata A Marć
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Thomas Reiner
- Department of Radiology, Weill Cornell Medical College, New York City, NY 10065, USA and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA and Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| |
Collapse
|
15
|
de Sousa IH, Campos VNS, Vale AAM, Maciel-Silva VL, Leite CM, Lopes AJO, Mourão PS, das Chagas Alves Lima F, Batista AA, de Azevedo Dos Santos APS, Almeida MAP, Pereira SRF. Ruthenium (II) complexes with N, O-chelating proline and threonine ligands cause selective cytotoxicity by the induction of genomic instability, cell cycle arrest and apoptosis in breast and prostate tumor cells. Toxicol In Vitro 2019; 62:104679. [PMID: 31676337 DOI: 10.1016/j.tiv.2019.104679] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 12/27/2022]
Abstract
Ruthenium complexes are being considered as novel chemotherapeutic alternatives for cancer treatment. In our study, we assessed the antitumoral activities of novel ruthenium complexes coupled to the amino acids proline (RuPro) and threonine (RuThr) in prostate tumor cell lines (DU145) and breast (MCF7), and normal cell lines of the lung fibroblast (GM07492A). Our results revealed that the EC50 of the complexes for DU145 and MCF7 was two times lower than that GM07492A. Moreover, RuPro and RuThr were not able to induce significant genomic instability, cell cycle arrest or cell death in GM07492A, but could induce DNA damage, arrest in G2/M and apoptosis in DU145 and MCF7. Furthermore, BAX, TP53 and ATM were found to be upregulated in DU145 and MCF7 treated with RuPro and RuThr, in which, a higher ASCT2 gene expression was also observed. Using molecular docking, RuPro and RuThr interact with ASCT2, suggesting that this transporter might have a pivotal role in the execution of their activities. Hence, our results with RuPro and RuThr are capable of selectively inducing genetic damage, cell cycle arrest and apoptosis in DU145 and MCF7. We suggest that the selective action of the RuPro and RuThr complexes is related to the higher expression of ASCT2 in the tumor cells.
Collapse
Affiliation(s)
- Israel Higino de Sousa
- Postgraduate Program in Biodiversity and Biotechnology-BIONORTE, Federal University of Maranhão, Dom Delgado University City, 1966, CEP. 65085-580, São Luís, MA, Brazil; Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Brazil.
| | | | - André Alvares Marques Vale
- Postgraduate Program in Health Sciences, Federal University of Maranhão, Brazil; Laboratory of Immunology applied to Cancer, Department of Physiological Sciences, Federal University of Maranhão, Brazil
| | - Vera Lucia Maciel-Silva
- Postgraduate Program in Biodiversity and Biotechnology-BIONORTE, Federal University of Maranhão, Dom Delgado University City, 1966, CEP. 65085-580, São Luís, MA, Brazil; Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, Brazil; Department of Chemistry and Biology, State University of Maranhão, Paul VI campus, CEP 65055970, São Luis, MA, Brazil
| | - Celisnolia Moraes Leite
- Department of Chemistry, Federal University of São Carlos, CP 676, CEP 13565-905, São Carlos, SP, Brazil
| | - Alberto Jorge Oliveira Lopes
- Postgraduate Program in Health Sciences, Federal University of Maranhão, Brazil; Research Group in Computational Quantum Chemistry & Pharmaceutical Planning, State University of Piauí, GPQQ&PF/UESPI, Teresina, PI, Brazil
| | - Penina Sousa Mourão
- Research Group in Computational Quantum Chemistry & Pharmaceutical Planning, State University of Piauí, GPQQ&PF/UESPI, Teresina, PI, Brazil
| | - Francisco das Chagas Alves Lima
- Research Group in Computational Quantum Chemistry & Pharmaceutical Planning, State University of Piauí, GPQQ&PF/UESPI, Teresina, PI, Brazil
| | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, CP 676, CEP 13565-905, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
16
|
Facile design and spectroscopic characterization of novel bio-inspired Quercetin-conjugated tetrakis (dimethylsulfoxide)dichlororuthenium(II) complex for enhanced anticancer properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Polynuclear ruthenium organometallic compounds induce DNA damage in human cells identified by the nucleotide excision repair factor XPC. Biosci Rep 2019; 39:BSR20190378. [PMID: 31227614 PMCID: PMC6629949 DOI: 10.1042/bsr20190378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Ruthenium organometallic compounds represent an attractive avenue in developing alternatives to platinum-based chemotherapeutic agents. While evidence has been presented indicating ruthenium-based compounds interact with isolated DNA in vitro, it is unclear what effect these compounds exert in cells. Moreover, the antibiotic efficacy of polynuclear ruthenium organometallic compounds remains uncertain. In the present study, we report that exposure to polynuclear ruthenium organometallic compounds induces recruitment of damaged DNA sensing protein Xeroderma pigmentosum Group C into chromatin-immobilized foci. Additionally, we observed one of the tested polynuclear ruthenium organometallic compounds displayed increased cytotoxicity against human cells deficient in nucleotide excision repair (NER). Taken together, these results suggest that polynuclear ruthenium organometallic compounds induce DNA damage in cells, and that cellular resistance to these compounds may be influenced by the NER DNA repair phenotype of the cells.
