1
|
Chaudhary U, Kumar P, Sharma P, Chikara A, Barua A, Mahiya K, Adhikari Subin J, Nath Yadav P, Raj Pokharel Y. Synthesis of 5-hydroxyisatin thiosemicarbazones, spectroscopic investigation, protein-ligand docking, and in vitro anticancer activity. Bioorg Chem 2024; 153:107872. [PMID: 39442462 DOI: 10.1016/j.bioorg.2024.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
A series of novel modifications were performed at the N(4) position of 5-hydroxyisatin thiosemicarbazone (TSC). The structure-activity approach is applied to design and synthesize derivatives by condensing thiosemicarbazides with 5-hydroxy isatin. The TSCs were characterized by various spectroscopic techniques viz. FTIR, 1H NMR, 13C NMR, UV-Vis, HRMS data, CHN elemental analysis, and single crystal X-ray diffraction. Biological evaluation of the synthesized compounds revealed the anticancer potency of the TSC analogues against breast cancer (MD-AMD-231, MCF-7), lung cancer (A549, NCI-H460), prostate cancer (PC3), and skin cancer (A431). The molecules, L2, L3, and L6 showed activity in the micromolar range (IC50; 0.19-2.19 μM). L6 exhibited the highest potency against skin cancer A431 cell line, with an IC50 of 0.19 μM compared to 1.8 μM with triapine and showed low toxicity against PNT-2 cells with an SI index of >100 μM. The mechanistic study revealed that L6 inhibited cancer cell proliferation, colony formation, and 3-dimensional spheroid formation by targeting the Ras/MAPK axis. It induced DNA damage and impaired DNA damage repair machinery, which led to the accumulation of DSB. Also, it lowered the ERK1/2 expression, which affected the caspase 3 activity and showed higher binding affinity compared to the FDA-approved drug Lenalidomide in molecular docking studies. Our findings demonstrated the possible future anticancer drug potency of L6 in the skin cancer A431 cells.
Collapse
Affiliation(s)
- Upendra Chaudhary
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Piyush Kumar
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Pratibha Sharma
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Anshul Chikara
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Ayanti Barua
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Kuldeep Mahiya
- Department of Chemistry, F G M Government College, Adampur, Mandi Adampur, Hisar 125052, Haryana, India
| | - Jhashanath Adhikari Subin
- Scientific Research and Training Nepal P. Ltd., Bioinformatics and Cheminformatics Division, Kaushaltar, Bhaktapur, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India.
| |
Collapse
|
2
|
Zahirović A, Fetahović S, Feizi-Dehnayebi M, Višnjevac A, Bešta-Gajević R, Kozarić A, Martić L, Topčagić A, Roca S. Dual Antimicrobial-Anticancer Potential, Hydrolysis, and DNA/BSA Binding Affinity of a Novel Water-Soluble Ruthenium-Arene Ethylenediamine Schiff base (RAES) Organometallic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124528. [PMID: 38801789 DOI: 10.1016/j.saa.2024.124528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The need for a systematic approach in developing new metal-based drugs with dual anticancer-antimicrobial properties is emphasized by the vulnerability of cancer patients to bacterial infections. In this context, a novel organometallic assembly was designed, featuring ruthenium(II) coordination with p-cymene, one chlorido ligand, and a bidentate neutral Schiff base derived from 4-methoxybenzaldehyde and N,N-dimethylethylenediamine. The compound was extensively characterized in both solid-state and solution, employing single crystal X-ray diffraction, nuclear magnetic resonance, infrared, ultraviolet-visible spectroscopy, and density functional theory, alongside Hirshfeld surface analysis. The hydrolysis kinetic was thoroughly investigated, revealing the important role of the chloro-aqua equilibrium in the dynamics of binding with deoxyribonucleic acid and bovine serum albumin. Notably, the aqua species exhibited a pronounced affinity for deoxyribonucleic acid, engaging through electrostatic and hydrogen bonding interactions, while the chloro species demonstrated groove-binding properties. Interaction with albumin revealed distinct binding mechanisms. The aqua species displayed covalent binding, contrasting with the ligand-like van der Waals interactions and hydrogen bonding observed with the chloro specie. Molecular docking studies highlighted site-specific interactions with biomolecular targets. Remarkably, the compound exhibited wide spectrum moderate antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, coupled with low micromolar cytotoxic activity against human colorectal adenocarcinoma cells and significant activity against human leukemic monocyte lymphoma cells. The presented findings encourage further development of this compound, promising avenues for its evolution into a versatile therapeutic agent targeting both infectious diseases and cancer.
