1
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
2
|
Serafim LF, Jayasinghe-Arachchige VM, Wang L, Rathee P, Yang J, Moorkkannur N S, Prabhakar R. Distinct chemical factors in hydrolytic reactions catalyzed by metalloenzymes and metal complexes. Chem Commun (Camb) 2023. [PMID: 37366367 DOI: 10.1039/d3cc01380d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The selective hydrolysis of the extremely stable phosphoester, peptide and ester bonds of molecules by bio-inspired metal-based catalysts (metallohydrolases) is required in a wide range of biological, biotechnological and industrial applications. Despite the impressive advances made in the field, the ultimate goal of designing efficient enzyme mimics for these reactions is still elusive. Its realization will require a deeper understanding of the diverse chemical factors that influence the activities of both natural and synthetic catalysts. They include catalyst-substrate complexation, non-covalent interactions and the electronic nature of the metal ion, ligand environment and nucleophile. Based on our computational studies, their roles are discussed for several mono- and binuclear metallohydrolases and their synthetic analogues. Hydrolysis by natural metallohydrolases is found to be promoted by a ligand environment with low basicity, a metal bound water and a heterobinuclear metal center (in binuclear enzymes). Additionally, peptide and phosphoester hydrolysis is dominated by two competing effects, i.e. nucleophilicity and Lewis acid activation, respectively. In synthetic analogues, hydrolysis is facilitated by the inclusion of a second metal center, hydrophobic effects, a biological metal (Zn, Cu and Co) and a terminal hydroxyl nucleophile. Due to the absence of the protein environment, hydrolysis by these small molecules is exclusively influenced by nucleophile activation. The results gleaned from these studies will enhance the understanding of fundamental principles of multiple hydrolytic reactions. They will also advance the development of computational methods as a predictive tool to design more efficient catalysts for hydrolysis, Diels-Alder reaction, Michael addition, epoxide opening and aldol condensation.
Collapse
Affiliation(s)
- Leonardo F Serafim
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Lukun Wang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Jiawen Yang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
3
|
Sharma K, Tewatia P, Kaur M, Pathania D, Banat F, Rattan G, Singhal S, Kaushik A. Bioremediation of multifarious pollutants using laccase immobilized on magnetized and carbonyldiimidazole-functionalized cellulose nanofibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161137. [PMID: 36566870 DOI: 10.1016/j.scitotenv.2022.161137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
An easily recyclable biocatalyst (Lac@CDI-MCNFs) was synthesized by immobilizing laccase on rice straw-derived carbonyldiimidazole mediated magnetized cellulose nanofibers (MCNFs). Lac@CDI-MCNFs were utilized for bioremediation of cefixime antibiotic (CT), carbofuran pesticide (CF) and safranin O dye (SO) via oxidation-reduction reactions in wastewater. MCNFs provided enhanced pH, temperature and storage stability to laccase and allowed reusability for up to 25 cycles with mere 20 % decline in efficacy. The Lac@CDI-MCNFs effectively degraded 98.2 % CT and 96.8 % CF into benign metabolites within 20 h and completely degraded SO in just 7 h. Response surface modelling (RSM) was employed based on the Box Behnken Design to evaluate the effect of various parameters i.e. pH, catalyst dosage and the pollutants concentration which was further validated with experimental studies. The degradation products were identified using LCMS, which allowed the degradation pathway of the pollutants to be determined. The degradation of all pollutants followed first- order kinetics with rate constants of 0.1775, 0.0832 and 0.958 h-1 and half-life of 3.9, 5.0 and 0.723 h for CT, CF and SO, respectively. Lac@CDI-MCNFs was demonstrated to be an effective catalyst for the degradation of multifarious pollutants.