Collapse
|
18
|
Maroto-Diaz M, Sanz del Olmo N, Muñoz-Moreno L, Bajo AM, Carmena MJ, Gómez R, García-Gallego S, de la Mata FJ. In vitro and in vivo evaluation of first-generation carbosilane arene Ru(II)-metallodendrimers in advanced prostate cancer. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Woods J, Nemani N, Shanmughapriya S, Kumar A, Zhang M, Nathan SR, Thomas M, Carvalho E, Ramachandran K, Srikantan S, Stathopulos PB, Wilson JJ, Madesh M. A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury. ACS CENTRAL SCIENCE 2019; 5:153-166. [PMID: 30693334 PMCID: PMC6346394 DOI: 10.1021/acscentsci.8b00773] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 05/10/2023]
Abstract
Mitochondrial Ca2+ (mCa2+) uptake mediated by the mitochondrial calcium uniporter (MCU) plays a critical role in signal transduction, bioenergetics, and cell death, and its dysregulation is linked to several human diseases. In this study, we report a new ruthenium complex Ru265 that is cell-permeable, minimally toxic, and highly potent with respect to MCU inhibition. Cells treated with Ru265 show inhibited MCU activity without any effect on cytosolic Ca2+ dynamics and mitochondrial membrane potential (ΔΨm). Dose-dependent studies reveal that Ru265 is more potent than the currently employed MCU inhibitor Ru360. Site-directed mutagenesis of Cys97 in the N-terminal domain of human MCU ablates the inhibitory activity of Ru265, suggesting that this matrix-residing domain is its target site. Additionally, Ru265 prevented hypoxia/reoxygenation injury and subsequent mitochondrial dysfunction, demonstrating that this new inhibitor is a valuable tool for studying the functional role of the MCU in intact biological models.
Collapse
Affiliation(s)
- Joshua
J. Woods
- Robert
F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Neeharika Nemani
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Santhanam Shanmughapriya
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Akshay Kumar
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - MengQi Zhang
- Department
of Physiology and Pharmacology, Western
University, London, Ontario N6A 5C1, Canada
| | - Sarah R. Nathan
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Manfred Thomas
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Edmund Carvalho
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Karthik Ramachandran
- Department
of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Subramanya Srikantan
- Department
of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Peter B. Stathopulos
- Department
of Physiology and Pharmacology, Western
University, London, Ontario N6A 5C1, Canada
| | - Justin J. Wilson
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Muniswamy Madesh
- Department
of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Translational Medicine, Lewis Katz School
of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
- Department
of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
20
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
21
|
Klose MHM, Hejl M, Heffeter P, Jakupec MA, Meier-Menches SM, Berger W, Keppler BK. Post-digestion stabilization of osmium enables quantification by ICP-MS in cell culture and tissue. Analyst 2018; 142:2327-2332. [PMID: 28585637 DOI: 10.1039/c7an00350a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An orally active osmium anticancer compound was reliably quantified in the organs of treated mice by inductively coupled plasma-mass spectrometry (ICP-MS) by adding a stabilizing solution consisting of ascorbic acid, thiourea and EDTA during sample preparation and avoiding oxidizing conditions. The limits of detection (LOD) and quantification (LOQ) of 189Os were determined in liver tissue to be 0.02 and 0.075 μg kg-1, respectively. In spiked liver tissue, the internal precision showed a relative standard deviation (RSD) of 4%, a matrix recovery of 92% and a digestion recovery of 99%. A similar quantification protocol was developed for cellular accumulation studies in vitro. The cells were lysed with a non-oxidizing lysis buffer consisting of 150 mmol L-1 NaCl, 1.0% Triton X-100, 0.1% SDS, and 50 mmol L-1 Tris at pH 8.0 before adding the stabilizing solution. The osmium compound was compared with an isosteric ruthenium analogue and they displayed similar cellular accumulation and organ distribution profiles.
