1
|
Zhan T, Jacoby C, Jede M, Knapp B, Ferlaino S, Günter A, Drepper F, Müller M, Weber S, Boll M. Bacterial stigmasterol degradation involving radical flavin delta-24 desaturase and molybdenum-dependent C26 hydroxylase. J Biol Chem 2024; 300:107243. [PMID: 38556086 PMCID: PMC11061730 DOI: 10.1016/j.jbc.2024.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024] Open
Abstract
Sterols are ubiquitous membrane constituents that persist to a large extent in the environment due to their water insolubility and chemical inertness. Recently, an oxygenase-independent sterol degradation pathway was discovered in a cholesterol-grown denitrifying bacterium Sterolibacterium (S.) denitrificans. It achieves hydroxylation of the unactivated primary C26 of the isoprenoid side chain to an allylic alcohol via a phosphorylated intermediate in a four-step ATP-dependent enzyme cascade. However, this pathway is incompatible with the degradation of widely distributed steroids containing a double bond at C22 in the isoprenoid side chain such as the plant sterol stigmasterol. Here, we have enriched a prototypical delta-24 desaturase from S. denitrificans, which catalyzes the electron acceptor-dependent oxidation of the intermediate stigmast-1,4-diene-3-one to a conjugated (22,24)-diene. We suggest an α4β4 architecture of the 440 kDa enzyme, with each subunit covalently binding an flavin mononucleotide cofactor to a histidyl residue. As isolated, both flavins are present as red semiquinone radicals, which can be reduced by stigmast-1,4-diene-3-one but cannot be oxidized even with strong oxidizing agents. We propose a mechanism involving an allylic radical intermediate in which two flavin semiquinones each abstract one hydrogen atom from the substrate. The conjugated delta-22,24 moiety formed allows for the subsequent hydroxylation of the terminal C26 with water by a heterologously produced molybdenum-dependent steroid C26 dehydrogenase 2. In conclusion, the pathway elucidated for delta-22 steroids achieves oxygen-independent hydroxylation of the isoprenoid side chain by bypassing the ATP-dependent formation of a phosphorylated intermediate.
Collapse
Affiliation(s)
- Tingyi Zhan
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Christian Jacoby
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Martin Jede
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Bettina Knapp
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, Freiburg, Germany
| | - Sascha Ferlaino
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Andreas Günter
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Friedel Drepper
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, Freiburg, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Matthias Boll
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Kosian D, Willistein M, Weßbecher R, Eggers C, May O, Boll M. Highly selective whole-cell 25-hydroxyvitamin D 3 synthesis using molybdenum-dependent C25-steroid dehydrogenase and cyclodextrin recycling. Microb Cell Fact 2024; 23:30. [PMID: 38245746 PMCID: PMC10799449 DOI: 10.1186/s12934-024-02303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND The global prevalence of vitamin D (VitD) deficiency associated with numerous acute and chronic diseases has led to strategies to improve the VitD status through dietary intake of VitD-fortified foods and VitD supplementation. In this context, the circulating form of VitD3 (cholecalciferol) in the human body, 25-hydroxy-VitD3 (calcifediol, 25OHVitD3), has a much higher efficacy in improving the VitD status, which has motivated researchers to develop methods for its effective and sustainable synthesis. Conventional monooxygenase-/peroxygenase-based biocatalytic platforms for the conversion of VitD3 to value-added 25OHVitD3 are generally limited by a low selectivity and yield, costly reliance on cyclodextrins and electron donor systems, or by the use of toxic co-substrates. RESULTS In this study, we used a whole-cell approach for biocatalytic 25OHVitD3 synthesis, in which a molybdenum-dependent steroid C25 dehydrogenase was produced in the denitrifying bacterium Thauera aromatica under semi-aerobic conditions, where the activity of the enzyme remained stable. This enzyme uses water as a highly selective VitD3 hydroxylating agent and is independent of an electron donor system. High density suspensions of resting cells producing steroid C25 dehydrogenase catalysed the conversion of VitD3 to 25OHVitD3 using either O2 via the endogenous respiratory chain or externally added ferricyanide as low cost electron acceptor. The maximum 25OHVitD3 titer achieved was 1.85 g L-1 within 50 h with a yield of 99%, which is 2.2 times higher than the highest reported value obtained with previous biocatalytic systems. In addition, we developed a simple method for the recycling of the costly VitD3 solubiliser cyclodextrin, which could be reused for 10 reaction cycles without a significant loss of quality or quantity. CONCLUSIONS The established steroid C25 dehydrogenase-based whole-cell system for the value-adding conversion of VitD3 to 25OHVitD3 offers a number of advantages in comparison to conventional oxygenase-/peroxygenase-based systems including its high selectivity, independence from an electron donor system, and the higher product titer and yield. Together with the established cyclodextrin recycling procedure, the established system provides an attractive platform for large-scale 25OHVitD3 synthesis.
