1
|
Kapustina AA, Tupolova YP, Popov LD, Vlasenko VG, Gishko KB, Berejnaya AG, Shcherbatykh AA, Golubeva YA, Klyushova LS, Lider EV, Lazarenko VA, Demidov OP, Knyazev PA, Bachurin SS, Nalbandyan VB, Shcherbakov IN. Copper(II) coordination compounds based on bis-hydrazones of 2,6-diacetylpyridine: synthesis, structure, and cytotoxic activity. Dalton Trans 2024; 53:3330-3347. [PMID: 38261350 DOI: 10.1039/d3dt03750a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
By reacting a series of 2,6-diacetylpyridine bis-hydrazones containing pyrimidine (H2L1), benzimidazole (H2L2) and phthalazine (H2L3) heterocyclic fragments with copper(II) chloride and bromide, a variety of pentacoordinated complexes of the composition [Cu(H2L1)X]X, [Cu(HL2)X] and [Cu(HL3)X], where X = Cl-, Br-, are formed. The properties and structure of the compounds were studied by means of NMR, IR, UV-vis, ESR, and X-ray absorption spectroscopy, cyclic voltammetry and X-Ray single crystal diffraction methods. It was shown that complexes of the cationic type [Cu(H2L1)X]X have an asymmetric structure with a distorted square-pyramidal geometry of the coordination unit. The coordination polyhedron of metal chelates [Cu(HL2)X] and [Cu(HL3)X] is an almost ideal square pyramid. Investigations of the cytotoxic activity of the obtained compounds in vitro on human hepatocellular carcinoma (HepG2) and non-tumor human lung fibroblast (MRC-5) cell lines demonstrated that complexes show higher activity compared with the well-known anticancer agent cisplatin. In addition, metal chelates [Cu(H2L1)Cl]Cl, [Cu(HL2)Cl], [Cu(HL2)Br] and [Cu(HL3)Cl] were less toxic to non-tumor cells MRC-5. A study of the binding of complexes to bovine serum albumin (BSA) protein using fluorescence spectroscopy showed that copper complexes are strongly bound to BSA. To study the mechanism of interaction of the complexes with the DNA of cancer cells, molecular dynamics simulation of the compound [Cu(HL3)Cl] was carried out. It was shown that the complex enters into π-stacking interactions predominantly with adenine and thymine bases.
Collapse
Affiliation(s)
- Anna A Kapustina
- Department of Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Yulia P Tupolova
- Department of Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Leonid D Popov
- Department of Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Valery G Vlasenko
- Scientific Research Institute of Physics, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Konstantin B Gishko
- Department of Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Alexandra G Berejnaya
- Department of Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | | | - Yuliya A Golubeva
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine (IMBB FRC FTM), 2/12, Timakova str., 630060, Novosibirsk, Russia
| | - Elizaveta V Lider
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev Ave., 630090, Novosibirsk, Russia
| | - Vladimir A Lazarenko
- National Research Center "Kurchatov Institute", Acad. Kurchatov Sq., 1, Moscow, 123182, Russia
| | - Oleg P Demidov
- Department of Organic Chemistry, North Caucasus Federal University, Stavropol, 355017, Russia
| | - Pavel A Knyazev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachki st, Rostov-on-Don, 344090, Russian Federation
| | - Stanislav S Bachurin
- Department of General and Clinical Biochemistry N2, Rostov State Medical University, Rostov-on-Don, 344022, Russia
| | - Vladimir B Nalbandyan
- Department of Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Igor N Shcherbakov
- Department of Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia.