Collapse
|
22
|
Alkoxylation of the imine carbon atom of a Schiff-base ligand upon coordination to arene ruthenium. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Beckford FA, Niece MB, Lassiter BP, Beebe SJ, Holder AA. Polynuclear ruthenium organometallic complexes containing a 1,3,5-triazine ligand: synthesis, DNA interaction, and biological activity. J Biol Inorg Chem 2018; 23:1205-1217. [PMID: 30039184 DOI: 10.1007/s00775-018-1599-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
It is now well established that ruthenium complexes are attractive alternatives to platinum-based anticancer agents. Most of the ruthenium compounds currently under investigation contain a single metal center. The synthesis of multinuclear analogues may provide access to novel complexes with enhanced biological activity. In this work, we have synthesized a set of three trinuclear complexes containing organometallic ruthenium fragments-(arene)RuCl-coordinated to a 2,4,6-tris(di-2-pyridylamino)-1,3,5-triazine core [(Arene = benzene (2), p-cymene (1), or hexamethylbenzene (3)]. The interaction of the complexes with DNA was extensively studied using a variety of biophysical probes as well as by molecular docking. The complexes bind strongly to DNA with apparent binding constants ranging from 2.20 to 4.79 × 104 M-1. The binding constants from electronic absorption titrations were an order of magnitude greater. The mode of binding to the nucleic acid was not definitively determined, but the evidence pointed to some kind of non-specific electrostatic interaction. None of the complexes displayed any significant antimicrobial activity against the organisms that were studied and exhibited anticancer activity only at high (> 100 μM) concentration.
Collapse
Affiliation(s)
- Floyd A Beckford
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA, 24293, USA.
| | - Madison B Niece
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Avenue, Wise, VA, 24293, USA
| | - Brittany P Lassiter
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Stephen J Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA, 23529-0126, USA
| |
Collapse
|
24
|
Novel fused oxazepino-indoles (FOIs) attenuate liver carcinogenesis via IL-6/JAK2/STAT3 signaling blockade as evidenced through data-based mathematical modeling. Life Sci 2018; 201:161-172. [DOI: 10.1016/j.lfs.2018.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/29/2018] [Accepted: 02/22/2018] [Indexed: 12/12/2022]
|
25
|
Novel Indole-fused benzo-oxazepines (IFBOs) inhibit invasion of hepatocellular carcinoma by targeting IL-6 mediated JAK2/STAT3 oncogenic signals. Sci Rep 2018; 8:5932. [PMID: 29651140 PMCID: PMC5897576 DOI: 10.1038/s41598-018-24288-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Inspired by the well-documented tumor protecting ability of paullones, recently, we synthesized novel paullone-like scaffolds, indole-fused benzo-oxazepines (IFBOs), and screened them against hepatocellular carcinoma (HCC) specific Hep-G2 cells. Three of the synthesized compounds significantly attenuated the progression of HCC in vitro. By computational studies, we further discovered that IFBOs exhibited a stable binding complex with the IL-6 receptor. In this context, we investigated in vivo study using the nitrosodiethyl amine (NDEA)-induced HCC model, which strengthened our previous findings by showing the blockade of the IL-6 mediated JAK2/STAT3 oncogenic signaling pathway. Treatment with IFBOs showed remarkable attenuation of cellular proliferation, as evidenced through a decrease in the number of nodules, restoration of body weight, oxidative stress parameters, liver marker enzymes and histological architecture. Interestingly, using a metabolomic approach we further discovered that IFBOs can restore the perturbed metabolic profile associated with the HCC condition to normalcy. Particularly, the efficacy of compound 6a for an anti-HCC response was significantly better than the marketed chemotherapeutic drug, 5-fluorouracil. Altogether, these remarkable findings open up possibilities of developing IFBOs as novel future candidate molecules for plausible alternatives for HCC treatment.
Collapse
|
26
|
Gichumbi JM, Friedrich HB, Omondi B, Naicker K, Singh M, Chenia HY. Synthesis, characterization, antiproliferative, and antimicrobial activity of osmium(II) half-sandwich complexes. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1434164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Joel M. Gichumbi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Holger B. Friedrich
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Bernard Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Kovashnee Naicker
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moganavelli Singh
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hafizah Y. Chenia
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
27
|
Teixeira RG, Brás AR, Côrte-Real L, Tatikonda R, Sanches A, Robalo MP, Avecilla F, Moreira T, Garcia MH, Haukka M, Preto A, Valente A. Novel ruthenium methylcyclopentadienyl complex bearing a bipyridine perfluorinated ligand shows strong activity towards colorectal cancer cells. Eur J Med Chem 2018; 143:503-514. [DOI: 10.1016/j.ejmech.2017.11.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/06/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023]
|
28
|
Konkankit CC, Marker SC, Knopf KM, Wilson JJ. Anticancer activity of complexes of the third row transition metals, rhenium, osmium, and iridium. Dalton Trans 2018; 47:9934-9974. [DOI: 10.1039/c8dt01858h] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A summary of recent developments on the anticancer activity of complexes of rhenium, osmium, and iridium is described.