Collapse
Affiliation(s)
- Dennis Kosian
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Max Willistein
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Ralf Weßbecher
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Constantin Eggers
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Oliver May
- DSM Nutritional Products, Koninklijke DSM N.V., Kaiseraugst, 4303, Switzerland
| | - Matthias Boll
- Faculty of Biology - Microbiology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Wójcik P, Glanowski M, Mrugała B, Procner M, Zastawny O, Flejszar M, Kurpiewska K, Niedziałkowska E, Minor W, Oszajca M, Bojarski AJ, Wojtkiewicz AM, Szaleniec M. Structure, Mutagenesis, and QM:MM Modeling of 3-Ketosteroid Δ 1-Dehydrogenase from Sterolibacterium denitrificans─The Role of a New Putative Membrane-Associated Domain and Proton-Relay System in Catalysis. Biochemistry 2023; 62:808-823. [PMID: 36625854 PMCID: PMC9960185 DOI: 10.1021/acs.biochem.2c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenases (KstD) are important microbial flavin enzymes that initiate the metabolism of steroid ring A and find application in the synthesis of steroid drugs. We present a structure of the KstD from Sterolibacterium denitrificans (AcmB), which contains a previously uncharacterized putative membrane-associated domain and extended proton-relay system. The experimental and theoretical studies show that the steroid Δ1-dehydrogenation proceeds according to the Ping-Pong bi-bi kinetics and a two-step base-assisted elimination (E2cB) mechanism. The mechanism is validated by evaluating the experimental and theoretical kinetic isotope effect for deuterium-substituted substrates. The role of the active-site residues is quantitatively assessed by point mutations, experimental activity assays, and QM/MM MD modeling of the reductive half-reaction (RHR). The pre-steady-state kinetics also reveals that the low pH (6.5) optimum of AcmB is dictated by the oxidative half-reaction (OHR), while the RHR exhibits a slight optimum at the pH usual for the KstD family of 8.5. The modeling confirms the origin of the enantioselectivity of C2-H activation and substrate specificity for Δ4-3-ketosteroids. Finally, the cholest-4-en-3-one turns out to be the best substrate of AcmB in terms of ΔG of binding and predicted rate of dehydrogenation.
Collapse
Affiliation(s)
- Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Beata Mrugała
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Magdalena Procner
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
- Jerzy Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343Kraków, Poland
| | - Olga Zastawny
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Monika Flejszar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959Rzeszów, Poland
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Ewa Niedziałkowska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, Virginia22908, United States
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, Virginia22908, United States
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Andrzej J Bojarski
- Jerzy Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343Kraków, Poland
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| |
Collapse
|
4
|
Nandy A, Adamji H, Kastner DW, Vennelakanti V, Nazemi A, Liu M, Kulik HJ. Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Le CC, Bae M, Kiamehr S, Balskus EP. Emerging Chemical Diversity and Potential Applications of Enzymes in the DMSO Reductase Superfamily. Annu Rev Biochem 2022; 91:475-504. [PMID: 35320685 DOI: 10.1146/annurev-biochem-032620-110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molybdenum- and tungsten-dependent proteins catalyze essential processes in living organisms and biogeochemical cycles. Among these enzymes, members of the dimethyl sulfoxide (DMSO) reductase superfamily are considered the most diverse, facilitating a wide range of chemical transformations that can be categorized as oxygen atom installation, removal, and transfer. Importantly, DMSO reductase enzymes provide high efficiency and excellent selectivity while operating under mild conditions without conventional oxidants such as oxygen or peroxides. Despite the potential utility of these enzymes as biocatalysts, such applications have not been fully explored. In addition, the vast majority of DMSO reductase enzymes still remain uncharacterized. In this review, we describe the reactivities, proposed mechanisms, and potential synthetic applications of selected enzymes in the DMSO reductase superfamily. We also highlight emerging opportunities to discover new chemical activity and current challenges in studying and engineering proteins in the DMSO reductase superfamily. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Chi Chip Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
