1
|
Pouyanfar N, Anvari Z, Davarikia K, Aftabi P, Tajik N, Shoara Y, Ahmadi M, Ayyoubzadeh SM, Shahbazi MA, Ghorbani-Bidkorpeh F. Machine learning-assisted rheumatoid arthritis formulations: A review on smart pharmaceutical design. MATERIALS TODAY COMMUNICATIONS 2024; 41:110208. [DOI: 10.1016/j.mtcomm.2024.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K, Jaswal VS, Mittal S, Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 13:321-348. [DOI: 10.1007/s40097-022-00504-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 07/28/2024]
|
3
|
Danscher G, Rasmussen S. nanoGold and µGold inhibit autoimmune inflammation: a review. Histochem Cell Biol 2023; 159:225-232. [PMID: 36864314 PMCID: PMC10006034 DOI: 10.1007/s00418-023-02182-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
The newest data on metallic gold have placed the noble metal central in the fight for the safe treatment of autoimmune inflammation. There are two different ways to use gold for the treatment of inflammation: gold microparticles > 20 µm and gold nanoparticles. The injection of gold microparticles (µGold) is a purely local therapy. µGold particles stay put where injected, and gold ions released from them are relatively few and taken up by cells within a sphere of only a few millimeters in diameter from their origin particles. The macrophage-induced release of gold ions may continue for years. Injection of gold nanoparticles (nanoGold), on the other hand, is spread throughout the whole body, and the bio-released gold ions, therefore, affect multitudes of cells all over the body, as when using gold-containing drugs such as Myocrisin. Since macrophages and other phagocytotic cells take up and transport nanoGold and remove it after a short period, repeated treatment is necessary. This review describes the details of the cellular mechanisms that lead to the bio-release of gold ions in µGold and nanoGold.
Collapse
Affiliation(s)
- Gorm Danscher
- Department of Biomedicine, Århus University, Århus, Denmark
| | - Sten Rasmussen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
4
|
Chang YJ, Sung JH, Lee CS, Lee JH, Park HH. Comparison of the structure and activity of thioredoxin 2 and thioredoxin 1 from Acinetobacter baumannii. IUCRJ 2023; 10:147-155. [PMID: 36752373 PMCID: PMC9980383 DOI: 10.1107/s2052252523000404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Thioredoxin (Trx) is essential in a redox-control system, with many bacteria containing two Trxs: Trx1 and Trx2. Due to a Trx system's critical function, Trxs are targets for novel antibiotics. Here, a 1.20 Å high-resolution structure of Trx2 from Acinetobacter baumannii (abTrx2), an antibiotic resistant pathogenic superbug, is elucidated. By comparing Trx1 and Trx2, it is revealed that the two Trxs possess similar activity, although Trx2 contains an additional N-terminal zinc-finger domain and exhibits more flexible properties in solution. Finally, it is shown that the Trx2 zinc-finger domain might be rotatable and that proper zinc coordination at the zinc-finger domain is critical to abTrx2 activity. This study enhances understanding of the Trx system and will facilitate the design of novel antibiotics.
Collapse
Affiliation(s)
- Ye Ji Chang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Hye Sung
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Selenol (-SeH) as a target for mercury and gold in biological systems: Contributions of mass spectrometry and atomic spectroscopy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Nasra S, Bhatia D, Kumar A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. NANOSCALE ADVANCES 2022; 4:3479-3494. [PMID: 36134349 PMCID: PMC9400644 DOI: 10.1039/d2na00229a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/19/2022] [Indexed: 05/28/2023]
Abstract
Nanotechnology has increasingly emerged as a promising tool for exploring new approaches, from treating complex conditions to early detection of the onset of multiple disease states. Tailored designer nanoparticles can now more comprehensively interact with their cellular targets and various pathogens due to a similar size range and tunable surface properties. The basic goal of drug delivery is to employ pharmaceuticals only where they are needed, with as few adverse effects and off-target consequences as possible. Rheumatoid arthritis (RA) is a chronic inflammatory illness that leads to progressive loss of bone and cartilage, resulting in acute impairment, decreased life expectancy, and increased death rates. Recent advancements in treatment have significantly slowed the progression of the disease and improved the lives of many RA sufferers. Some patients, on the other hand, attain or maintain illness remission without needing to continue immunosuppressive therapy. Furthermore, a large percentage of patients do not respond to current treatments or acquire tolerance to them. As a result, novel medication options for RA therapy are still needed. Nanocarriers, unlike standard medications, are fabricated to transport drugs directly to the location of joint inflammation, evading systemic and negative effects. As a result, researchers are reconsidering medicines that were previously thought to be too hazardous for systemic delivery. This article gives an overview of contemporary nanotechnology-based tactics for treating rheumatoid arthritis, as well as how the nanotherapeutic regimen could be enhanced in the future.