Collapse
Affiliation(s)
| | - Sierra C. Marker
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Kevin M. Knopf
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
29
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 729] [Impact Index Per Article: 104.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Singh AK, Raj V, Saha S. Indole-fused azepines and analogues as anticancer lead molecules: Privileged findings and future directions. Eur J Med Chem 2017; 142:244-265. [PMID: 28803677 DOI: 10.1016/j.ejmech.2017.07.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023]
Abstract
The search for new lead compounds of simple structure, displaying highest quality anti-tumor potency with new mechanisms of action and least adverse effects is the major intention of cancer drug discovery now a days. For the time being, indole-fused azepines emerged as a simple class of compounds prolifically designed with strong pharmacological significances in particular of cancer protecting ability. In the recent years from the efforts of our research group, indole-fused heteroazepines, a simple structural class achieved by fusion of indole with oxygen, sulphur and nitrogen containing heteroazepine rings, have known for its superior outcomes in cancer treatment. Surprisingly, the chemistry and biology of these unique families with an amazing role in cancer drug discovery has remained broadly unexplored. This short review is consequently an endeavor to highlight the preliminary ideas over this structural class and to draw the medical attention towards future development of indole-fused azepines and analogues for their promising function in cancer drug discovery.
Collapse
Affiliation(s)
- Ashok K Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Vinit Raj
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| |
Collapse
|
31
|
[Ru(pipe)(dppb)(bipy)]PF 6: A novel ruthenium complex that effectively inhibits ERK activation and cyclin D1 expression in A549 cells. Toxicol In Vitro 2017; 44:382-391. [PMID: 28774850 DOI: 10.1016/j.tiv.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022]
Abstract
Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF6 (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9μM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18μM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed.
Collapse
|
32
|
Elnaggar MA, Subbiah R, Han DK, Joung YK. Lipid-based carriers for controlled delivery of nitric oxide. Expert Opin Drug Deliv 2017; 14:1341-1353. [DOI: 10.1080/17425247.2017.1285904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahmoud A. Elnaggar
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Ramesh Subbiah
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
33
|
Agonigi G, Riedel T, Gay MP, Biancalana L, Oñate E, Dyson PJ, Pampaloni G, Păunescu E, Esteruelas MA, Marchetti F. Arene Osmium Complexes with Ethacrynic Acid-Modified Ligands: Synthesis, Characterization, and Evaluation of Intracellular Glutathione S-Transferase Inhibition and Antiproliferative Activity. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gabriele Agonigi
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Tina Riedel
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - M. Pilar Gay
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Lorenzo Biancalana
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Enrique Oñate
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Paul J. Dyson
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Guido Pampaloni
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi
13, I-56124 Pisa, Italy
| | - Emilia Păunescu
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Miguel A. Esteruelas
- Departamento
de Química Inorgánica, Instituto de Síntesis
Química y Catálisis Homogénea (ISQCH), Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Fabio Marchetti
- Dipartimento
di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi
13, I-56124 Pisa, Italy
| |
Collapse
|
34
|
Păunescu E, McArthur S, Soudani M, Scopelliti R, Dyson PJ. Nonsteroidal Anti-inflammatory—Organometallic Anticancer Compounds. Inorg Chem 2016; 55:1788-808. [DOI: 10.1021/acs.inorgchem.5b02690] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Emilia Păunescu
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sarah McArthur
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mylène Soudani
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Renfrew AK. Transition metal complexes with bioactive ligands: mechanisms for selective ligand release and applications for drug delivery. Metallomics 2015; 6:1324-35. [PMID: 24850462 DOI: 10.1039/c4mt00069b] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The unique properties of transition metal complexes, such as environment-responsive ligand exchange kinetics, diverse photochemical and photophysical properties, and the ability to form specific interactions with biomolecules, make them interesting platforms for selective drug delivery. This minireview will focus on recent examples of rationally designed complexes with bioactive ligands, exploring the different roles of the metal, and mechanisms of ligand release. Developments in the techniques used to study the mechanisms of action of metal-drug complexes will also be discussed, including X-ray protein crystallography, fluorescence lifetime imaging, and X-ray absorption spectroscopy.