Collapse
Affiliation(s)
- Kavita Sharma
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, J&K, India; Department of Chemistry, Sardar Patel University Mandi, Himachal Pradesh 175001, India
| | - Fawzi Banat
- Dept of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Gaurav Rattan
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Sonal Singhal
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Anupama Kaushik
- Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
4
|
Jayasinghe-Arachchige VM, Serafim LF, Hu Q, Ozen C, Moorkkannur SN, Schenk G, Prabhakar R. Elucidating the Roles of Distinct Chemical Factors in the Hydrolytic Activities of Hetero- and Homonuclear Synthetic Analogues of Binuclear Metalloenzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
| | - Leonardo F. Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Cihan Ozen
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Sreerag N. Moorkkannur
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
5
|
Wilson LA, Pedroso MM, Peralta RA, Gahan LR, Schenk G. Biomimetics for purple acid phosphatases: A historical perspective. J Inorg Biochem 2023; 238:112061. [PMID: 36371912 DOI: 10.1016/j.jinorgbio.2022.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Biomimetics hold potential for varied applications in biotechnology and medicine but have also attracted particular interest as benchmarks for the functional study of their more complex biological counterparts, e.g. metalloenzymes. While many of the synthetic systems adequately mimic some structural and functional aspects of their biological counterparts the catalytic efficiencies displayed are mostly far inferior due to the smaller size and the associated lower complexity. Nonetheless they play an important role in bioinorganic chemistry. Numerous examples of biologically inspired and informed artificial catalysts have been reported, designed to mimic a plethora of chemical transformations, and relevant examples are highlighted in reviews and scientific reports. Herein, we discuss biomimetics of the metallohydrolase purple acid phosphatase (PAP), examples of which have been used to showcase synergistic research advances for both the biological and synthetic systems. In particular, we focus on the seminal contribution of our colleague Prof. Ademir Neves, and his group, pioneers in the design and optimization of suitable ligands that mimic the active site of PAP.
Collapse
Affiliation(s)
- Liam A Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
6
|
Somu P, Narayanasamy S, Gomez LA, Rajendran S, Lee YR, Balakrishnan D. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy. ENVIRONMENTAL RESEARCH 2022; 212:113411. [PMID: 35561819 DOI: 10.1016/j.envres.2022.113411] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Over the years, extensive urbanization and industrialization have led to xenobiotics contamination of the environment and also posed a severe threat to human health. Although there are multiple physical and chemical techniques for xenobiotic pollutants management, bioremediation seems to be a promising technology from the environmental perspective. It is an eco-friendly and low-cost method involving the application of microbes, plants, or their enzymes to degrade xenobiotics into less toxic or non-toxic forms. Moreover, bioremediation involving enzymes has gained an advantage over microorganisms or phytoremediation due to better activity for pollutant degradation with less waste generation. However, the significant disadvantages associated with the application of enzymes are low stability (storage, pH, and temperature) as well as the low possibility of reuse as it is hard to separate from reaction media. The immobilization of enzymes without affecting their activity provides a possible solution to the problems and allows reusability by easing the process of separation with improved stability to various environmental factors. The present communication provides an overview of the importance of enzyme immobilization in bioremediation, carrier selection, and immobilization methods, as well as the pros and cons of immobilization and its prospects.
Collapse
Affiliation(s)
- Prathap Somu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Saranya Narayanasamy
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Levin Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Coimbatore, 641114, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
7
|
Engineering of a bacterial outer membrane vesicle to a nano-scale reactor for the biodegradation of β-lactam antibiotics. J Biotechnol 2022; 356:1-7. [PMID: 35870620 DOI: 10.1016/j.jbiotec.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022]
Abstract
Bacterial outer membrane vesicles (OMVs) are small unilamellar proteoliposomes, which are involved in various functions including cell to cell signaling and protein excretion. Here, we have engineered the OMVs of Escherichia coli to nano-scaled bioreactors for the degradation of β-lactam antibiotics. This was exploited by targeting a β-lactamase (i.e., CMY-10) into the OMVs of a hyper-vesiculating E. coli BL21(DE3) mutant. The CMY-10-containing OMVs, prepared from the E. coli mutant cultures, were able to hydrolyze β-lactam ring of nitrocefin and meropenem to a specific rate of 6.6 × 10-8 and 3.9 × 10-12 μmol/min/µm3 of OMV, which is approximately 100 and 600-fold greater than those of E. coli-based whole-cell biocatalsyts. Furthermore, CMY-10, which was encapsulated in the engineered OMVs, was much more stable against temperature and acid stresses, as compared to free enzymes in aqueous phase. The OMV-based nano-scaled reaction system would be useful for the remediation of a variety of antibiotics pollution for food and agricultural industry.