Collapse
Affiliation(s)
- Simran Nasra
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus Navrangpura Ahmedabad Gujarat India +91796191127
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, IIT Gandhinagar Palaj 382355 Gujarat India
| | - Ashutosh Kumar
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus Navrangpura Ahmedabad Gujarat India +91796191127
| |
Collapse
|
7
|
Ruvalcaba-Ontiveros RI, González-Chávez SA, Carrasco-Hernández AR, López-Loeza SM, Castellanos-Ponce I, Vázquez-Olvera G, Neri-Flores MÁ, Espino-Solís GP, Duarte-Moller JA, Pacheco-Tena C, Esparza-Ponce HE. Treatment with silica-gold nanostructures decreases inflammation-related gene expression in collagen-induced arthritis. Biomater Sci 2022; 10:5216-5229. [PMID: 35903989 DOI: 10.1039/d2bm00498d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold salts have been used to treat rheumatoid arthritis (RA) since the 1940s, and, with advances in nanotechnology, the use of nanogold provides multiple options for anti-inflammatory therapies. This paper presents the synthesis and characterization of silica-gold nanostructures (SGNs) and their therapeutic effect in collagen-induced arthritis (CIA) in DBA/1 mice. At the end of the treatment, the synovial membranes, kidneys, livers, and spleens were dissected and analyzed by inductively coupled plasma mass spectroscopy (ICP) showing less than 0.0001 and 0.1% of the administered doses of Au and Si, respectively. Remains of the SGNs were visually identified in the synovial membrane by scanning electron microscopy (SEM), and the bone density of the hind paws was observed by computerized tomography (CT) indicating a reduction of porosity in the CIA-experimental group. The DNA microarray analysis carried out with RNA obtained from the hind paws showed 2628 differentially expressed genes (DEGs) by SGNs. The bioinformatic analysis showed that DEGs were significantly associated with several inflammatory signalling pathways including chemokines, cytokine-cytokine receptor interaction, PI3K-Akt, TNF, IL-17, NFκβ, MAPK, and RA. SGNs downregulated relevant inflammatory genes in the arthritic joints, including Tnf, Ifng, Il6, and Cxcl5; immunohistochemistry (IHC) confirmed the reduction of TNFα, IL-6, NFκβ, and VEGF in the joints due to the effect of SGNs. TNFα and IL-6 were also reduced in the serum of DBA/1 mice treated with SGNs.
Collapse
Affiliation(s)
- Rosa Isela Ruvalcaba-Ontiveros
- Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Chihuahua, Chihuahua, 31136, Mexico.
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua, Chihuahua, 31125, Mexico.
| | - Anel Rocío Carrasco-Hernández
- Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Chihuahua, Chihuahua, 31136, Mexico.
| | - Salma Marcela López-Loeza
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua, Chihuahua, 31125, Mexico.
| | - Ivonne Castellanos-Ponce
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua, Chihuahua, 31125, Mexico.
| | - Gregorio Vázquez-Olvera
- Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Chihuahua, Chihuahua, 31136, Mexico.
| | - Miguel Ángel Neri-Flores
- Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Chihuahua, Chihuahua, 31136, Mexico.
| | - Gerardo Pavel Espino-Solís
- Translational Research Laboratory and National Laboratory of Flow Cytometry, Autonomous University of Chihuahua, Circuito Universitario Campus II, Chihuahua, Chihuahua, 31109, Mexico.
| | - José Alberto Duarte-Moller
- División de Ciencias e Ingeniería, Universidad de Sonora, Unidad Regional Sur, Lázaro Cárdenas del Río 100. Colonia Francisco Villa, Navojoa Son. 85880, Mexico.
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, Chihuahua, Chihuahua, 31125, Mexico.
| | - Hilda Esperanza Esparza-Ponce
- Centro de Investigación en Materiales Avanzados, S.C., Av. Miguel de Cervantes Saavedra 120, Chihuahua, Chihuahua, 31136, Mexico.
| |
Collapse
|
8
|
Gupta A, Singh S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: Avenues and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201462. [PMID: 35758545 DOI: 10.1002/smll.202201462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Osseous tissue repair has advanced due to the introduction of tissue engineering. The key elements required while engineering new tissues involve scaffolds, cells, and bioactive cues. The macrostructural to the nanostructural framework of such complex tissue has engrossed the intervention of nanotechnology for efficient neo-bone formation. Gold nanoparticles (GNPs) have recently gained interest in bone tissue regeneration due to their multimodal functionality. They are proven to modulate the properties of scaffolds and the osteogenic cells significantly. GNPs also influence different metabolic functions within the body, which directly or indirectly govern the mechanism of bone regeneration. Therefore, this review highlights nanoparticle-mediated osteogenic development, focusing on different aspects of GNPs ranging from scaffold modulation to cellular stimulation. The toxic aspects of gold nanoparticles studied so far are critically explicated, while further insight into the advancements and prospects of these nanoparticles in bone regeneration is also highlighted.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
9
|
A Clinical Study to Evaluate the Safety and Efficacy of Oral Administration of Microscopic Dose Gold Nanoparticle (AuNP) on Knee Joint Health and Function in Arthritis Patients. J Funct Morphol Kinesiol 2022; 7:jfmk7030052. [PMID: 35893326 PMCID: PMC9326595 DOI: 10.3390/jfmk7030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
The purpose of this clinical study was to determine whether gold nanoparticle (AuNP) supplementation at a dosage of 0.34 mg elemental gold per day can improve knee joint health, function, and quality of life for arthritis patients. A total of 51 participants (24 male and 27 female, age 62.1 ± 13.1) were followed for 20 weeks through a three-phase longitudinal study. Both subjective and objective parameters were used to measure changes in joint health and function, as well as quality of life. The study found patients' Knee injury and Osteoarthritis Outcome Score (KOOS) improved with statistical significance. It was reported that 71.42% of the cohort experienced improvements in their perceived knee pain and 61.22% with improvements in knee stiffness. Majority of objective measurements such as pain with range of motion and specific exercises requiring proper knee health and function did not show statistically significant improvement but did show a positive improving trend in support of AuNP supplement. Study cohort showed statistically significant improvements in two specific exercises: sit-to-stand and single-leg squat. By the end of the study, 70% of the study cohort indicated that they would continue to take the supplement even after the study concluded. Though the study has limitations and is not definitely conclusive, it was the first clinical study to show that oral micro-dosage of AuNP as low as 0.34 mg daily is safe and effective for both rheumatoid arthritis and osteoarthritis patients. This study opened way for the use of AuNP in both clinical and daily settings to improve joint health and function for both average and athletic users.