Collapse
Affiliation(s)
- Anna K Renfrew
- The University of Sydney, Chemistry, School of Chemistry, Building F11, Sydney, New South Wales, Australia.
| |
Collapse
|
36
|
Menéndez-Pedregal E, Manteca Á, Sánchez J, Díez J, Gamasa MP, Lastra E. Antimicrobial and Antitumor Activity of Enantiopure Pybox-Osmium Complexes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201403173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: Latest advances. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.08.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Ekengard E, Glans L, Cassells I, Fogeron T, Govender P, Stringer T, Chellan P, Lisensky GC, Hersh WH, Doverbratt I, Lidin S, de Kock C, Smith PJ, Smith GS, Nordlander E. Antimalarial activity of ruthenium(ii) and osmium(ii) arene complexes with mono- and bidentate chloroquine analogue ligands. Dalton Trans 2015; 44:19314-29. [DOI: 10.1039/c5dt02410b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thirteen new ruthenium and osmium half-sandwich complexes with chloroquine analogue ligands have been synthesized and evaluated for anti-malarial properties.
Collapse
|
39
|
Denis JG, Franci G, Altucci L, Aurrecoechea JM, de Lera ÁR, Álvarez R. Synthesis of 7-alkylidene-7,12-dihydroindolo[3,2-d]benzazepine-6-(5H)-ones (7-alkylidene-paullones) by N-cyclization–oxidative Heck cascade and characterization as sirtuin modulators. Org Biomol Chem 2015; 13:2800-10. [DOI: 10.1039/c4ob02493a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A palladium-induced cascade of N-cyclization and oxidative Heck reaction of o-alkynylanilines produced 7-alkylidene-indolobenzazepinones (paullones) that have sirtuin modulation activities.
Collapse
Affiliation(s)
- J. G. Denis
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - G. Franci
- Seconda Università degli Studi di Napoli
- Dipartimento di Biochimica
- Biofisica e Patologia generale
- Napoli
- Italy
| | - L. Altucci
- Seconda Università degli Studi di Napoli
- Dipartimento di Biochimica
- Biofisica e Patologia generale
- Napoli
- Italy
| | - J. M. Aurrecoechea
- Departamento de Química Orgánica II
- Facultad de Ciencia y Tecnología
- Universidad del País Vasco
- 48080 Bilbao
- Spain
| | - Á. R. de Lera
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| | - R. Álvarez
- Departamento de Química Orgánica
- Facultad de Química (CINBIO) and Instituto de Investigación Biomédica de Vigo (IBIV)
- Universidade de Vigo
- 36310 Vigo
- Spain
| |
Collapse
|
40
|
Vitiello G, Luchini A, D'Errico G, Santamaria R, Capuozzo A, Irace C, Montesarchio D, Paduano L. Cationic liposomes as efficient nanocarriers for the drug delivery of an anticancer cholesterol-based ruthenium complex. J Mater Chem B 2015; 3:3011-3023. [DOI: 10.1039/c4tb01807a] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cationic nanovectors loaded with Ru-based nucleolipids exert a high growth-inhibitory activity against human cancer cells (MCF-7 (A), WiDr (B), and HeLa (C)).
Collapse
Affiliation(s)
- Giuseppe Vitiello
- Department of Chemical
- Materials and Production Engineering
- University of Naples “Federico II”
- 80125 Naples
- Italy
| | - Alessandra Luchini
- CSGI – Consorzio interuniversitario per lo sviluppo di Sistemi a Grande Interfase
- Department of Chemistry
- University of Florence
- 50019 Sesto Fiorentino (FI)
- Italy
| | - Gerardino D'Errico
- CSGI – Consorzio interuniversitario per lo sviluppo di Sistemi a Grande Interfase
- Department of Chemistry
- University of Florence
- 50019 Sesto Fiorentino (FI)
- Italy
| | - Rita Santamaria
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - Antonella Capuozzo
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - Carlo Irace
- Department of Pharmacy
- University of Naples “Federico II”
- 80131 Naples
- Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences
- University of Naples “Federico II”
- 80126 Naples
- Italy
| | - Luigi Paduano
- CSGI – Consorzio interuniversitario per lo sviluppo di Sistemi a Grande Interfase
- Department of Chemistry
- University of Florence
- 50019 Sesto Fiorentino (FI)
- Italy
| |
Collapse
|
41
|
Tan CP, Lu YY, Ji LN, Mao ZW. Metallomics insights into the programmed cell death induced by metal-based anticancer compounds. Metallomics 2014; 6:978-95. [PMID: 24668273 DOI: 10.1039/c3mt00225j] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the discovery of cisplatin more than 40 years ago, enormous research efforts have been dedicated to developing metal-based anticancer agents and to elucidating the mechanisms involved in the action of these compounds. Abnormal metabolism and the evasion of apoptosis are important hallmarks of malignant transformation, and the induction of apoptotic cell death has been considered to be a main pathway by which cytotoxic metal complexes combat cancer. However, many cancers have cellular defects involving the apoptotic machinery, which results in an acquired resistance to apoptotic cell death and therefore reduced chemotherapeutic effectiveness. Over the past decade, it has been revealed that a growing number of cell death pathways induced by metal complexes are not dependent on apoptosis. Metal complexes specifically triggering these alternative cell death pathways have been identified and explored as novel cancer treatment options. In this review, we discuss recent examples of metallomics studies on the different types of cell death induced by metal-based anticancer drugs, especially on the three major forms of programmed cell death (PCD) in mammalian cells: apoptosis, autophagy and regulated necrosis, also called necroptosis.