Collapse
|
8
|
Serafim LF, Jayasinghe-Arachchige VM, Wang L, Prabhakar R. Promiscuous Catalytic Activity of a Binuclear Metallohydrolase: Peptide and Phosphoester Hydrolyses. J Chem Inf Model 2022; 62:2466-2480. [PMID: 35451306 DOI: 10.1021/acs.jcim.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, chemical promiscuity of a binuclear metallohydrolase Streptomyces griseus aminopeptidase (SgAP) has been investigated using DFT calculations. SgAP catalyzes two diverse reactions, peptide and phosphoester hydrolyses, using its binuclear (Zn-Zn) core. On the basis of the experimental information, mechanisms of these reactions have been investigated utilizing leucine p-nitro aniline (Leu-pNA) and bis(4-nitrophenyl) phosphate (BNPP) as the substrates. The computed barriers of 16.5 and 16.8 kcal/mol for the most plausible mechanisms proposed by the DFT calculations are in good agreement with the measured values of 13.9 and 18.3 kcal/mol for the Leu-pNA and BNPP hydrolyses, respectively. The former was found to occur through the transfer of two protons, while the latter with only one proton transfer. They are in line with the experimental observations. The cleavage of the peptide bond was the rate-determining process for the Leu-pNA hydrolysis. However, the creation of the nucleophile and its attack on the electrophile phosphorus atom was the rate-determining step for the BNPP hydrolysis. These calculations showed that the chemical nature of the substrate and its binding mode influence the nucleophilicity of the metal bound hydroxyl nucleophile. Additionally, the nucleophilicity was found to be critical for the Leu-pNA hydrolysis, whereas double Lewis acid activation was needed for the BNPP hydrolysis. That could be one of the reasons why peptide hydrolysis can be catalyzed by both mononuclear and binuclear metal cofactors containing hydrolases, while phosphoester hydrolysis is almost exclusively by binuclear metallohydrolases. These results will be helpful in the development of versatile catalysts for chemically distinct hydrolytic reactions.
Collapse
Affiliation(s)
- Leonardo F Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | | - Lukun Wang
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
9
|
Pawar MM, Shivanna B, Prasannakumar MK, Parivallal PB, Suresh K, Meenakshi NH. Spatial distribution and community structure of microbiota associated with cowpea aphid ( Aphis craccivora Koch). 3 Biotech 2022; 12:75. [PMID: 35251878 PMCID: PMC8861231 DOI: 10.1007/s13205-022-03142-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
Aphid populations were collected on cowpea, dolichos, redgram and black gram from Belagavi and Udupi locations. The samples were shotgun sequenced using the Illumina NovaSeq 6000 system to understand the spatial distribution and community structure of microbiota (especially bacteria) associated with aphids. In the present study, we identified obligatory nutritional symbiont Buchnera aphidicola and facultative symbionts Rickettsia sp. and Bacteroidetes endosymbiont of Geopemphigus sp. in all the aphid samples studied, although in varied abundance. On the other hand, Serratia symbiotica, Arsenophonus sp. and Acinetobacter sp. were only found in aphids on specific host plants, suggesting that host plants might influence the bacterial community structure. Furthermore, our study revealed that microbiota other than bacteria were highly insignificant in the aphid populations. Additionally, functional annotation of aphid metagenomes identified several pathways and enzymes involved in various physiological and ecological functions. Amino acid and vitamin biosynthesis-related pathways were predominant than carbohydrate metabolism, owing to their feeding habit and nutritional requirement. Chaperones related to stress tolerance such as GroEL and DnaK were identified. Enzymes involved in toxic chemical metabolisms such as glutathione transferase, phosphodiesterases and ABC transferases were observed. These enzymes may confer resistance to pesticides in the aphid populations. Overall, our results support the importance of host plants in structuring bacterial communities in aphids and show the functional roles of symbionts in aphid survival and development. Thus, these findings can be the basis for further detailed investigations and devising better strategies to manage the pests in field conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03142-1.
Collapse
Affiliation(s)
- Madhusudan M. Pawar
- grid.413008.e0000 0004 1765 8271Insect Molecular Biology Laboratory, Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, 560065 India
| | - B. Shivanna
- grid.413008.e0000 0004 1765 8271Insect Molecular Biology Laboratory, Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, 560065 India
| | - M. K. Prasannakumar
- grid.413008.e0000 0004 1765 8271Plant PathoGenOmic Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bangalore, 560065 India
| | - P. Buela Parivallal
- grid.413008.e0000 0004 1765 8271Plant PathoGenOmic Laboratory, Department of Plant Pathology, University of Agricultural Sciences, Bangalore, 560065 India
| | - Kiran Suresh
- grid.10388.320000 0001 2240 3300Department of Ecophysiology, University of Bonn, 53115 Bonn, Germany
| | - N. H. Meenakshi
- grid.413008.e0000 0004 1765 8271Insect Molecular Biology Laboratory, Department of Agricultural Entomology, University of Agricultural Sciences, Bangalore, 560065 India
| |
Collapse
|
10
|
Mali H, Shah C, Patel DH, Trivedi U, Subramanian RB. Bio-catalytic system of metallohydrolases for remediation of neurotoxin organophosphates and applications with a future vision. J Inorg Biochem 2022; 231:111771. [DOI: 10.1016/j.jinorgbio.2022.111771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022]
|
11
|
Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Pardo S, Bucio E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers (Basel) 2021; 13:2998. [PMID: 34503038 PMCID: PMC8434030 DOI: 10.3390/polym13172998] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, polymer nanocomposites produced by combining nanofillers and a polymeric matrix are emerging as interesting materials. Polymeric composites have a wide range of applications due to the outstanding and enhanced properties that are obtained thanks to the introduction of nanoparticles. Therefore, understanding the filler-matrix relationship is an important factor in the continued growth of this scientific area and the development of new materials with desired properties and specific applications. Due to their performance in response to a magnetic field magnetic nanocomposites represent an important class of functional nanocomposites. Due to their properties, magnetic nanocomposites have found numerous applications in biomedical applications such as drug delivery, theranostics, etc. This article aims to provide an overview of the filler-polymeric matrix relationship, with a special focus on magnetic nanocomposites and their potential applications in the biomedical field.