| |
Collapse
|
2
|
Tupolova YP, Shcherbakov IN, Popov LD, Vlasenko VG, Gishko KB, Kapustina AA, Berejnaya AG, Golubeva YA, Klyushova LS, Lider EV, Lazarenko VA, Minin VV, Knyazev PA. Copper Coordination Compounds Based on BIS-Quinolylhydrazone of 2,6-Diacetylpyridine: Synthesis, Structure and Cytotoxic Activity. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Daksh S, Kaul A, Deep S, Datta A. Current advancement in the development of manganese complexes as magnetic resonance imaging probes. J Inorg Biochem 2022; 237:112018. [PMID: 36244313 DOI: 10.1016/j.jinorgbio.2022.112018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Emerging non-invasive molecular imaging modalities can detect a pathophysiological state at the molecular level before any anatomic changes are observed. Magnetic resonance imaging (MRI) is preferred over other nuclear imaging techniques owing to its radiation-free approach. Conventionally, most MRI contrast agents employed predominantly involve lanthanide metal: Gadolinium (Gd) until the discovery of associated severe nephrogenic toxicity issues. This limitation led a way to the development of manganese-based contrast agents which offer similar positive contrast enhancement capability. A vast quantity of experimental data has been accumulated over the last decade to define the physicochemical characteristics of manganese chelates with various ligand scaffolds. One can now observe how the ligand configurations, rigidity, and donor-acceptor characteristics impact the stability of the complex. This review covers the current trends in the development of manganese-based MRI contrast agents, the mechanisms they are based on and design considerations for newer manganese-based contrast agents with higher diagnostic strength along with better safety profiles.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India
| | - Ankur Kaul
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
4
|
Zheng R, Guo J, Cai X, Bin L, Lu C, Singh A, Trivedi M, Kumar A, Liu J. Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects. Colloids Surf B Biointerfaces 2022; 213:112432. [PMID: 35259704 DOI: 10.1016/j.colsurfb.2022.112432] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
Abstract
Manganese-based Metal-organic Frameworks (Mn-MOFs) represents a unique sub-class of MOFs with low toxicity, oxidative ability, and biocompatibility, which plays vital role in the application of this class of MOFs in medical field. Mn-MOFs show great potential in biomedical applications, and has been extensively studied as compared to other MOFs in transition metal series. They are important in medical applications because Mn(II) possess large electron spin number and longer electron relaxation time. They display fast water exchange rate and could be employed as a potential MRI contrast agent because of their strong targeting ability. Manganese complexes with different ligands also display prospective applications in area such as carrier for drug targeting in anti-tumor and antimicrobial therapy. In the review presented herewith, the application of Mn-based complexes and Mn-MOFs have been emphasized in the area such as imaging viz. MRI, multimodal imaging, antitumor activities such as chemodynamic therapy, photodynamic therapy, sonodynamic therapy and antimicrobial applications. Also, how rational designing and syntheses of targeted Mn-based complexes and Mn-MOFs can engender desired applications.
Collapse
Affiliation(s)
- Rouqiao Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Junru Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xinyi Cai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Lianjie Bin
- Department of General Surgery, Dongguan People's Hospital, Wanjiang District, Dongguan 523000, China.
| | - Chengyu Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Amita Singh
- Department of Chemistry, Dr. Ram Manohar Lohiya Awadh University, Ayodhya, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, India.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
5
|
Uzal-Varela R, Valencia L, Lalli D, Maneiro M, Esteban-Gómez D, Platas-Iglesias C, Botta M, Rodríguez-Rodríguez A. Understanding the Effect of the Electron Spin Relaxation on the Relaxivities of Mn(II) Complexes with Triazacyclononane Derivatives. Inorg Chem 2021; 60:15055-15068. [PMID: 34618439 PMCID: PMC8527457 DOI: 10.1021/acs.inorgchem.1c02057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Investigating the relaxation of water 1H nuclei induced by paramagnetic Mn(II) complexes is important to understand the mechanisms that control the efficiency of contrast agents used in diagnostic magnetic resonance imaging (MRI). Herein, a series of potentially hexadentate triazacyclononane (TACN) derivatives containing different pendant arms were designed to explore the relaxation of the electron spin in the corresponding Mn(II) complexes by using a combination of 1H NMR relaxometry and theoretical calculations. These ligands include 1,4,7-triazacyclononane-1,4,7-triacetic acid (H3NOTA) and three derivatives in which an acetate group is replaced by sulfonamide (H3NO2ASAm), amide (H2NO2AM), or pyridyl (H2NO2APy) pendants. The analogue of H3NOTA containing three propionate pendant arms (H3NOTPrA) was also investigated. The X-ray structure of the derivative containing two acetate groups and a sulfonamide pendant arm [Mn(NO2ASAm)]- evidenced six-coordination of the ligand to the metal ion, with the coordination polyhedron being close to a trigonal prism. The relaxivities of all complexes at 20 MHz and 25 °C (1.1-1.3 mM-1 s-1) are typical of systems that lack water molecules coordinated to the metal ion. The nuclear magnetic relaxation profiles evidence significant differences in the relaxivities of the complexes at low fields (<1 MHz), which are associated with different spin relaxation rates. The zero field splitting (ZFS) parameters calculated by using DFT and CASSCF methods show that electronic relaxation is relatively insensitive to the nature of the donor atoms. However, the twist angle of the two tripodal faces that delineate the coordination polyhedron, defined by the N atoms of the TACN unit (lower face) and the donor atoms of the pendant arms (upper face), has an important effect in the ZFS parameters. A twist angle close to the ideal value for an octahedral coordination (60°), such as that in [Mn(NOTPrA)]-, leads to a small ZFS energy, whereas this value increases as the coordination polyhedron approaches to a trigonal prism.