Collapse
|
10
|
Chang YJ, Park HH. High-resolution crystal structure of Acinetobacter baumannii thioredoxin 1. Biochem Biophys Res Commun 2022; 608:1-7. [DOI: 10.1016/j.bbrc.2022.03.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
|
11
|
Cheng XF, Wang N, Jiang Z, Chen Z, Niu Y, Tong L, Yu T, Tang B. Quantitative Chemoproteomic Profiling of Targets of Au(I) Complexes by Competitive Activity-Based Protein Profiling. Bioconjug Chem 2022; 33:1131-1137. [PMID: 35576584 DOI: 10.1021/acs.bioconjchem.2c00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to the encouraging pharmacological action and acceptable toxicity profile, Au(I) complexes have attracted growing interest in the application of disease treatment. In order to investigate their potential target proteins and related bioinformation, herein, we screened four Au(I) complexes and explored the binding proteins utilizing a competitive activity-based protein profiling (ABPP) strategy, including identification experiments and reactivity classification experiments, which offers a simple and robust method to identify the target proteins of Au(I) complexes. We quantified the target proteins of the four Au(I) complexes and found that most of proteins were associated with cancer. In addition, the newly Au(I)-binding proteins and biological gold-protein interaction pathways were exhibited. Furthermore, we estimated the correlation between target proteins of Au(I) complexes and various cancers, which will promote the development of the gold anticancer drugs.
Collapse
Affiliation(s)
- Xiu-Fen Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Nan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhongyao Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yaxin Niu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Ting Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
12
|
Rousselle B, Massot A, Privat M, Dondaine L, Trommenschlager A, Bouyer F, Bayardon J, Ghiringhelli F, Bettaieb A, Goze C, Paul C, Malacea-Kabbara R, Bodio E. Conception and evaluation of fluorescent phosphine-gold complexes: from synthesis to in vivo investigations. ChemMedChem 2022; 17:e202100773. [PMID: 35254001 DOI: 10.1002/cmdc.202100773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Indexed: 11/11/2022]
Abstract
A phosphine gold(I) and phosphine-phosphonium gold(I) complexes bearing a fluorescent coumarin moiety were synthesized and characterized. Both complexes displayed interesting photophysical properties: good molar absorption coefficient, good quantum yield of fluorescence, and ability to be tracked in vitro thanks to two-photon imaging. Their in vitro and in vivo biological properties were evaluated onto cancer cell lines both human and murine and into CT26 tumor-bearing BALB/c mice. They displayed moderate to strong antiproliferative properties and the phosphine-phosphonium gold(I) complex induced significant in vivo anti-cancer effect.
Collapse
Affiliation(s)
- Benjamin Rousselle
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - Aurélie Massot
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | - Malorie Privat
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB and LIIC, FRANCE
| | - Lucile Dondaine
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB and LIIC, FRANCE
| | | | - Florence Bouyer
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, INSERM 1231, FRANCE
| | - Jérôme Bayardon
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - François Ghiringhelli
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, INSERM UMR 1231, FRANCE
| | - Ali Bettaieb
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | - Christine Goze
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - Catherine Paul
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | | | - Ewen Bodio
- Burgundy University, Institut de Chimie Moleculaire de l'Universite de Bourgogne - UMR CNRS 6302, 9 avenue Alain Savary, BP 47870, 21078, Dijon, FRANCE
| |
Collapse
|
13
|
Kaewthong A, Henderson W. An investigation of gold(I) and silver(I) thiosulfate complexes using ESI mass spectrometry; facile generation of gas-phase auride (Au-) and argentide (Ag-) ions. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Li X, Wang H, Zou X, Su H, Li C. Methotrexate-loaded folic acid of solid-phase synthesis conjugated gold nanoparticles targeted treatment for rheumatoid arthritis. Eur J Pharm Sci 2021; 170:106101. [PMID: 34936935 DOI: 10.1016/j.ejps.2021.106101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Methotrexate (MTX) is a first-line drug for rheumatoid arthritis (RA). Targeting of MTX to inflamed joints is essential to the prevention of potential toxicity and improving therapeutic effects. Gold nanoparticles (GNPs) are characterized by controllable particle sizes and good biocompatibilities, therefore, they are promising drug delivery systems. We aimed at developing a GNPs drug delivery system incorporating MTX and folic acid (FA) with strong efficacies against RA. METHODS MTX-Cys-FA was synthesized through solid-phase organic synthesis. Then, it was coupled with sulfhydryl groups in GNPs, thereby successfully preparing a GNPs/MTX-Cys-FA nanoconjugate with targeting properties. Physical and chemical techniques were used to characterize it. Moreover, we conducted its stability, release, pharmacokinetics, biodistribution and cell cytotoxicity, cell uptake, cell migration, as well as its therapeutic effect on CIA rats. The histopathology was conducted to investigate anti-RA effects of GNPs/MTX-Cys-FA nanoconjugates. RESULTS The GNPs/MTX-Cys-FA nanoconjugate exhibited a spherical appearance, had a particle size of 103.06 nm, a zeta potential of -33.68 mV, drug loading capacity of 11.04 %, and an encapsulation efficiency of 73.61%. Cytotoxicity experiments revealed that GNPs had good biocompatibilities while GNPs/MTX-Cys-FA exhibited excellent drug-delivery abilities. Cell uptake and migration experiment showed that nanoconjugates containing FA by LPS activated mouse mononuclear macrophages (RAW264.7) was significantly increased, and they exerted significant inhibitory effects on human fibroblast-like synoviocytes (HFLS) of RA (p<0.01). In addition, the nanoconjugate prolonged blood circulation time of MTX in collagen-induced arthritis (CIA) rats (p<0.01), enhanced MTX accumulation in inflamed joints (p<0.01), enhanced their therapeutic effects (p<0.01), and reduced toxicity to major organs (p<0.01). CONCLUSION GNPs/MTX-Cys-FA nanoconjugates provide effective approaches for RA targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xuena Li
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Huanhui Wang
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Xiaotong Zou
- College of Pharmacy, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China
| | - Hui Su
- Department of Pharmacy, The Sixth Affiliated Hospital of Harbin Medical University, No. 142 road, Zhongyuan Avenue, Harbin 150028, China
| | - Cheng Li
- College of Medicine, Yanbian University, No. 977, Gongyuan Road, Yanji 133000, China; Department of Pharmacy, Affiliated Hospital of Yanbian University, No. 1327, Juzi Street, Yanji 133000, China.