Collapse
Affiliation(s)
- Moises Bustamante-Torres
- Departamento de Biología, Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - David Romero-Fierro
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Belén Arcentales-Vera
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Samantha Pardo
- Facultad de Ciencias de la Vida, Universidad Politécnica Salesiana, Quito 170702, Ecuador;
| | - Emilio Bucio
- Facultad de Ciencias de la Vida, Universidad Politécnica Salesiana, Quito 170702, Ecuador;
| |
Collapse
|
12
|
Ren R, Zhai L, Tian Q, Meng D, Guan Z, Cai Y, Liao X. Identification of a novel glycerophosphodiester phosphodiesterase from Bacillus altitudinis W3 and its application in degradation of diphenyl phosphate. 3 Biotech 2021; 11:161. [PMID: 33758739 DOI: 10.1007/s13205-021-02704-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
Diphenyl phosphate (DPHP) has been increasingly detected in environmental samples, posing a potential hazard to humans and other organisms and arousing concern regarding its adverse effects. Biological degradation of DPHP is considered a promising and environmentally friendly method for its removal. In this study, the bagdpd gene was mined from the Bacillus altitudinis W3 genome and identified as a glycerophosphodiester phosphodiesterase by bioinformatics analysis. The enzyme was expressed and its biochemical properties were studied. When using bis(4-nitrophenyl) phosphate as substrate, enzyme activity was optimal at 55 °C and a pH of 8.5. The enzyme remained stable in the pH range of 8.0 - 10.0. The rBaGDPD enzyme degraded DPHP and the reaction product was identified as phenyl phosphate by LC-MS. This is the first report of a glycerophosphodiester phosphodiesterase exhibiting hydrolytic activity against DPHP. This study demonstrated that rBaGDPD could have the potential for bioremediation and industrial applications.
Collapse
Affiliation(s)
- Runxian Ren
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Lixin Zhai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Qiaopeng Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Di Meng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Zhengbin Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
13
|
Gomes MAGB, Fernandes C, Gahan LR, Schenk G, Horn A. Recent Advances in Heterogeneous Catalytic Systems Containing Metal Ions for Phosphate Ester Hydrolysis. Chemistry 2021; 27:877-887. [PMID: 32659052 DOI: 10.1002/chem.202002333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Indexed: 11/09/2022]
Abstract
Organophosphates are a class of organic compounds that are important for living organisms, forming the building blocks for DNA, RNA, and some essential cofactors. Furthermore, non-natural organophosphates are widely used in industrial applications, including as pesticides; in laundry detergents; and, unfortunately, as chemical weapons agents. In some cases, the natural degradation of organophosphates can take thousands of years; this longevity creates problems associated with handling and the storage of waste generated by such phosphate esters, in particular. Efforts to develop new catalysts for the cleavage of phosphate esters have progressed in recent decades, mainly in the area of homogeneous catalysis. In contrast, the development of heterogeneous catalysts for the hydrolysis of organophosphates has not been as prominent. Herein, examples of heterogeneous systems are described and the importance of the development of heterogeneous catalysts applicable to organophosphate hydrolysis is highlighted, shedding light on recent advances related to different solid matrices that have been employed.