Collapse
Affiliation(s)
- Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | | | | | | |
Collapse
|
42
|
Frik M, Martínez A, Elie BT, Gonzalo O, Ramírez de Mingo D, Sanaú M, Sánchez-Delgado R, Sadhukha T, Prabha S, Ramos JW, Marzo I, Contel M. In vitro and in vivo evaluation of water-soluble iminophosphorane ruthenium(II) compounds. A potential chemotherapeutic agent for triple negative breast cancer. J Med Chem 2014; 57:9995-10012. [PMID: 25409416 PMCID: PMC4266334 DOI: 10.1021/jm5012337] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
A series
of organometallic ruthenium(II) complexes containing iminophosphorane
ligands have been synthesized and characterized. Cationic compounds
with chloride as counterion are soluble in water (70–100 mg/mL).
Most compounds (especially highly water-soluble 2) are
more cytotoxic to a number of human cancer cell lines than cisplatin.
Initial mechanistic studies indicate that the cell death type for
these compounds is mainly through canonical or caspase-dependent apoptosis,
nondependent on p53, and that the compounds do not interact with DNA
or inhibit protease cathepsin B. In vivo experiments of 2 on MDA-MB-231 xenografts in NOD.CB17-Prkdc SCID/J mice showed an
impressive tumor reduction (shrinkage) of 56% after 28 days of treatment
(14 doses of 5 mg/kg every other day) with low systemic toxicity.
Pharmacokinetic studies showed a quick absorption of 2 in plasma with preferential accumulation in the breast tumor tissues
when compared to kidney and liver, which may explain its high efficacy
in vivo.
Collapse
Affiliation(s)
- Malgorzata Frik
- Department of Chemistry, Brooklyn College and The Graduate Center, The City University of New York , 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Filak LK, Kalinowski DS, Bauer TJ, Richardson DR, Arion VB. Effect of the piperazine unit and metal-binding site position on the solubility and anti-proliferative activity of ruthenium(II)- and osmium(II)- arene complexes of isomeric indolo[3,2-c]quinoline-piperazine hybrids. Inorg Chem 2014; 53:6934-43. [PMID: 24927493 PMCID: PMC4087041 DOI: 10.1021/ic500825j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
In this study, the indoloquinoline
backbone and piperazine were combined to prepare indoloquinoline–piperazine
hybrids and their ruthenium- and osmium-arene complexes in an effort
to generate novel antitumor agents with improved aqueous solubility.
In addition, the position of the metal-binding unit was varied, and
the effect of these structural alterations on the aqueous solubility
and antiproliferative activity of their ruthenium- and osmium-arene
complexes was studied. The indoloquinoline–piperazine hybrids
L1–3 were prepared in situ and
isolated as six ruthenium and osmium complexes [(η6-p-cymene)M(L1–3)Cl]Cl, where
L1 = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-2-N-amine, M = Ru ([1a]Cl), Os ([1b]Cl), L2 = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-4-N-amine, M = Ru ([2a]Cl), Os ([2b]Cl), L3 = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-8-N-amine, M = Ru ([3a]Cl), Os ([3b]Cl). The
compounds were characterized by elemental analysis, one- and two-dimensional
NMR spectroscopy, ESI mass spectrometry, IR and UV–vis spectroscopy,
and single-crystal X-ray diffraction. The antiproliferative activity
of the isomeric ruthenium and osmium complexes [1a,b]Cl–[3a,b]Cl was examined in
vitro and showed the importance of the position of the metal-binding
site for their cytotoxicity. Those complexes containing the metal-binding
site located at the position 4 of the indoloquinoline scaffold ([2a]Cl and [2b]Cl) demonstrated the most potent
antiproliferative activity. The results provide important insight
into the structure–activity relationships of ruthenium- and
osmium-arene complexes with indoloquinoline–piperazine hybrid
ligands. These studies can be further utilized for the design and
development of more potent chemotherapeutic agents. Three different structural isomers of the indoloquinoline−piperazine
hybrid were prepared in situ and isolated as ruthenium-
and osmium-arene complexes. The effect of the piperazine unit and
metal-binding site position on the aqueous solubility and antiproliferative
activity of the metal complexes was studied.