Collapse
Affiliation(s)
- Rocío Uzal-Varela
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| | - Laura Valencia
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Marcosende, 36310 Pontevedra, Spain
| | - Daniela Lalli
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Facultade de Ciencias, Campus de Lugo, 27002 Lugo, Galicia, Spain
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy
| | - Aurora Rodríguez-Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Galicia, Spain
| |
Collapse
|
6
|
Anbu S, Hoffmann SHL, Carniato F, Kenning L, Price TW, Prior TJ, Botta M, Martins AF, Stasiuk GJ. A Single-Pot Template Reaction Towards a Manganese-Based T 1 Contrast Agent. Angew Chem Int Ed Engl 2021; 60:10736-10744. [PMID: 33624910 PMCID: PMC8252504 DOI: 10.1002/anie.202100885] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Manganese-based contrast agents (MnCAs) have emerged as suitable alternatives to gadolinium-based contrast agents (GdCAs). However, due to their kinetic lability and laborious synthetic procedures, only a few MnCAs have found clinical MRI application. In this work, we have employed a highly innovative single-pot template synthetic strategy to develop a MnCA, MnLMe , and studied the most important physicochemical properties in vitro. MnLMe displays optimized r1 relaxivities at both medium (20 and 64 MHz) and high magnetic fields (300 and 400 MHz) and an enhanced r1b =21.1 mM-1 s-1 (20 MHz, 298 K, pH 7.4) upon binding to BSA (Ka =4.2×103 M-1 ). In vivo studies show that MnLMe is cleared intact into the bladder through renal excretion and has a prolonged blood half-life compared to the commercial GdCA Magnevist. MnLMe shows great promise as a novel MRI contrast agent.
Collapse
Affiliation(s)
- Sellamuthu Anbu
- Department of Biomedical SciencesUniversity of HullCottingham RoadHullHU6 7RXUK
- Department of ChemistryUniversity of HullCottingham RoadHullHU6 7RXUK
| | - Sabrina H. L. Hoffmann
- Werner Siemens Imaging CenterDepartment of Preclinical Imaging and RadiopharmacyEberhard Karls University Tübingen, Röntgenweg 13/172076TübingenGermany
| | - Fabio Carniato
- Dipartimento di Scienze e InnovazioneTecnologicaUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Lawrence Kenning
- MRI centreHull Royal Infirmary Hospital NHS TrustAnlaby RoadHullHU3 2JZUK
| | - Thomas W. Price
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College LondonFourth Floor Lambeth WingSt Thomas' HospitalLondonSE1 7EHUK
| | - Timothy J. Prior
- Department of ChemistryUniversity of HullCottingham RoadHullHU6 7RXUK
| | - Mauro Botta
- Dipartimento di Scienze e InnovazioneTecnologicaUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Andre F. Martins
- Werner Siemens Imaging CenterDepartment of Preclinical Imaging and RadiopharmacyEberhard Karls University Tübingen, Röntgenweg 13/172076TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”University of TuebingenGermany
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College LondonFourth Floor Lambeth WingSt Thomas' HospitalLondonSE1 7EHUK
| |
Collapse
|
7
|
Anbu S, Hoffmann SHL, Carniato F, Kenning L, Price TW, Prior TJ, Botta M, Martins AF, Stasiuk GJ. A Single-Pot Template Reaction Towards a Manganese-Based T1 Contrast Agent. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:10831-10839. [PMID: 38505690 PMCID: PMC10947048 DOI: 10.1002/ange.202100885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Manganese-based contrast agents (MnCAs) have emerged as suitable alternatives to gadolinium-based contrast agents (GdCAs). However, due to their kinetic lability and laborious synthetic procedures, only a few MnCAs have found clinical MRI application. In this work, we have employed a highly innovative single-pot template synthetic strategy to develop a MnCA, MnLMe, and studied the most important physicochemical properties in vitro. MnLMe displays optimized r 1 relaxivities at both medium (20 and 64 MHz) and high magnetic fields (300 and 400 MHz) and an enhanced r 1 b=21.1 mM-1 s-1 (20 MHz, 298 K, pH 7.4) upon binding to BSA (K a=4.2×103 M-1). In vivo studies show that MnLMe is cleared intact into the bladder through renal excretion and has a prolonged blood half-life compared to the commercial GdCA Magnevist. MnLMe shows great promise as a novel MRI contrast agent.