Collapse
Affiliation(s)
| | - Christiane Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Lawrence R Gahan
- School of Chemistry and Microbial Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Microbial Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
14
|
Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, Kumar S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123369. [PMID: 32763682 DOI: 10.1016/j.jhazmat.2020.123369] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 05/18/2023]
Abstract
Utilization of pesticides is often necessary for meeting commercial requirements for crop quality and yield. However, incessant global pesticide use poses potential risks to human and ecosystem health. This situation increases the urgency of developing nano-biotechnology-assisted pesticide formulations that have high efficacy and low risk of side effects. The risks associated with both conventional and nanopesticides are summarized in this review. Moreover, the management of residual pesticides is still a global challenge. The contamination of soil and water resources with pesticides has adverse impact over agricultural productivity and food security; ultimately posing threats to living organisms. Pesticide residues in the eco-system may be treated via several biological and physicochemical processes, such as microbe-based degradation and advanced oxidation processes. With these issues in mind, we present a review that explores both existing and emerging techniques for management of pesticide residues and environmental risks. These techniques can offer a sustainable solution to revitalize the tarnished water/soil resources. Further, state-of-the-art research approaches to investigate biotechnological alternatives to conventional pesticides are discussed along with future prospects and mitigation techniques are recommended.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
15
|
Kaushal J, Khatri M, Arya SK. A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111483. [PMID: 33120277 DOI: 10.1016/j.ecoenv.2020.111483] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 05/27/2023]
Abstract
Pesticides have been used in the field of agriculture ever since their role in protection of crops from pests which include four different categories namely insects, mites, rodents and animals has been identified. Organophosphate pesticides are one of the most extensively applied insecticides in the field of agriculture such that around 40% of all the pesticides that are produced and used commercially belong to this category. The main toxicological effect of these pesticides when exposed to a living being encompasses the irremediable inhibition of the acetylcholinesterase (AChE) enzyme which is involved in the neurotransmission of signals and hence its inhibition causes impairment of the respiratory tract and neuromuscular transmission. Apart from being used as a pesticide, organophosphates have also been applied as herbicides to some extent. The residues of these highly toxic chemicals have found route into the underground water system by seeping into the ground, in rivers where the agricultural run off water is disposed, and in the air when sprayed on the crops hence posing a threat to all the living strata exposed to these chemicals in various ways which are discussed further. Many significant studies have been carried out in order to evaluate the health risks associated with these pesticides which commonly include acute neurological disorders. This review emphasizes on the toxicological effects of organophosphate pesticides and the recent methods of detection that are used to identify trace amounts of organophosphate pesticides along with strategies which are used for their degradation.
Collapse
Affiliation(s)
- Jyoti Kaushal
- Department of Biotechnology, University Institute of Engineering Technology, Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology, Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
16
|
Sharma G, Jayasinghe-Arachchige VM, Hu Q, Schenk G, Prabhakar R. Effect of Chemically Distinct Substrates on the Mechanism and Reactivity of a Highly Promiscuous Metallohydrolase. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
17
|
Hu Q, Jayasinghe‐Arachchige VM, Sharma G, Serafim LF, Paul TJ, Prabhakar R. Mechanisms of peptide and phosphoester hydrolysis catalyzed by two promiscuous metalloenzymes (insulin degrading enzyme and glycerophosphodiesterase) and their synthetic analogues. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Qiaoyu Hu
- Department of Chemistry, University of Miami Coral Gables Florida
| | | | - Gaurav Sharma
- Department of Chemistry, University of Miami Coral Gables Florida
| | | | - Thomas J. Paul
- Department of Chemistry, University of Miami Coral Gables Florida
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami Coral Gables Florida
| |
Collapse
|
18
|