Collapse
Affiliation(s)
- Lukas K Filak
- Institute of Inorganic Chemistry, University of Vienna , Währinger Strasse 42, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
44
|
Dobrov A, Göschl S, Jakupec MA, Popović-Bijelić A, Gräslund A, Rapta P, Arion VB. A highly cytotoxic modified paullone ligand bearing a TEMPO free-radical unit and its copper(II) complex as potential hR2 RNR inhibitors. Chem Commun (Camb) 2014; 49:10007-9. [PMID: 24042148 PMCID: PMC4047831 DOI: 10.1039/c3cc45743e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A new modified paullone ligand bearing a TEMPO free-radical unit (HL2) and its copper(ii) complex have been prepared. The compounds demonstrate high cytotoxicity in vitro and strongly inhibit cell-free hR2 RNR activity.
A new paullone–TEMPO conjugate and its copper(ii) complex inhibit RNR activity and show high antiproliferative activity in human cancer cell lines.
Collapse
Affiliation(s)
- Anatolie Dobrov
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
45
|
Govender P, Edafe F, Makhubela BC, Dyson PJ, Therrien B, Smith GS. Neutral and cationic osmium(II)-arene metallodendrimers: Synthesis, characterisation and anticancer activity. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Yang L, Chu X, Wang F, Li Y, Zhang L. Investigation of selective and effective recovery of noble metal osmium by adsorption onto nano-Al2O3 particles. NEW J CHEM 2014. [DOI: 10.1039/c3nj01582c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Guan QL, Xing YH, Liu J, Wei WJ, Zhang R, Wang X, Bai FY. Application of multiple parallel perfused microbioreactors: Synthesis, characterization and cytotoxicity testing of the novel rare earth complexes with indole acid as a ligand. J Inorg Biochem 2013; 128:57-67. [DOI: 10.1016/j.jinorgbio.2013.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/02/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022]
|
48
|
Maillet A, Yadav S, Loo YL, Sachaphibulkij K, Pervaiz S. A novel Osmium-based compound targets the mitochondria and triggers ROS-dependent apoptosis in colon carcinoma. Cell Death Dis 2013; 4:e653. [PMID: 23744353 PMCID: PMC3698552 DOI: 10.1038/cddis.2013.185] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Engagement of the mitochondrial-death amplification pathway is an essential component in chemotherapeutic execution of cancer cells. Therefore, identification of mitochondria-targeting agents has become an attractive avenue for novel drug discovery. Here, we report the anticancer activity of a novel Osmium-based organometallic compound (hereafter named Os) on different colorectal carcinoma cell lines. HCT116 cell line was highly sensitive to Os and displayed characteristic features of autophagy and apoptosis; however, inhibition of autophagy did not rescue cell death unlike the pan-caspase inhibitor z-VAD-fmk. Furthermore, Os significantly altered mitochondrial morphology, disrupted electron transport flux, decreased mitochondrial transmembrane potential and ATP levels, and triggered a significant increase in reactive oxygen species (ROS) production. Interestingly, the sensitivity of cell lines to Os was linked to its ability to induce mitochondrial ROS production (HCT116 and RKO) as HT29 and SW620 cell lines that failed to show an increase in ROS were resistant to the death-inducing activity of Os. Finally, intra-peritoneal injections of Os significantly inhibited tumor formation in a murine model of HCT116 carcinogenesis, and pretreatment with Os significantly enhanced tumor cell sensitivity to cisplatin and doxorubicin. These data highlight the mitochondria-targeting activity of this novel compound with potent anticancer effect in vitro and in vivo, which could have potential implications for strategic therapeutic drug design.