6
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
7
|
Glanowski M, Wójcik P, Procner M, Borowski T, Lupa D, Mielczarek P, Oszajca M, Świderek K, Moliner V, Bojarski AJ, Szaleniec M. Enzymatic Δ 1-Dehydrogenation of 3-Ketosteroids—Reconciliation of Kinetic Isotope Effects with the Reaction Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Magdalena Procner
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Dawid Lupa
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Przemysław Mielczarek
- Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Katarzyna Świderek
- Department of Physical and Analytical Chemistry, Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- Department of Physical and Analytical Chemistry, Universitat Jaume I, 12071 Castellón, Spain
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
8
|
Salii I, Szaleniec M, Zein AA, Seyhan D, Sekuła A, Schühle K, Kaplieva-Dudek I, Linne U, Meckenstock RU, Heider J. Determinants for Substrate Recognition in the Glycyl Radical Enzyme Benzylsuccinate Synthase Revealed by Targeted Mutagenesis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iryna Salii
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, 30-239 Kraków, Poland
| | - Ammar Alhaj Zein
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Deniz Seyhan
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Anna Sekuła
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, 30-239 Kraków, Poland
| | - Karola Schühle
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Uwe Linne
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
- Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Johann Heider
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
9
|
Tang D, Liu W, Huang L, Cheng L, Xu Z. Efficient biotransformation of vitamin D 3 to 25-hydroxyvitamin D 3 by a newly isolated Bacillus cereus strain. Appl Microbiol Biotechnol 2019; 104:765-774. [PMID: 31776608 DOI: 10.1007/s00253-019-10250-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
25-hydroxyvitamin D3 has attracted considerable attention due to its great medical value and huge market demand in animal husbandry. Microbial production of 25-hydroxyvitamin D3 has been recognized as an alternative superior to traditional chemical synthesis. In this study, a Gram-positive bacteria zju 4-2 (CCTCC M 2019385) was isolated from the soil using vitamin D3 as the sole carbon source and was identified as Bacillus cereus according to its physiological characteristics and 16S rRNA analysis, which also showed a relatively high capacity for 25-hydroxyvitamin D3 production. Through systematic optimization of different catalytic conditions, the optimal solvent system of vitamin D3, vitamin D3 addition time and concentration, temperature, and pH were shown to be propylene glycol/ethanol (v/v = 9:1), early stationary phase, 2 g/L, 37 °C, and pH 7.2, respectively. With these optimal conditions, 796 mg/L of 25-hydroxyvitamin D3 was achieved after 48 h bioconversion with zju 4-2 at the shake flask level. Finally, up to 830 mg/L 25-hydroxyvitamin D3 with a yield of 41.5% was obtained in a 5 L fermentation tank. Our developed biotransformation process with this newly isolated strain provides a platform to produce 25-hydroxyvitamin D3 efficiently at industrialization scale.
Collapse
Affiliation(s)
- Dandan Tang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Liu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Leming Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
10
|
Olivera ER, Luengo JM. Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes (Basel) 2019; 10:E512. [PMID: 31284586 PMCID: PMC6678751 DOI: 10.3390/genes10070512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Steroids are perhydro-1,2-cyclopentanophenanthrene derivatives that are almost exclusively synthesised by eukaryotic organisms. Since the start of the Anthropocene, the presence of these molecules, as well as related synthetic compounds (ethinylestradiol, dexamethasone, and others), has increased in different habitats due to farm and municipal effluents and discharge from the pharmaceutical industry. In addition, the highly hydrophobic nature of these molecules, as well as the absence of functional groups, makes them highly resistant to biodegradation. However, some environmental bacteria are able to modify or mineralise these compounds. Although steroid-metabolising bacteria have been isolated since the beginning of the 20th century, the genetics and catabolic pathways used have only been characterised in model organisms in the last few decades. Here, the metabolic alternatives used by different bacteria to metabolise steroids (e.g., cholesterol, bile acids, testosterone, and other steroid hormones), as well as the organisation and conservation of the genes involved, are reviewed.