Collapse
Affiliation(s)
- Adnan Zahirović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Selma Fetahović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Aleksandar Višnjevac
- Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Renata Bešta-Gajević
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Amina Kozarić
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Lora Martić
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Anela Topčagić
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sunčica Roca
- NMR Centre, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
3
|
Mamindla A, Murugan D, Varadhan M, Ajaykamal T, Rangasamy L, Palaniandavar M, Rajendiran V. Mixed-ligand copper(ii)-diimine complexes of 3-formylchromone- N 4-phenyl thiosemicarbazone: 5,6-dmp co-ligand confers enhanced cytotoxicity. RSC Adv 2024; 14:31704-31722. [PMID: 39376525 PMCID: PMC11457010 DOI: 10.1039/d4ra04997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
The promising biological applications of thiosemicarbazone derivatives have inspired the design, synthesis, and study of their Cu(ii) complexes for anticancer therapeutic applications. Herein, we have evaluated the DNA/protein binding, DNA cleaving, and cytotoxic properties of four mixed-ligand Cu(ii) complexes of the type [Cu(L)(diimine)](NO3) 1-4, where HL is 4-oxo-4H-chromene-3-carbaldehyde-4(N)-phenylthiosemicarbazone and diimine is 2,2'-bipyridine (bpy, 1) 1,10-phenanthroline (phen, 2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, 3), or dipyrido-[3,2-f:2',3'-h]-quinoxaline (dpq, 4). Interestingly, complex 3 with higher lipophilicity shows stronger DNA binding and oxidative DNA cleavage, higher ROS production, and more reversible redox behaviour, resulting in its remarkable cytotoxicity (IC50, 1.26 μM) against HeLa cervical cancer cells, and rendering it 5 times more potent than the widely used drug cisplatin. The same complex induces enhanced apoptotic cell death on HeLa cells but lower toxicity towards the non-cancerous PBMC cells. Molecular docking studies suggest that all the complexes bind in the minor groove of DNA and subdomain II of HSA, which is in close agreement with the experimental results. Also, 3 shows cytotoxicity higher than the analogous mixed ligand Cu(ii) complexes, reported already, emphasizing the importance of co-ligand in tuning the anticancer activity.
Collapse
Affiliation(s)
- Anjaneyulu Mamindla
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | - Manikandan Varadhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | | | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | | | - Venugopal Rajendiran
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| |
Collapse
|
4
|
Radomska D, Szewczyk-Roszczenko OK, Marciniec K, Książek M, Kusz J, Roszczenko P, Szymanowska A, Radomski D, Bielawski K, Czarnomysy R. Evaluation of anticancer activity of novel platinum(II) bis(thiosemicarbazone) complex against breast cancer. Bioorg Chem 2024; 148:107486. [PMID: 38788367 DOI: 10.1016/j.bioorg.2024.107486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The study aims to synthesize a novel bis(thiosemicarbazone) derivative based on platinum (thioPt) and evaluate its anticancer properties against MFC-7 and MDA-MB-231 breast cancer cells. A new platinum complex was synthesised by reacting K2PtCl4 with 2,2'-(1,2-diphenylethane-1,2-diylidene)bis(hydrazine-1-carbothioamide) in ethanol in the presence of K2CO3. In the obtained complex, the platinum atom is coordinated by a conjugated system = N-NC-S-The structures of the new compound were characterised using NMR spectroscopy, HR MS, IR, and X-ray structural analysis. The obtained results of the cytotoxicity assay indicate that compound thioPt had potent anticancer activity (MCF-7: 61.03 ± 3.57 µM, MDA-MB-231: 60.05 ± 5.40 µM) with less toxicity against normal MCF-10A breast epithelial cells, even compared to the reference compound (cisplatin). In addition, subsequent experiments found that thioPt induces apoptosis through both an extrinsic (↑caspase 8 activity) and intrinsic (↓ΔΨm) pathway, which ultimately leads to an increase in active caspase 3/7 levels. The induction of autophagy and levels of proteins involved in this process (LC3A/B and Beclin-1) were examined in MCF-7 and MDA-MB-231 breast cancer cells exposed to tested compounds (thio, thioPt, cisPt) at a concentration of 50 µM for 24 h. Based on these results, it can be concluded that thio and thioPt do not significantly affect the autophagy process. This demonstrates their superiority over cisplatin, which can stimulate cancer cell survival through its effect on stimulation of autophagy.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | | | - Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellonska 4, 41‑200 Sosnowiec, Poland
| | - Maria Książek
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Anna Szymanowska
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland.