Bilal M, Iqbal HMN, Barceló D. Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:160-177. [PMID: 31271985 DOI: 10.1016/j.scitotenv.2019.06.403] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor that poses concerning environmental and human-health related issues and ecological risks. It has been largely used as an intermediate in the manufacture of epoxy resins and polycarbonate plastics. Traces of BPA can reach into the environment through inadequate or inefficient removal during wastewater treatment, uncontrolled landfill leachates, and leaching out from the discarded BPA-based materials. Several physicochemical treatment methods including adsorption, Fenton, ozonation, electrochemical and photochemical degradation, and membrane filtration, have been applied for BPA elimination. However, these methods are not adequate for large-scale treatment due to some inherent limitations. Benefiting from high catalytic efficiency and specificity, enzyme-based bio-catalytic degradation strategies are considered quite meaningful alternative for efficient and effective BPA removal from different routes. Among various oxidoreductases, i.e., laccases exhibited a superior potential for the remediation of BPA-containing wastewater. Enzymatic oxidation of BPA can be boosted by using various natural or synthetic redox mediators. Immobilized enzymes can expand their applicability to continuous bioprocessing and facilitates process intensification. Therefore, optimized formulations of insolubilized biocatalysts are of strategic interest in the environmental biotechnology. In this review, recent research studies dealing with BPA removal by the laccase-catalyzed system are presented. At first, the presence of BPA in the ecosystem, sources, exposure, and its impact on the living organisms and human beings is summarized. Then, we highlighted the use of crude as well as immobilized laccases for the degradation of BPA. In addition to toxicity and estrogenicity removal studies, the unresolved challenges, concluding remarks, and possible future direction is proposed in this important research area. It is palpable from the literature reviewed that free as well as immobilized forms of laccases have displayed noteworthy potential for BPA removal from wastewater.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
19
|
Sharma G, Hu Q, Jayasinghe-Arachchige VM, Paul TJ, Schenk G, Prabhakar R. Investigating coordination flexibility of glycerophosphodiesterase (GpdQ) through interactions with mono-, di-, and triphosphoester (NPP, BNPP, GPE, and paraoxon) substrates. Phys Chem Chem Phys 2019; 21:5499-5509. [DOI: 10.1039/c8cp07031h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions of the catalytically active binuclear form of glycerophosphodiesterase (GpdQ) with chemically diverse substrates, i.e. phosphomono-, phosphodi-, and phosphotriester have been investigated using molecular dynamics (MD) simulations.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Qiaoyu Hu
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | | | - Thomas J. Paul
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St. Lucia
- Australia
| | | |
Collapse
|
20
|
Jiang J, Yu Y, Wang L, Li J, Ling J, Li Y, Duan G. Enzyme immobilized on polyamidoamine-coated magnetic microspheres for α-glucosidase inhibitors screening from Radix Paeoniae Rubra extracts accompanied with molecular modeling. Talanta 2018; 195:127-136. [PMID: 30625522 DOI: 10.1016/j.talanta.2018.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 11/04/2018] [Indexed: 11/25/2022]
Abstract
In this study, a method for direct screening and identification of α-glucosidase inhibitors (AGIs) from extracts of natural products was established based on polyamidoamine (PAMAM) coated magnetic microspheres. A facile route to synthesize the magnetic PAMAM was employed and α-glucosidase was successfully covalently attached to its surface through cross linking of glutaraldehyde. Using the enzyme-loaded magnetic microspheres, potential inhibitors were fished out from crude extracts directly, followed by structure confirmation. The inhibitory activities of the screened components were further investigated by the enzyme-loaded magnetic microspheres. The Fe3O4 @PAMAM@α-Glu microspheres displayed favorable dispersibility, fast magnetic separation, large enzyme binding amount (42.9 μg•mg-1) and high enzyme activity. Moreover, the α-glucosidase on the surface of PAMAM coating maintained high storage stability and remarkable reusability. Taking advantage of specific interaction of the α-glucosidase with AGIs, the materials could selectively capture a known AGI (+)-catechin under the interference of an inactive compound salicylic acid, with a binding capacity as high as 15.4%. Additionally, using the Fe3O4 @PAMAM@α-Glu microspheres in the inhibition assay, the enzymatic reaction could be stopped by magnetic separation instead of the traditional addition of Na2CO3 solution, which not only eliminated the disturbance of termination reagent to the results, but also reused the immobilized α-glucosidase. The screening and inhibitory activity verification of potential ligands in Radix Paeoniae Rubra ("Chi-shao" in Chinese) extracts were achieved by using Fe3O4 @PAMAM@α-Glu microspheres, demonstrating practical applicability of our method. Therefore, the magnetic PAMAM-based screening approach could be a feasible and alternative strategy for discovering enzyme inhibitors from natural product extracts.