Collapse
Affiliation(s)
- Sellamuthu Anbu
- Department of Biomedical SciencesUniversity of HullCottingham RoadHullHU6 7RXUK
- Department of ChemistryUniversity of HullCottingham RoadHullHU6 7RXUK
| | - Sabrina H. L. Hoffmann
- Werner Siemens Imaging CenterDepartment of Preclinical Imaging and RadiopharmacyEberhard Karls University Tübingen, Röntgenweg 13/172076TübingenGermany
| | - Fabio Carniato
- Dipartimento di Scienze e InnovazioneTecnologicaUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Lawrence Kenning
- MRI centreHull Royal Infirmary Hospital NHS TrustAnlaby RoadHullHU3 2JZUK
| | - Thomas W. Price
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College LondonFourth Floor Lambeth WingSt Thomas' HospitalLondonSE1 7EHUK
| | - Timothy J. Prior
- Department of ChemistryUniversity of HullCottingham RoadHullHU6 7RXUK
| | - Mauro Botta
- Dipartimento di Scienze e InnovazioneTecnologicaUniversità del Piemonte Orientale “A. Avogadro”Viale Teresa Michel 1115121AlessandriaItaly
| | - Andre F. Martins
- Werner Siemens Imaging CenterDepartment of Preclinical Imaging and RadiopharmacyEberhard Karls University Tübingen, Röntgenweg 13/172076TübingenGermany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”University of TuebingenGermany
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College LondonFourth Floor Lambeth WingSt Thomas' HospitalLondonSE1 7EHUK
| |
Collapse
|
8
|
Singh O, Maji A, Singh A, Singh N, Ghosh K. A new family of complexes derived from bis(imino)pyridine‐type ligands: Crystal structures and bio‐molecular interaction studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ovender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee India
- Department of Chemistry Chonnam National University Gwangju South Korea
| | - Ankur Maji
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee India
| | - Anshu Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee India
| | - Neetu Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee India
- Department of Chemistry Chonnam National University Gwangju South Korea
| | - Kaushik Ghosh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
9
|
Wu Y, Xu L, Qian J, Shi L, Su Y, Wang Y, Li D, Zhu X. Methotrexate–Mn2+ based nanoscale coordination polymers as a theranostic nanoplatform for MRI guided chemotherapy. Biomater Sci 2020; 8:712-719. [DOI: 10.1039/c9bm01584a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methotrexate–Mn2+ based NCPs with uniform size and easy fabrication exhibited good MRI and excellent antitumor effects as a novel theranostic nanoplatform.
Collapse
Affiliation(s)
- Yan Wu
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Li Xu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Yue Su
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Dawei Li
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- PR China
| |
Collapse
|
10
|
Dehvari K, Li JD, Chang JY. Bovine Serum Albumin-Templated Synthesis of Manganese-Doped Copper Selenide Nanoparticles for Boosting Targeted Delivery and Synergistic Photothermal and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2019; 2:3019-3029. [DOI: 10.1021/acsabm.9b00339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Khannam M, Sahoo SK, Mukherjee C. Effect of Ligand Chirality and Hyperconjugation on the Thermodynamic Stability of a Tris(aquated) GdIII
Complex: Synthesis, Characterization, and T
1
-Weighted Phantom MR Image Study. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mahmuda Khannam
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Guwahati Assam India
| | - Suban K. Sahoo
- Department of Applied Chemistry; S.V. National Institute of Technology; 395007 Surat Gujarat India
| | - Chandan Mukherjee
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Guwahati Assam India
| |
Collapse
|
12
|
Phukan B, Mukherjee C, Varshney R. A new heptadentate picolinate-based ligand and its corresponding Gd(iii) complex: the effect of pendant picolinate versus acetate on complex properties. Dalton Trans 2018; 47:135-142. [DOI: 10.1039/c7dt04150k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing one picolinate pendant by acetate group in H4bpeda ligand, the synthesised bis(aquated) Gd(iii) complex of ligand H4peada showed better stability and r1 relaxivity for its potential use as MRI contrast agent.
Collapse
Affiliation(s)
- Bedika Phukan
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Chandan Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Raunak Varshney
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-100054
- India
| |
Collapse
|
13
|
Singh O, Tyagi N, Olmstead MM, Ghosh K. The design of synthetic superoxide dismutase mimetics: seven-coordinate water soluble manganese(ii) and iron(ii) complexes and their superoxide dismutase-like activity studies. Dalton Trans 2017; 46:14186-14191. [DOI: 10.1039/c7dt03278a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Manganese(ii) and iron(ii) complexes derived from a pentadentate ligand have been characterized and these were utilized for superoxide dismutase-like activity studies.
Collapse
Affiliation(s)
- Ovender Singh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Nidhi Tyagi
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | | | - Kaushik Ghosh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| |
Collapse
|