| |
Collapse
|
15
|
Gold Nanoparticles: Multifaceted Roles in the Management of Autoimmune Disorders. Biomolecules 2021; 11:biom11091289. [PMID: 34572503 PMCID: PMC8470500 DOI: 10.3390/biom11091289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Gold nanoparticles (GNPs) have been recently applied for various diagnostic and therapeutic purposes. The unique properties of these nanoparticles (NPs), such as relative ease of synthesis in various sizes, shapes and charges, stability, high drug-loading capacity and relative availability for modification accompanied by non-cytotoxicity and biocompatibility, make them an ideal field of research in bio-nanotechnology. Moreover, their potential to alleviate various inflammatory factors, nitrite species, and reactive oxygen production and the capacity to deliver therapeutic agents has attracted attention for further studies in inflammatory and autoimmune disorders. Furthermore, the characteristics of GNPs and surface modification can modulate their toxicity, biodistribution, biocompatibility, and effects. This review discusses in vitro and in vivo effects of GNPs and their functionalized forms in managing various autoimmune disorders (Ads) such as rheumatoid arthritis, type 1 diabetes, and multiple sclerosis.
Collapse
|
16
|
Li S, Su J, Cai W, Liu JX. Nanomaterials Manipulate Macrophages for Rheumatoid Arthritis Treatment. Front Pharmacol 2021; 12:699245. [PMID: 34335264 PMCID: PMC8316763 DOI: 10.3389/fphar.2021.699245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, and systemic inflammatory autoimmune disease, characterized by synovial inflammation, synovial lining hyperplasia and inflammatory cell infiltration, autoantibody production, and cartilage/bone destruction. Macrophages are crucial effector cells in the pathological process of RA, which can interact with T, B, and fibroblast-like synovial cells to produce large amounts of cytokines, chemokines, digestive enzymes, prostaglandins, and reactive oxygen species to accelerate bone destruction. Therefore, the use of nanomaterials to target macrophages has far-reaching therapeutic implications for RA. A number of limitations exist in the current clinical therapy for patients with RA, including severe side effects and poor selectivity, as well as the need for frequent administration of therapeutic agents and high doses of medication. These challenges have encouraged the development of targeting drug delivery systems and their application in the treatment of RA. Recently, obvious therapeutic effects on RA were observed following the use of various types of nanomaterials to manipulate macrophages through intravenous injection (active or passive targeting), oral administration, percutaneous absorption, intraperitoneal injection, and intra-articular injection, which offers several advantages, such as high-precision targeting of the macrophages and synovial tissue of the joint. In this review, the mechanisms involved in the manipulation of macrophages by nanomaterials are analyzed, and the prospect of clinical application is also discussed. The objective of this article was to provide a reference for the ongoing research concerning the treatment of RA based on the targeting of macrophages.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China.,College Pharmacy, Jiamusi University, Jiamusi, China
| | - Jin Su
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Wei Cai
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
17
|
Chun HL, Chang YJ, Park HH. Crystal structure of the cofactor-free form of thioredoxin reductase from Acinetobacter baumannii. FEBS Lett 2021; 595:1977-1986. [PMID: 34118067 DOI: 10.1002/1873-3468.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022]
Abstract
Thioredoxin reductase (TrxR) is a central component in the thioredoxin system by involving in catalyzing the reduction of thioredoxin, which is critical for organism survival. Because this system is essential, it is a promising target for novel antimicrobial agents. Herein, we solved the 1.9 Å high-resolution structure of TrxR from Acinetobacter baumannii Thioredoxin reductase (AbTrxR), which is a Gram-negative, pathogenic bacterium and a drug-resistant superbug. AbTrxR was cofactor-free and formed a dimer in solution. AbTrxR contained a longer dimerization loop2 and a shorter β7 -β8 connecting loop than other TrxRs. AbTrxR cofactor-free form exhibited a flavin-oxidizing (FO) conformation, whose NADPH domain was located close to the dimeric interface. This structural information might be helpful for development of new antibiotic agents targeting superbugs.
Collapse
Affiliation(s)
- Hye Lin Chun
- College of Pharmacy, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Ye Ji Chang
- College of Pharmacy, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea
| |
Collapse
|
18
|
Lescure R, Privat M, Pliquett J, Massot A, Baffroy O, Busser B, Bellaye PS, Collin B, Denat F, Bettaïeb A, Sancey L, Paul C, Goze C, Bodio E. Near-infrared emitting fluorescent homobimetallic gold(I) complexes displaying promising in vitro and in vivo therapeutic properties. Eur J Med Chem 2021; 220:113483. [PMID: 33915372 DOI: 10.1016/j.ejmech.2021.113483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
Three near-infrared (NIR-I) optical theranostic systems were synthesized, characterized and studied in vitro and in vivo. These original homo-bimetallic gold(I)-based aza-BODIPY complexes proved to be trackable through near-infrared optical imaging in cells and in mice. They display anti-proliferative properties in micromolar range against human and murine cancer cell lines (4T1, MDA-MB-231, CT26, and SW480). Moreover, the injection of the most promising theranostic agent in CT26 tumor-bearing BALB/c mice induced a significant anti-cancer activity.