Collapse
Affiliation(s)
- Jiebing Jiang
- Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yingjia Yu
- Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Liping Wang
- Jing'an District Central Hospital, Fudan University, 259 Xikang Road, Shanghai 200040, China
| | - Jiajia Li
- Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jin Ling
- Department of Biochemical Drugs and Biological Products, Shanghai Institute for Food and Drug Control, No.1500 Zhangheng Road, Pudong New District, Shanghai 201203, China
| | - Yan Li
- Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Gengli Duan
- Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
21
|
Paul TJ, Schenk G, Prabhakar R. Formation of Catalytically Active Binuclear Center of Glycerophosphodiesterase: A Molecular Dynamics Study. J Phys Chem B 2018; 122:5797-5808. [DOI: 10.1021/acs.jpcb.8b02046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas J. Paul
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
22
|
Koloti LE, Gule NP, Arotiba OA, Malinga SP. Laccase-immobilized dendritic nanofibrous membranes as a novel approach towards the removal of bisphenol A. ENVIRONMENTAL TECHNOLOGY 2018; 39:392-404. [PMID: 28278087 DOI: 10.1080/09593330.2017.1301570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Laccase enzymes from Rhus vernificera were covalently bound on hyperbranched polyethyleneimine/polyethersulfone (HPEI/PES) electrospun nanofibrous membranes and used for the removal of bisphenol A (BPA) from water. The laccase enzyme was anchored on the dendritic membranes through the abundant peripheral amine groups on the HPEI using glutaraldehyde as a crosslinker. The membranes were characterized with attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) and ultraviolet-visible spectroscopy and correlative light and electron microscopy (CLEM). Furthermore, contact-angle analyses, pure water flux measurements and rejection analyses were carried out. CLEM showed that the enzymes were uniformly dispersed on the nanofibres while SEM analysis revealed that the nanofibres had an average diameter of 354 ± 37 nm. EDS showed the presence of Cu, which is the active entity in laccase enzymes. The laccase-modified membranes were hydrophilic (50°-53° contact angle) and exhibited high BPA rejection of 89.6% as compared to the 52.4% demonstrated by pristine PES. The laccase-modified membranes also maintained a constant permeate flux (7.07 ± 5.54 L/m2 h) throughout the filtration process. Recyclability studies indicated that the membranes still maintained a high BPA removal of up to 79% even after four filtration cycles.
Collapse
Affiliation(s)
- Lebohang E Koloti
- a Department of Applied Chemistry , University of Johannesburg , Johannesburg , South Africa
| | - Nonjabulo P Gule
- b Department of Polymer Science , Stellenbosch University , Stellenbosch , South Africa
| | - Omotayo A Arotiba
- a Department of Applied Chemistry , University of Johannesburg , Johannesburg , South Africa
- c Centre for Nanomaterials Science Research , University of Johannesburg , Johannesburg , South Africa
| | - Soraya P Malinga
- a Department of Applied Chemistry , University of Johannesburg , Johannesburg , South Africa
| |
Collapse
|
23
|
Abstract
X-ray scattering is uniquely suited to the study of disordered systems and thus has the potential to provide insight into dynamic processes where diffraction methods fail. In particular, while X-ray crystallography has been a staple of structural biology for more than half a century and will continue to remain so, a major limitation of this technique has been the lack of dynamic information. Solution X-ray scattering has become an invaluable tool in structural and mechanistic studies of biological macromolecules where large conformational changes are involved. Such systems include allosteric enzymes that play key roles in directing metabolic fluxes of biochemical pathways, as well as large, assembly-line type enzymes that synthesize secondary metabolites with pharmaceutical applications. Furthermore, crystallography has the potential to provide information on protein dynamics via the diffuse scattering patterns that are overlaid with Bragg diffraction. Historically, these patterns have been very difficult to interpret, but recent advances in X-ray detection have led to a renewed interest in diffuse scattering analysis as a way to probe correlated motions. Here, we will review X-ray scattering theory and highlight recent advances in scattering-based investigations of protein solutions and crystals, with a particular focus on complex enzymes.