| |
Collapse
|
5
|
Zhang Y, Cai J, Yao Z, Zhang H, Wang Z, Lei J, Guo H. The relationship between plasma nickel concentrations and type 2 diabetes mellitus risk: A protective effect within a specific range. J Trace Elem Med Biol 2024; 82:127362. [PMID: 38101165 DOI: 10.1016/j.jtemb.2023.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Nickel is considered an essential nutrient for certain microbial, plant, and animal species, but its role in human health remains controversial. Some studies have reported the relationship between nickel and type 2 diabetes mellitus (T2DM), but the results are not consistent and the mechanism is not clear, which needs further exploration. AIM To investigate the possible correlation between nickel and T2DM. METHODS We conducted a case-control study of 192 patients with T2DM and 189 healthy controls at a hospital in central China. Plasma concentrations of nickel and six other trace elements were measured with inductively coupled plasma mass spectrometry. Logistic regression models, restricted cubic spline models (RCS), and Bayesian kernel machine regression (BKMR) were used to evaluate the relationship between plasma nickel and T2DM and its metabolic risk factors, as well as the presence or absence of interactions between nickel and other elements. RESULTS The T2DM group exhibited considerably lower plasma nickel levels than the control group (P < 0.001). Whether using a crude or adjusted model, logistic regression analysis finds a negative correlation between nickel levels and the risk of T2DM (P trend < 0.001). According to the RCS, the risk of T2DM reduces with rising nickel levels when the value is below 6.1 μg/L; nickel has a negative linear correlation with fasting plasma glucose (FPG), an inverse U-shaped connection with superoxide dismutase (SOD), and a positive linear correlation with malondialdehyde (MDA) (all P overall < 0.05). The plasma nickel concentration was positively correlated with zinc, vanadium, and chromium (r = 0.23, 0.11, and 0.19, respectively; all P < 0.05) and negatively correlated with copper (r = - 0.11, P < 0.05). In the BKMR model, interactions of nickel with zinc on T2DM and SOD, nickel with chromium on T2DM and homeostasis model assessment of β cell (HOMA-β), and nickel with copper on FPG, homeostasis model assessment of insulin (HOMA-IR), and MDA were observed. CONCLUSION Nickel may have a dual effect on the risk of T2DM, with a protective range of less than 6.1 μg/L. Potential interactions between nickel, copper, zinc, and chromium existed in their associations with T2DM and its metabolic risk factors.
Collapse
Affiliation(s)
- Yong Zhang
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Junwei Cai
- Department of Endocrinology, Taihe Hospital, Shiyan 442000, China
| | - Zijun Yao
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Han Zhang
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Zhen Wang
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Jinlin Lei
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China
| | - Huailan Guo
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China; Research Center of Environment and Health of South-to-North Water Diversion Area, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
6
|
Bharathi S, Mahendiran D, Ahmed S, Rahiman AK. In vitro anti-proliferative, and in silico ribonucleotide reductase and pharmacokinetics studies of heteroleptic silver(I), nickel(II) and copper(II) complexes of 4-methyl-3-thiosemicarbazones and ibuprofen. J Trace Elem Med Biol 2023; 79:127211. [PMID: 37263062 DOI: 10.1016/j.jtemb.2023.127211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/10/2022] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVES The present research focuses on the in vitro anti-proliferative, and in silico ribonucleotide reductase and pharmacokinetics studies of twelve heteroleptic metal complexes of the general formulae [Ag(L1-4)(ibu)] (1-4) and [M(L1-4)(ibu)2] (5-12), where L1-4 = 2-(1-(4-substitutedphenyl)ethylidene)-N-methylhydrazinecarbothioamide, ibu = non-steroidal anti-inflammatory drug (ibuprofen), and M = Cu(II) and Ni(II). METHODS Various spectroscopic techniques were used to authenticate the structure of the synthesized complexes. UV-Vis and cyclic voltammetry techniques were used to analyse the stability and the reducing ability of the complexes. In vitro anti-proliferative studies by MTT assay, apoptotic behaviour and cellular uptake studies were investigated followed by the in silico interaction with ribonucleotide reductase (RNR) enzyme. RESULTS The spectral studies predicted distorted tetrahedral geometry around silver(I) ion and distorted octahedral geometry around nickel(II) and copper(II) ions. The reducing ability of the copper(II) complexes was analysed using ascorbic acid by UV-Vis and cyclic voltammetry techniques, which authenticate the reducing ability of the complexes and the possible interactions within the cells. The in vitro anti-proliferative activity of the synthesized complexes against three cancerous (estrogen positive (MCF-7), estrogen negative (MDA-MB-231) and pancreatic (PANC-1)) and one normal (MCF-10a) cell lines by MTT assay showed enhanced activity for copper(II) complexes 11 and 12 containing the hydrophobic substituents. The apoptotic and cellular uptake studies showed that the complex 12 is readily taken up by PANC-1 cell lines and induces ROS-mediated mitochondrial and caspase-dependent apoptosis. The in silico studies indicated hydrogen bonding, hydrophobic and π-pair (π-π, π-σ and π-cation) interactions between the complexes and the ribonucleotide reductase (RNR) enzyme. The in silico pharmacokinetics studies of the complexes predicted the drug-likeness characteristics of the complexes. CONCLUSION The synthesized complexes are found to be less toxic to normal cells and inhibit the growth of cancerous cells by inducing mitochondrial-mediated and caspase dependent apoptotic pathway in PANC-1 cells.