Collapse
Affiliation(s)
- Robin Lescure
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Malorie Privat
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France; Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269), EPHE, PSL Research, University, F-75000, Paris, France, Université de Bourgogne Franche Comté, F-21000, Dijon, France
| | - Jacques Pliquett
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France; Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269), EPHE, PSL Research, University, F-75000, Paris, France, Université de Bourgogne Franche Comté, F-21000, Dijon, France
| | - Aurélie Massot
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269), EPHE, PSL Research, University, F-75000, Paris, France, Université de Bourgogne Franche Comté, F-21000, Dijon, France
| | - Océane Baffroy
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Benoit Busser
- Institute for Advanced Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS UMR5309, F-38700, La Tronche, France; Grenoble Alpes University Hospital, F-38042, Grenoble, France
| | - Pierre-Simon Bellaye
- Centre Georges François Leclerc, Service de médecine nucléaire, plateforme d'imagerie et de radiothérapie préclinique, 1 rue Professeur Marion, BP77980, 21079, Dijon Cedex, France
| | - Bertrand Collin
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France; Centre Georges François Leclerc, Service de médecine nucléaire, plateforme d'imagerie et de radiothérapie préclinique, 1 rue Professeur Marion, BP77980, 21079, Dijon Cedex, France
| | - Franck Denat
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Ali Bettaïeb
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269), EPHE, PSL Research, University, F-75000, Paris, France, Université de Bourgogne Franche Comté, F-21000, Dijon, France
| | - Lucie Sancey
- Institute for Advanced Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS UMR5309, F-38700, La Tronche, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269), EPHE, PSL Research, University, F-75000, Paris, France, Université de Bourgogne Franche Comté, F-21000, Dijon, France.
| | - Christine Goze
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Ewen Bodio
- ICMUB UMR6302, CNRS, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
19
|
In-vitro and in-vivo monitoring of gold(III) ions from intermediate metabolite of sodium aurothiomalate through water-soluble ruthenium (II) complex-based luminescent probe. Bioorg Chem 2021; 110:104749. [PMID: 33652341 DOI: 10.1016/j.bioorg.2021.104749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/04/2023]
Abstract
Real-time monitoring of drug metabolism in vivo is of great significance to drug development and toxicology research. The purpose of this study is to establish a rapid and visual in vivo detection method for the detection of an intermediate metabolite of the gold (I) drug. Gold (I) drugs such as sodium aurothiomalate (AuTM) have anti-inflammatory effects in the treatment of rheumatoid arthritis. Gold(III) ions (Au3+) are the intermediate metabolite of gold medicine, and they are also the leading factor of side effects in the treatment of patients. However, the rapid reduction of Au3+ to Au+ by thiol proteins in organisms limits the in-depth study of metabolism of gold drugs in vivo. Here we describe a luminescence Au3+ probe (RA) based on ruthenium (II) complex for detecting Au3+ in vitro and in vivo. RA with large Stokes shift, good water solubility and biocompatibility was successfully applied to detect Au3+ in living cells and vivo by luminescence imaging, and to trap the fluctuation of Au3+ level produced by gold (I) medicine. More importantly, the luminescent probe was used to the detection of the intermediate metabolites of gold (I) drugs for the first time. Overall, this work offers a new detection tool/method for a deeper study of gold (I) drugs metabolite.
Collapse
|
20
|
Katoozi D, Clayton AHA, Moss DJ, Chon JWM. Uptake quantification of gold nanoparticles inside of cancer cells using high order image correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:539-552. [PMID: 33659088 PMCID: PMC7899503 DOI: 10.1364/boe.417321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The application of gold nanoparticles (AuNPs) in cancer therapeutics and diagnostics has recently reached a clinical level. Functional use of the AuNP in theranostics first requires effective uptake into the cells, but accurate quantification of AuNPs cellular uptake in real-time is still a challenge due to the destructive nature of existing characterization methods. The optical imaging-based quantification method is highly desirable. Here, we propose the use of high-order image correlation spectroscopy (HICS) as an optical imaging-based nanoparticle quantification technique. Coupled with dark field microscopy (DFM), a non-destructive and easy quantification method could be achieved. We demonstrate HICS analysis on 80 nm AuNPs coated with cetyltrimethylammonium bromide (CTAB) uptake in HeLa cells to calculate the percentage of aggregate species (dimer) in the total uptake and their relative scattering quantum yield inside the cells, the details of which are not available with other quantification techniques. The total particle uptake kinetics measured were in a reasonable agreement with the literature.
Collapse
|
21
|
Escrig JI, Hahn HJ, Debnath A. Activity of Auranofin against Multiple Genotypes of Naegleria fowleri and Its Synergistic Effect with Amphotericin B In Vitro. ACS Chem Neurosci 2020; 11:2464-2471. [PMID: 32392039 DOI: 10.1021/acschemneuro.0c00165] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Primary amebic meningoencephalitis, caused by brain infection with a free-living ameba, Naegleria fowleri, leads to extensive inflammation of the brain and death within 3-7 days after symptoms begin. Treatment of primary amebic meningoencephalitis relies on amphotericin B in combination with other drugs, but use of amphotericin B is associated with severe adverse effects. Despite a fatality rate of over 97%, economic incentive to invest in development of antiamebic drugs by the pharmaceutical industry is lacking. Development of safe and rapidly acting drugs remains a critical unmet need to avert future deaths. Since FDA-approved anti-inflammatory and antiarthritic drug auranofin is a known inhibitor of selenoprotein synthesis and thioredoxin reductase and the genome of N. fowleri encodes genes for both selenocysteine biosynthesis and thioredoxin reductases, we tested the effect of auranofin against N. fowleri strains of different genotypes from the USA, Europe, and Australia. Auranofin was equipotent against all tested strains with an EC50 of 1-2 μM. Our growth inhibition study at different time points demonstrated that auranofin is fast-acting, and ∼90% growth inhibition was achieved within 16 h of drug exposure. A short exposure of N. fowleri to auranofin led to the accumulation of intracellular reactive oxygen species. This is consistent with auranofin's role in inhibiting antioxidant pathways. Further, combination of auranofin and amphotericin B led to 95% of growth inhibition with 2-9-fold dose reduction for amphotericin B and 3-20-fold dose reduction for auranofin. Auranofin has the potential to be repurposed for the treatment of primary amebic meningoencephalitis.