Collapse
Affiliation(s)
- Elías R Olivera
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain.
| | - José M Luengo
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain
| |
Collapse
|
11
|
Investigation of quaternary structure of aggregating 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans: In the pursuit of consensus of various biophysical techniques. Biochim Biophys Acta Gen Subj 2019; 1863:1027-1039. [PMID: 30876874 DOI: 10.1016/j.bbagen.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/15/2019] [Accepted: 03/10/2019] [Indexed: 11/22/2022]
Abstract
In this work we analyzed the quaternary structure of FAD-dependent 3-ketosteroid dehydrogenase (AcmB) from Sterolibacterium denitrificans, the protein that in solution forms massive aggregates (>600 kDa). Using size-excursion chromatography (SEC), dynamic light scattering (DLS), native-PAGE and atomic force microscopy (AFM) we studied the nature of enzyme aggregation. Partial protein de-aggregation was facilitated by the presence of non-ionic detergent such as Tween 20 or by a high degree of protein dilution but not by addition of a reducing agent or an increase of ionic strength. De-aggregating influence of Tween 20 had no impact on either enzyme's specific activity or FAD reconstitution to recombinant AcmB. The joint experimental (DLS, isoelectric focusing) and theoretical investigations demonstrated gradual shift of enzyme's isoelectric point upon aggregation from 8.6 for a monomeric form to even 5.0. The AFM imaging on mica or highly oriented pyrolytic graphite (HOPG) surface enabled observation of individual protein monomers deposited from a highly diluted solution (0.2 μg/ml). Such approach revealed that native AcmB can indeed be monomeric. AFM imaging supported by theoretical random sequential adsorption (RSA) kinetics allowed estimation of distribution enzyme forms in the bulk solution: 5%, monomer, 11.4% dimer and 12% trimer. Finally, based on results of AFM as well as analysis of the surface of AcmB homology models we have observed that aggregation is most probably initiated by hydrophobic forces and then assisted by electrostatic attraction between negatively charged aggregates and positively charged monomers.
Collapse
|
12
|
Szaleniec M, Wojtkiewicz AM, Bernhardt R, Borowski T, Donova M. Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms. Appl Microbiol Biotechnol 2018; 102:8153-8171. [PMID: 30032434 PMCID: PMC6153880 DOI: 10.1007/s00253-018-9239-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
The steroid superfamily includes a wide range of compounds that are essential for living organisms of the animal and plant kingdoms. Structural modifications of steroids highly affect their biological activity. In this review, we focus on hydroxylation of steroids by bacterial hydroxylases, which take part in steroid catabolic pathways and play an important role in steroid degradation. We compare three distinct classes of metalloenzymes responsible for aerobic or anaerobic hydroxylation of steroids, namely: cytochrome P450, Rieske-type monooxygenase 3-ketosteroid 9α-hydroxylase, and molybdenum-containing steroid C25 dehydrogenases. We analyze the available literature data on reactivity, regioselectivity, and potential application of these enzymes in organic synthesis of hydroxysteroids. Moreover, we describe mechanistic hypotheses proposed for all three classes of enzymes along with experimental and theoretical evidences, which have provided grounds for their formulation. In case of the 3-ketosteroid 9α-hydroxylase, such a mechanistic hypothesis is formulated for the first time in the literature based on studies conducted for other Rieske monooxygenases. Finally, we provide comparative analysis of similarities and differences in the reaction mechanisms utilized by bacterial steroid hydroxylases.