Collapse
Affiliation(s)
- Sundaram Bharathi
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India; Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology and Advanced Studies, Chennai 600 117, India
| | - Dharmasivam Mahendiran
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai 600 014, India.
| |
Collapse
|
7
|
Montalbano S, Bisceglie F, Pelosi G, Lazzaretti M, Buschini A. Modulation of Transcription Profile Induced by Antiproliferative Thiosemicarbazone Metal Complexes in U937 Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15051325. [PMID: 37242567 DOI: 10.3390/pharmaceutics15051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Since the discovery of cisplatin, the search for metal-based compounds with therapeutic potential has been a challenge for the scientific community. In this landscape, thiosemicarbazones and their metal derivatives represent a good starting point for the development of anticancer agents with high selectivity and low toxicity. Here, we focused on the action mechanism of three metal thiosemicarbazones [Ni(tcitr)2], [Pt(tcitr)2], and [Cu(tcitr)2], derived from citronellal. The complexes were already synthesized, characterized, and screened for their antiproliferative activity against different cancer cells and for genotoxic/mutagenic potential. In this work, we deepened the understanding of their molecular action mechanism using an in vitro model of a leukemia cell line (U937) and an approach of transcriptional expression profile analysis. U937 cells showed a significant sensitivity to the tested molecules. To better understand DNA damage induced by our complexes, the modulation of a panel of genes involved in the DNA damage response pathway was evaluated. We analyzed whether our compounds affected cell cycle progression to determine a possible correlation between proliferation inhibition and cell cycle arrest. Our results demonstrate that metal complexes target different cellular processes and could be promising candidates in the design of antiproliferative thiosemicarbazones, although their overall molecular mechanism is still to be understood.
Collapse
Affiliation(s)
- Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mirca Lazzaretti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
8
|
Antiproliferative Activity and DNA Interaction Studies of a Series of N4,N4-Dimethylated Thiosemicarbazone Derivatives. Molecules 2023; 28:molecules28062778. [PMID: 36985750 PMCID: PMC10058200 DOI: 10.3390/molecules28062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The exploitation of bioactive natural sources to obtain new anticancer agents with novel modes of action may represent an innovative and successful strategy in the field of medicinal chemistry. Many natural products and their chemical analogues have been proposed as starting molecules to synthesise compounds with increased biological potential. In this work, the design, synthesis, and characterisation of a new series of N4,N4-dimethylated thiosemicarbazone Cu(II), Ni(II), and Pt(II) complexes are reported and investigated for their in vitro toxicological profile against a leukaemia cell line (U937). The antiproliferative activity was studied by MTS assay to determine the GI50 value for each compound after 24 h of treatment, while the genotoxic potential was investigated to determine if the complexes could cause DNA damage. In addition, the interaction between the synthesised molecules and DNA was explored by means of spectroscopic techniques, showing that for Pt and Ni derivatives a single mode of action can be postulated, while the Cu analogue behaves differently.