Collapse
Affiliation(s)
- Jose Ignacio Escrig
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0756, United States
| | - Hye Jee Hahn
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0756, United States
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0756, United States
| |
Collapse
|
22
|
Xue L, Wang D, Zhang X, Xu S, Zhang N. Targeted and triple therapy-based liposomes for enhanced treatment of rheumatoid arthritis. Int J Pharm 2020; 586:119642. [PMID: 32702452 DOI: 10.1016/j.ijpharm.2020.119642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that is currently incurable. Clinical practice has shown significant benefits of combined therapies for RA treatment. This study aims to develop and demonstrate an efficient triple therapy for RA in vitro and in vivo. Three anti-inflammatory agents, NF-κB decoy oligodeoxynucleotides (ODNs), gold nanorods (GNRs), and dexamethasone (DEX), were encapsulated into folate (FA) modified liposomes (FA-lip(DEX + GNRs/ODNs)). The FA-lip(DEX + GNRs/ODNs) showed favorable physicochemical properties and efficient intracellular uptake by inflamed macrophages. Combined with laser irradiation, FA-lip(DEX + GNRs/ODNs) greatly reduced the secretion of proinflammatory proteins and oxidative factors in vitro. In adjuvant-induced arthritis (AIA) mice, FA-lip(DEX + GNRs/ODNs) achieved prolonged and enhanced accumulation at inflamed paws. FA-lip(DEX + GNRs/ODNs) + laser treatment reduced clinical arthritis scores and serum cytokine levels and protected cartilage. In summary, the triple therapy demonstrated significantly enhanced anti-inflammatory efficacy and is a promising strategy to treat RA via combined anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Lingping Xue
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Dongli Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Xiaoyu Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Shiqi Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, HeNan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, HeNan, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
23
|
Sulaiman AA, Alhoshani A, As Sobeai HM, Alghanem M, Abogosh AK, Ahmad S, Altaf M, Monim-ul-Mehboob M, Stoeckli-Evans H, Isab AA. Anticancer activity and X-ray structure determination of gold(I) complexes of 2-(diphenylphosphanyl)-1-aminocyclohexane. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Famta P, Famta M, Kaur J, Khursheed R, Kaur A, Khatik GL, Pawde DM, Rahman SNR, Shunmugaperumal T. Protecting the Normal Physiological Functions of Articular and Periarticular Structures by Aurum Nanoparticle-Based Formulations: an Up-to-Date Insight. AAPS PharmSciTech 2020; 21:95. [PMID: 32096106 DOI: 10.1208/s12249-020-1636-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022] Open
Abstract
Taking the articular and periarticular structures as a litmus test for gold-based nanoformulations, the potential of gold nanoparticles in protecting the normal physiological functions of these structures particularly in geriatric patients is one of the research areas of current interest. Aside from its use to make the traditional and fashionable ornaments for human usage, the gold metal is also known for its rich therapeutic activity. This is especially true when the gold is converted from its bulk form into nanosized form before its administering into the human body. Since it is the age of nanocomponents in medical and pharmaceutical research areas, this review is therefore mainly focused on nanoparticulate systems consisting of aurum. Accumulating research reports nevertheless show concrete evidence indicating the potential of gold-based nanoformulations to manage joint syndromes such as osteoarthritis and rheumatoid arthritis. This review embarks from preparation techniques and characterization methods to therapeutical application potentials of gold-based nanoformulations.
Collapse
|
25
|
Kumari Y, Kaur G, Kumar R, Singh SK, Gulati M, Khursheed R, Clarisse A, Gowthamarajan K, Karri VVSNR, Mahalingam R, Ghosh D, Awasthi A, Kumar R, Yadav AK, Kapoor B, Singh PK, Dua K, Porwal O. Gold nanoparticles: New routes across old boundaries. Adv Colloid Interface Sci 2019; 274:102037. [PMID: 31655366 DOI: 10.1016/j.cis.2019.102037] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023]
Abstract
In recent years, gold nanoparticles have emerged as unique non-invasive drug carriers for targeting drugs to their site of action. Their site specificity has helped in increasing drugs' efficacy at lower dose as well as reduction in their side effects. Moreover, their excellent optical properties and small size offer their utilization as diagnostic tools to diagnose tumors as well as other diseases. This review focuses on various approaches that have been used in last several years for preparation of gold nanoparticles, their characterization techniques and theranostic applications. Their toxicity related aspects are also highlighted. Gold nanoparticles are useful as theranostic agents, owing to their small size, biocompatible nature, size dependent physical, chemical and optical properties etc. However, the challenges associated with these nanoparticles such as scale up, cost, low drug payload, toxicity and stability have been the major impediments in their commercialization. The review looks into all these critical issues and identifies the possibilities to overcome these challenges for successful positioning of metallic nanoparticles in market.
Collapse
Affiliation(s)
- Yogita Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gurmandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ayinkamiye Clarisse
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - K Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed to be University), Ootacamund, Tamilnadu, India
| | - V V S Narayana Reddy Karri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (Deemed to be University), Ootacamund, Tamilnadu, India
| | | | - Dipanjoy Ghosh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Kumar Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Ishik University, Erbil, Kurdistan, Iraq
| |
Collapse
|
26
|
Structure, Mechanism, and Inhibition of Aspergillus fumigatus Thioredoxin Reductase. Antimicrob Agents Chemother 2019; 63:AAC.02281-18. [PMID: 30642940 DOI: 10.1128/aac.02281-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/29/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus infections are associated with high mortality rates and high treatment costs. Limited available antifungals and increasing antifungal resistance highlight an urgent need for new antifungals. Thioredoxin reductase (TrxR) is essential for maintaining redox homeostasis and presents as a promising target for novel antifungals. We show that ebselen [2-phenyl-1,2-benzoselenazol-3(2H)-one] is an inhibitor of A. fumigatus TrxR (Ki = 0.22 μM) and inhibits growth of Aspergillus spp., with in vitro MIC values of 16 to 64 µg/ml. Mass spectrometry analysis demonstrates that ebselen interacts covalently with a catalytic cysteine of TrxR, Cys148. We also present the X-ray crystal structure of A. fumigatus TrxR and use in silico modeling of the enzyme-inhibitor complex to outline key molecular interactions. This provides a scaffold for future design of potent and selective antifungal drugs that target TrxR, improving the potency of ebselen toward inhbition of A. fumigatus growth.