Collapse
Affiliation(s)
- Steve P Meisburger
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - William C Thomas
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Maxwell B Watkins
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Nozomi Ando
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
24
|
Pedroso MM, Ely F, Carpenter MC, Mitić N, Gahan LR, Ollis DL, Wilcox DE, Schenk G. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes. Biochemistry 2017; 56:3328-3336. [DOI: 10.1021/acs.biochem.6b01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcelo M. Pedroso
- School
of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fernanda Ely
- School
of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Margaret C. Carpenter
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Nataša Mitić
- Department
of Chemistry, National University of Ireland—Maynooth, Maynooth, County Kildare, Ireland
| | - Lawrence R. Gahan
- School
of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David L. Ollis
- Research
School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Dean E. Wilcox
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Gerhard Schenk
- School
of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
25
|
Nicolás P, Lassalle VL, Ferreira ML. Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method. Enzyme Microb Technol 2017; 97:97-103. [DOI: 10.1016/j.enzmictec.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022]
|
26
|
|
27
|
Schenk G, Mateen I, Ng TK, Pedroso MM, Mitić N, Jafelicci M, Marques RF, Gahan LR, Ollis DL. Organophosphate-degrading metallohydrolases: Structure and function of potent catalysts for applications in bioremediation. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Wang F, Lai L, Liu Y, Yang B, Wang Y. Expression and Characterization of a Novel Glycerophosphodiester Phosphodiesterase from Pyrococcus furiosus DSM 3638 That Possesses Lysophospholipase D Activity. Int J Mol Sci 2016; 17:ijms17060831. [PMID: 27248999 PMCID: PMC4926365 DOI: 10.3390/ijms17060831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 11/16/2022] Open
Abstract
Glycerophosphodiester phosphodiesterases (GDPD) are enzymes which degrade various glycerophosphodiesters to produce glycerol-3-phosphate and the corresponding alcohol moiety. Apart from this, a very interesting finding is that this enzyme could be used in the degradation of toxic organophosphorus esters, which has resulted in much attention on the biochemical and application research of GDPDs. In the present study, a novel GDPD from Pyrococcus furiosus DSM 3638 (pfGDPD) was successfully expressed in Escherichia coli and biochemically characterized. This enzyme hydrolyzed bis(p-nitrophenyl) phosphate, one substrate analogue of organophosphorus diester, with an optimal reaction temperature 55 °C and pH 8.5. The activity of pfGDPD was strongly dependent on existing of bivalent cations. It was strongly stimulated by Mn(2+) ions, next was Co(2+) and Ni(2+) ions. Further investigations were conducted on its substrate selectivity towards different phospholipids. The results indicated that except of glycerophosphorylcholine (GPC), this enzyme also possessed lysophospholipase D activity toward both sn1-lysophosphatidylcholine (1-LPC) and sn2-lysophosphatidylcholine (2-LPC). Higher activity was found for 1-LPC than 2-LPC; however, no hydrolytic activity was found for phosphatidylcholine (PC). Molecular docking based on the 3D-modeled structure of pfGDPD was conducted in order to provide a structural foundation for the substrate selectivity.
Collapse
Affiliation(s)
- Fanghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Linhui Lai
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Yanhua Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
29
|
Mendes LL, Englert D, Fernandes C, Gahan LR, Schenk G, Horn A. Metallohydrolase biomimetics with catalytic and structural flexibility. Dalton Trans 2016; 45:18510-18521. [DOI: 10.1039/c6dt03200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phosphatase activity of zinc complexes containing six- and seven-dentate ligands was evaluated through kinetic and31P NMR studies.
Collapse
Affiliation(s)
- Luisa L. Mendes
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| | - Daniel Englert
- Anorganisch-Chemisches Institut
- Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Christiane Fernandes
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Adolfo Horn
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| |
Collapse
|
30
|
Monošík R, Angnes L. Utilisation of micro- and nanoscaled materials in microfluidic analytical devices. Microchem J 2015. [DOI: 10.1016/j.microc.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Phase transformation in Mn-doped titania hollow spheres and their biocompatibility studies. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0405-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso MM, Schenk G. Catalytic mechanisms of metallohydrolases containing two metal ions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:49-81. [PMID: 25458355 DOI: 10.1016/bs.apcsb.2014.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved in catalysis), the presence of two (or more) closely spaced metal ions gives an additional advantage in terms of (i) charge delocalisation, (ii) smaller activation barriers, (iii) the ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) decreased transition-state energies. Among this group of proteins, enzymes that catalyze the hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. These enzymes are involved in a multitude of biological functions, and an increasing number of them gain attention for translational research in medicine and biotechnology. Their functional versatility and catalytic proficiency are largely due to the presence of metal ions in their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of several closely related enzymes with a view to highlighting the functional diversity bestowed upon them by their metal ion cofactors.
Collapse
Affiliation(s)
- Nataša Mitić
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Manfredi Miraula
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kieran S Hadler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elena Uribe
- Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
33
|
Daumann LJ, Schenk G, Ollis DL, Gahan LR. Spectroscopic and mechanistic studies of dinuclear metallohydrolases and their biomimetic complexes. Dalton Trans 2013; 43:910-28. [PMID: 24135968 DOI: 10.1039/c3dt52287c] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enhanced understanding of the metal ion binding and active site structural features of phosphoesterases such as the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ), and the organophosphate degrading agent from Agrobacterium radiobacter (OpdA) have important consequences for potential applications. Coupled with investigations of the metalloenzymes, programs of study to synthesise and characterise model complexes based on these metalloenzymes can add to our understanding of structure and function of the enzymes themselves. This review summarises some of our work and illustrates the significance and contributions of model studies to knowledge in the area.
Collapse
Affiliation(s)
- Lena J Daumann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|