Collapse
Affiliation(s)
- Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Rita Bernhardt
- Lehrstuhl für Biochemie, Universität des Saarlandes, Campus B2 2, 66123, Saarbrücken, Germany
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Oblast, 142290, Russia
| |
Collapse
|
13
|
Four Molybdenum-Dependent Steroid C-25 Hydroxylases: Heterologous Overproduction, Role in Steroid Degradation, and Application for 25-Hydroxyvitamin D 3 Synthesis. mBio 2018; 9:mBio.00694-18. [PMID: 29921665 PMCID: PMC6016249 DOI: 10.1128/mbio.00694-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Side chain-containing steroids are ubiquitous constituents of biological membranes that are persistent to biodegradation. Aerobic, steroid-degrading bacteria employ oxygenases for isoprenoid side chain and tetracyclic steran ring cleavage. In contrast, a Mo-containing steroid C-25 dehydrogenase (S25DH) of the dimethyl sulfoxide (DMSO) reductase family catalyzes the oxygen-independent hydroxylation of tertiary C-25 in the anaerobic, cholesterol-degrading bacterium Sterolibacterium denitrificans Its genome contains eight paralogous genes encoding active site α-subunits of putative S25DH-like proteins. The difficult enrichment of labile, oxygen-sensitive S25DH from the wild-type bacteria and the inability of its active heterologous production have largely hampered the study of S25DH-like gene products. Here we established a heterologous expression platform for the three structural genes of S25DH subunits together with an essential chaperone in the denitrifying betaproteobacterium Thauera aromatica K172. Using this system, S25DH1 and three isoenzymes (S25DH2, S25DH3, and S25DH4) were overproduced in a soluble, active form allowing a straightforward purification of nontagged αβγ complexes. All S25DHs contained molybdenum, four [4Fe-4S] clusters, one [3Fe-4S] cluster, and heme B and catalyzed the specific, water-dependent C-25 hydroxylations of various 4-en-3-one forms of phytosterols and zoosterols. Crude extracts from T. aromatica expressing genes encoding S25DH1 catalyzed the hydroxylation of vitamin D3 (VD3) to the clinically relevant 25-OH-VD3 with >95% yield at a rate 6.5-fold higher than that of wild-type bacterial extracts; the specific activity of recombinant S25DH1 was twofold higher than that of wild-type enzyme. These results demonstrate the potential application of the established expression platform for 25-OH-VD3 synthesis and pave the way for the characterization of previously genetically inaccessible S25DH-like Mo enzymes of the DMSO reductase family.IMPORTANCE Steroids are ubiquitous bioactive compounds, some of which are considered an emerging class of micropollutants. Their degradation by microorganisms is the major process of steroid elimination from the environment. While oxygenase-dependent steroid degradation in aerobes has been studied for more than 40 years, initial insights into the anoxic steroid degradation have only recently been obtained. Molybdenum-dependent steroid C25 dehydrogenases (S25DHs) have been proposed to catalyze oxygen-independent side chain hydroxylations of globally abundant zoo-, phyto-, and mycosterols; however, so far, their lability has allowed only the initial characterization of a single S25DH. Here we report on a heterologous gene expression platform that allowed for easy isolation and characterization of four highly active S25DH isoenzymes. The results obtained demonstrate the key role of S25DHs during anoxic degradation of various steroids. Moreover, the platform is valuable for the efficient enzymatic hydroxylation of vitamin D3 to its clinically relevant C-25-OH form.
Collapse
|
14
|
Kalimuthu P, Wojtkiewicz AM, Szaleniec M, Bernhardt PV. Electrocatalytic Hydroxylation of Sterols by Steroid C25 Dehydrogenase from Sterolibacterium denitrificans. Chemistry 2018; 24:7710-7717. [PMID: 29573289 DOI: 10.1002/chem.201800616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Indexed: 12/20/2022]
Abstract
The electrochemically driven catalysis of the complex molybdoenzyme steroid C25 dehydrogenase (S25DH) from the β-Proteobacterium Sterolibacterium denitrificans is reported. S25DH catalyses the oxygen-independent regioselective hydroxylation of the tertiary C25 atom of sterols and also their derivatives. Cholest-4-en-3-one is a native substrate for S25DH, which produces 25-hydroxycholest-4-en-3-one as a product of catalytic turnover. Cholecalciferol (vitD3 ) is also a substrate. S25DH was immobilised on a modified gold working electrode with the co-adsorbent chitosan. The complexes ferricyanide ([Fe(CN)6 ]3- ) and ferrocenium methanol (FM+ ) are effective artificial electron acceptors from S25DH and act as mediators of electron transfer between the electrode and the enzyme. 2-Hydroxypropyl-β-cyclodextrin (HPCD) was employed as a sterol solubiliser, in addition to 2-methoxyethanol. The catalytic activity varied, depending upon the concentration of solubiliser in the reaction mixture. Parallel studies with [Fe(CN)6 ]3- as a chemical (as opposed to electrochemical) oxidant coupled to HPLC analysis show that S25DH is capable of oxidising both vitD3 and its less stable isomer, pre-vitD3 , and that the former substrate is stabilised by HPCD.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30 239, Krakow, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30 239, Krakow, Poland
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|