Collapse
|
27
|
A Precautionary Approach to Guide the Use of Transition Metal-Based Nanotechnology to Prevent Orthopedic Infections. MATERIALS 2019; 12:ma12020314. [PMID: 30669523 PMCID: PMC6356474 DOI: 10.3390/ma12020314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022]
Abstract
The increase of multidrug-resistant bacteria remains a global concern. Among the proposed strategies, the use of nanoparticles (NPs) alone or associated with orthopedic implants represents a promising solution. NPs are well-known for their antimicrobial effects, induced by their size, shape, charge, concentration and reactive oxygen species (ROS) generation. However, this non-specific cytotoxic potential is a powerful weapon effective against almost all microorganisms, but also against eukaryotic cells, raising concerns related to their safe use. Among the analyzed transition metals, silver is the most investigated element due to its antimicrobial properties per se or as NPs; however, its toxicity raises questions about its biosafety. Even though it has milder antimicrobial and cytotoxic activity, TiO2 needs to be exposed to UV light to be activated, thus limiting its use conjugated to orthopedic devices. By contrast, gold has a good balance between antimicrobial activity as an NP and cytocompatibility because of its inability to generate ROS. Nevertheless, although the toxicity and persistence of NPs within filter organs are not well verified, nowadays, several basic research on NP development and potential uses as antimicrobial weapons is reported, overemphasizing NPs potentialities, but without any existing potential of translation in clinics. This analysis cautions readers with respect to regulation in advancing the development and use of NPs. Hopefully, future works in vivo and clinical trials will support and regulate the use of nano-coatings to guarantee safer use of this promising approach against antibiotic-resistant microorganisms.
Collapse
|
28
|
New bio-sensitive and biologically active single crystal of pyrimidine scaffold ligand and its gold and platinum complexes: DFT, antimicrobial, antioxidant, DNA interaction, molecular docking with DNA/BSA and anticancer studies. Bioorg Chem 2018; 81:144-156. [DOI: 10.1016/j.bioorg.2018.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 01/06/2023]
|
29
|
Zhu S, Jiang X, Boudreau MD, Feng G, Miao Y, Dong S, Wu H, Zeng M, Yin JJ. Orally administered gold nanoparticles protect against colitis by attenuating Toll-like receptor 4- and reactive oxygen/nitrogen species-mediated inflammatory responses but could induce gut dysbiosis in mice. J Nanobiotechnology 2018; 16:86. [PMID: 30384844 PMCID: PMC6211593 DOI: 10.1186/s12951-018-0415-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
Background Gold nanoparticles (AuNPs) are attracting interest as potential therapeutic agents to treat inflammatory diseases, but their anti-inflammatory mechanism of action is not clear yet. In addition, the effect of orally administered AuNPs on gut microbiota has been overlooked so far. Here, we evaluated the therapeutic and gut microbiota-modulating effects, as well as the anti-inflammatory paradigm, of AuNPs with three different coatings and five difference sizes in experimental mouse colitis and RAW264.7 macrophages. Results Citrate- and polyvinylpyrrolidone (PVP)-stabilized 5-nm AuNPs (Au-5 nm/Citrate and Au-5 nm/PVP) and tannic acid (TA)-stabilized 5-, 10-, 15-, 30- and 60-nm AuNPs were intragastrically administered to C57BL/6 mice daily for 8 days during and after 5-day dextran sodium sulfate exposure. Clinical signs and colon histopathology revealed more marked anti-colitis effects by oral administration of Au-5 nm/Citrate and Au-5 nm/PVP, when compared to TA-stabilized AuNPs. Based on colonic myeloperoxidase activity, colonic and peripheral levels of interleukin-6 and tumor necrosis factor-α, and peripheral counts of leukocyte and lymphocyte, Au-5 nm/Citrate and Au-5 nm/PVP attenuated colonic and systemic inflammation more effectively than TA-stabilized AuNPs. High-throughput sequencing of fecal 16S rRNA indicated that AuNPs could induce gut dysbiosis in mice by decreasing the α-diversity, the Firmicutes/Bacteroidetes ratio, certain short-chain fatty acid-producing bacteria and Lactobacillus. Based on in vitro studies using RAW264.7 cells and electron spin resonance oximetry, AuNPs inhibited lipopolysaccharide (LPS)-triggered inducible nitric oxide (NO) synthase expression and NO production via reduction of Toll-like receptor 4 (TLR4), and attenuated LPS-induced nuclear factor kappa beta activation and proinflammatory cytokine production via both TLR4 reduction and catalytic detoxification of peroxynitrite and hydrogen peroxide. Conclusions AuNPs have promising potential as anti-inflammatory agents; however, their therapeutic applications via the oral route may have a negative impact on the gut microbiota.![]() Electronic supplementary material The online version of this article (10.1186/s12951-018-0415-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suqin Zhu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Xiumei Jiang
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Mary D Boudreau
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, 72079, AR, USA
| | - Guangxin Feng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Yu Miao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Shiyuan Dong
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China.
| | - Jun-Jie Yin
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| |
Collapse
|
30
|
Hossen MN, Murphy B, García-Hevia L, Bhattacharya R, Mukherjee P. Probing Cellular Processes Using Engineered Nanoparticles. Bioconjug Chem 2018; 29:1793-1808. [PMID: 29742344 PMCID: PMC6893851 DOI: 10.1021/acs.bioconjchem.8b00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticles, the building blocks of nanotechnology, have been widely utilized in various biomedical applications, such as detection, diagnosis, imaging, and therapy. However, another emerging, albeit under-represented, area is the employment of nanoparticles as tools to understand cellular processes (e.g., oxidative stress-induced signaling cascades). Such investigations have enormous potential to characterize a disease from a different perspective and unravel some new features that otherwise would have remained a mystery. In this review, we summarize the intrinsic biological properties of unmodified as well surface modified nanoparticles and discuss how such properties could be utilized to interrogate biological processes and provide a perspective for future evolution of this field.