Collapse
Affiliation(s)
- A Maillet
- ROS, Apoptosis and Cancer Biology Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
49
|
Büchel G, Gavriluta A, Novak M, Meier S, Jakupec MA, Cuzan O, Turta C, Tommasino JB, Jeanneau E, Novitchi G, Luneau D, Arion VB. Striking difference in antiproliferative activity of ruthenium- and osmium-nitrosyl complexes with azole heterocycles. Inorg Chem 2013; 52:6273-85. [PMID: 23659478 PMCID: PMC3733131 DOI: 10.1021/ic400555k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Indexed: 01/01/2023]
Abstract
Ruthenium nitrosyl complexes of the general formulas (cation)(+)[cis-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (Hind) (1c), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (Hpz) (2c), (cation)(+) = (H2bzim)(+), Hazole = 1H-benzimidazole (Hbzim) (3c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (Him) (4c) and (cation)(+)[trans-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (1t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (2t), as well as osmium analogues of the general formulas (cation)(+)[cis-OsCl4(NO)(Hazole)](-), where (cation)(+) = (n-Bu4N)(+), Hazole =1H-indazole (5c), 1H-pyrazole (6c), 1H-benzimidazole (7c), 1H-imidazole (8c), (cation)(+) = Na(+); Hazole =1H-indazole (9c), 1H-benzimidazole (10c), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11c), (cation)(+) = H2pz(+), Hazole = 1H-pyrazole (12c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (13c), and (cation)(+)[trans-OsCl4(NO)(Hazole)](-), where (cation)(+) = n-Bu4N(+), Hazole = 1H-indazole (5t), 1H-pyrazole (6t), (cation)(+) = Na(+), Hazole = 1H-indazole (9t), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (12t), have been synthesized. The compounds have been comprehensively characterized by elemental analysis, ESI mass spectrometry, spectroscopic techniques (IR, UV-vis, 1D and 2D NMR) and X-ray crystallography (1c·CHCl3, 1t·CHCl3, 2t, 3c, 6c, 6t, 8c). The antiproliferative activity of water-soluble compounds (1c, 1t, 3c, 4c and 9c, 9t, 10c, 11c, 11t, 12c, 12t, 13c) in the human cancer cell lines A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon adenocarcinoma) has been assayed. The effects of metal (Ru vs Os), cis/trans isomerism, and azole heterocycle identity on cytotoxic potency and cell line selectivity have been elucidated. Ruthenium complexes (1c, 1t, 3c, and 4c) yielded IC50 values in the low micromolar concentration range. In contrast to most pairs of analogous ruthenium and osmium complexes known, they turned out to be considerably more cytotoxic than chemically related osmium complexes (9c, 9t, 10c, 11c, 11t, 12c, 12t, 13c). The IC50 values of Os/Ru homologs differ by factors (Os/Ru) of up to ~110 and ~410 in CH1 and SW480 cells, respectively. ESI-MS studies revealed that ascorbic acid may activate the ruthenium complexes leading to hydrolysis of one M-Cl bond, whereas the osmium analogues tend to be inert. The interaction with myoglobin suggests nonselective adduct formation; i.e., proteins may act as carriers for these compounds.
Collapse
Affiliation(s)
- Gabriel
E. Büchel
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Anatolie Gavriluta
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Maria Novak
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Samuel
M. Meier
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Michael A. Jakupec
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Olesea Cuzan
- Institute of Chemistry, Academy of Sciences of Moldova, Academiei Str. 3, MD-2028
Chisinau, Moldova
| | - Constantin Turta
- Institute of Chemistry, Academy of Sciences of Moldova, Academiei Str. 3, MD-2028
Chisinau, Moldova
| | - Jean-Bernard Tommasino
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Erwann Jeanneau
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Ghenadie Novitchi
- Laboratoire
National des Champs Magnétiques Intenses-CNRS, Université Joseph Fourier, 25 Avenue des Martyrs,
38042 Grenoble Cedex 9, France
| | - Dominique Luneau
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
50
|
Filak LK, Göschl S, Heffeter P, Ghannadzadeh Samper K, Egger AE, Jakupec MA, Keppler BK, Berger W, Arion VB. Metal-Arene Complexes with Indolo[3,2-c]-quinolines: Effects of Ruthenium vs Osmium and Modifications of the Lactam Unit on Intermolecular Interactions, Anticancer Activity, Cell Cycle, and Cellular Accumulation. Organometallics 2013; 32:903-914. [PMID: 23431223 PMCID: PMC3573711 DOI: 10.1021/om3012272] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Indexed: 11/28/2022]
Abstract
Six novel ruthenium(II)- and osmium(II)-arene complexes with three modified indolo[3,2-c]quinolines have been synthesized in situ starting from 2-aminoindoloquinolines and 2-pyridinecarboxaldehyde in the presence of [M(p-cymene)Cl(2)](2) (M = Ru, Os) in ethanol. All complexes have been characterized by elemental analysis, spectroscopic techniques ((1)H, (13)C NMR, IR, UV-vis), and ESI mass spectrometry, while four complexes were investigated by X-ray diffraction. The complexes have been tested for antiproliferative activity in vitro in A549 (non-small cell lung), SW480 (colon), and CH1 (ovarian) human cancer cell lines and showed IC(50) values between 1.3 and >80 μM. The effects of Ru vs Os and modifications of the lactam unit on intermolecular interactions, antiproliferative activity, and cell cycle are reported. One ruthenium complex and its osmium analogue have been studied for anticancer activity in vivo applied both intraperitoneally and orally against the murine colon carcinoma model CT-26. Interestingly, the osmium(II) complex displayed significant growth-inhibitory activity in contrast to its ruthenium counterpart, providing stimuli for further investigation of this class of compounds as potential antitumor drugs.
Collapse
Affiliation(s)
- Lukas K Filak
- Institute of Inorganic Chemistry, University of Vienna , Währinger Strasse 42, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|