Collapse
Affiliation(s)
- Md Nazir Hossen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Brennah Murphy
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Lorena García-Hevia
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, and University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
31
|
Mahmoud NN, Harfouche M, Alkilany AM, Al-Bakri AG, El-Qirem RA, Shraim SA, Khalil EA. Synchrotron-based X-ray fluorescence study of gold nanorods and skin elements distribution into excised human skin layers. Colloids Surf B Biointerfaces 2018; 165:118-126. [DOI: 10.1016/j.colsurfb.2018.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/21/2018] [Accepted: 02/11/2018] [Indexed: 02/02/2023]
|
32
|
Feng X, Chen Y. Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. J Drug Target 2018; 26:845-857. [DOI: 10.1080/1061186x.2018.1433680] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
33
|
Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. Pharmacol Ther 2017; 178:1-17. [PMID: 28322970 DOI: 10.1016/j.pharmthera.2017.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considering both cancer's serious impact on public health and the side effects of cancer treatments, strategies towards targeted cancer therapy have lately gained considerable interest. Employment of gold nanoparticles (GNPs), in combination with ionizing and non-ionizing radiations, has been shown to improve the effect of radiation treatment significantly. GNPs, as high-Z particles, possess the ability to absorb ionizing radiation and enhance the deposited dose within the targeted tumors. Furthermore, they can convert non-ionizing radiation into heat, due to plasmon resonance, leading to hyperthermic damage to cancer cells. These observations, also supported by experimental evidence both in vitro and in vivo systems, reveal the capacity of GNPs to act as radiosensitizers for different types of radiation. In addition, they can be chemically modified to selectively target tumors, which renders them suitable for future cancer treatment therapies. Herein, a current review of the latest data on the physical properties of GNPs and their effects on GNP circulation time, biodistribution and clearance, as well as their interactions with plasma proteins and the immune system, is presented. Emphasis is also given with an in depth discussion on the underlying physical and biological mechanisms of radiosensitization. Furthermore, simulation data are provided on the use of GNPs in photothermal therapy upon non-ionizing laser irradiation treatment. Finally, the results obtained from the application of GNPs at clinical trials and pre-clinical experiments in vivo are reported.
Collapse
|
34
|
James LRA, Sluyter R, Dillon CT, Ralph SF. Effects of Gold Nanoparticles and Gold Anti-Arthritic Compounds on Inflammation Marker Expression in Macrophages. Aust J Chem 2017. [DOI: 10.1071/ch17062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ability of aurothiomalate and auranofin to alter the production of several cellular mediators of inflammation by RAW264.7 macrophages, was compared with each other and that of gold nanoparticles (Au NPs). Addition of auranofin was found to have a pronounced ability to lower the production of reactive nitrogen and oxygen species (RNS and ROS respectively), as well as interleukin-10 (IL-10) and tumour necrosis factor (TNF), by macrophages that were subsequently treated with lipopolysaccharide (LPS) to stimulate production of the mediators. In contrast, prior treatment of the cells with either aurothiomalate or Au NPs had either little or no significant effect on production of RNS and ROS. Treatment of the macrophages with Au NPs had a small effect on production of TNF by cells that were subsequently stimulated with LPS; however, the effect was much smaller than that elicited by auranofin. Similarly, aurothiomalate had a small but significant effect on production of IL-10. Varying the size of the Au NPs or the identity of the protective sheath surrounding the nanoparticles did not have a significant effect on the production of RNS or ROS by LPS-stimulated macrophages. The results of some of these investigations are discussed in the light of other studies reported in the literature. In addition, results obtained by scanning electron microscopy and energy-dispersive X-ray spectroscopy are presented that provide evidence for the accumulation of gold within macrophages exposed to Au NPs.
Collapse
|
35
|
Castiglione Morelli MA, Ostuni A, Matassi G, Minichino C, Flagiello A, Pucci P, Bavoso A. Spectroscopic investigation of auranofin binding to zinc finger HIV-2 nucleocapsid peptides. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Abstract
Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system.
Collapse
Affiliation(s)
- Terrika A Ngobili
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, Raleigh, NC 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, Raleigh, NC 27695, USA Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
37
|
Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed Pharmacother 2016; 80:30-41. [PMID: 27133037 DOI: 10.1016/j.biopha.2016.03.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the common and severe autoimmune diseases related to joints. This chronic autoimmune inflammatory disease, leads to functional limitation and reduced quality of life, since as there is bone and cartilage destruction, joint swelling and pain. Current advances and new treatment approaches have considerably postponed disease progression and improved the quality of life for many patients. In spite of major advances in therapeutic options, restrictions on the routes of administration and the necessity for frequent and long-term dosing often result in systemic adverse effects and patient non-compliance. Unlike usual drugs, nanoparticle systems are planned to deliver therapeutic agents especially to inflamed synovium, so avoiding systemic and unpleasant effects. The present review discusses about some of the most successful drugs in RA therapy and their side effects and also focuses on key design parameters of RA-targeted nanotechnology-based strategies for improving RA therapies.
Collapse
|
38
|
Prasad LK, O’Mary H, Cui Z. Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine (Lond) 2015; 10:2063-74. [PMID: 26084368 PMCID: PMC4552357 DOI: 10.2217/nnm.15.45] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
An increased understanding in the pathophysiology of chronic inflammatory diseases, such as rheumatoid arthritis, reveals that the diseased tissue and the increased presence of macrophages and other overexpressed molecules within the tissue can be exploited to enhance the delivery of nanomedicine. Nanomedicine can passively accumulate into chronic inflammatory tissues via the enhanced permeability and retention phenomenon, or be surface conjugated with a ligand to actively bind to receptors overexpressed by cells within chronic inflammatory tissues, leading to increased efficacy and reduced systemic side-effects. This review highlights the research conducted over the past decade on using nanomedicine for potential treatment of rheumatoid arthritis and summarizes some of the major findings and promising opportunities on using nanomedicine to treat this prevalent and chronic disease.
Collapse
Affiliation(s)
- Leena Kumari Prasad
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hannah O’Mary
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhengrong Cui
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|