Collapse
|
9
|
Albuquerque CCV, Teixeira TM, Dos Santos RS, Abreu DC, Silveira-Lacerda EDP, Back DF, da Silva JP, de Araujo MP. Synthesis, characterization, solution chemistry and anticancer activity of [NiCl 2(Ph 2P-N(R)-PPh 2)] (R = 2-CH 2Py, CH 2Ph and p-tol) complexes. J Inorg Biochem 2023; 240:112119. [PMID: 36639323 DOI: 10.1016/j.jinorgbio.2023.112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
In this work three Ni2+ complexes with general formula [NiCl2(Ph2P-N(R)-PPh2)], R = 2-CH2Py (Py = pyridine) - 1, CH2Ph (Ph = phenyl) - 2 and p-tol (p-tol = p-tolyl) - 3, were synthesized and characterized. These complexes were obtained in high yield by the reaction of NiCl2.6H2O and the corresponding diphenylphosphinoamine ligand (Ph2P-N(R)-PPh2) in CH2Cl2/MeOH (1:1) solution, at room temperature (∼25 °C), and characterized by 1H and 31P {1H} NMR, vibrational spectroscopy in the infrared region, electronic spectroscopy in the UV-Vis regions, elemental analysis (%C, %H, %N) and single-crystal X-ray diffraction. The solution chemistry was studied in CDCl3/dmso-d6 (dimethylsulfoxide) or neat dmso-d6 using complex 2 as a model. The complexes were evaluated as cytotoxic agents against two cancer cells lines, A549 (lung cancer cells), B16F10 (melanoma cells) and the health cells HaCaT (human epithelial keratinocytes).
Collapse
Affiliation(s)
- Carla C V Albuquerque
- Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Thallita M Teixeira
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, 74001-970 Goiânia, GO, Brazil
| | - Rafael S Dos Santos
- Department of Chemistry, Federal University of Paraná, Polytechnique Center, 81531-980 Curitiba, PR, Brazil
| | - Davi C Abreu
- Department of Genetics, Institute of Biological Sciences, Federal University of Goiás, 74001-970 Goiânia, GO, Brazil
| | | | - Davi F Back
- Department of Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Juliana P da Silva
- Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Márcio P de Araujo
- Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Chemistry, Federal University of Paraná, Polytechnique Center, 81531-980 Curitiba, PR, Brazil.
| |
Collapse
|
10
|
Palakkeezhillam VNV, Haribabu J, Manakkadan V, Rasin P, Varughese RE, Gayathri D, Bhuvanesh N, Echeverria C, Sreekanth A. Synthesis, spectroscopic characterizations, single crystal X-ray analysis, DFT calculations, in vitro biological evaluation and in silico evaluation studies of thiosemicarbazones based 1,3,4-thiadiazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Chaudhary U, Dawa D, Banerjee I, Sharma S, Mahiya K, Rauf A, Pokharel YR, Yadav PN. Anticancer Potency of N(4)-ring incorporated-5-methoxyisatin thiosemicarbazones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Synthesis, characterization, and anticancer activity of mononuclear Schiff-base metal complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ali MS, El-Saied FA, Shakdofa MME, Karnik S, Jaragh-Alhadad LA. Synthesis and characterization of thiosemicarbazone metal complexes: crystal structure, and antiproliferation activity against breast (MCF7) and lung (A549) cancers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Lv D, Lai Q, Zhang Q, Wang JH, Li YC, Zeng GZ, Yin JL. 3-Deoxysappanchalcone isolated from Caesalpinia sinensis shows anticancer effects on HeLa and PC3 cell lines: invasion, migration, cell cycle arrest, and signaling pathway. Heliyon 2022; 8:e11013. [PMID: 36276736 PMCID: PMC9582709 DOI: 10.1016/j.heliyon.2022.e11013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
To study the antitumor activity of compound 3-desoxysulforaphane (3-DSC) isolated from Caesalpinia sinensis, SRB assay, clone formation assay, flow cytometric cell cycle assay, scratch assay, transwell assay, and molecular docking were used to investigate the inhibitory effect of 3-DSC on HeLa and PC3 cells. The results showed that 3-DSC inhibited the cell migration and invasion by down-regulating expression of N-cadherin, Vimentin, MMP-2, and MMP-9 in HeLa and PC3 cells; It also inhibits cell proliferation by promoting the expression of CDK1 (cyclin-dependent kinases 1) and CDK2 (cyclin-dependent kinases 2), which arrests the tumor cell cycle at G2 phase. 3-DSC inhibits phosphorylation of AKT and ERK and upregulates the expression of the tumor suppressor gene p53. Molecular docking results confirmed that 3-DSC could bind firmly to AKT. In conclusion, 3-DSC inhibited the proliferation, migration and invasion of HeLa and PC3 cells.
Collapse
|
15
|
Al-Doori LA, Irzoqi AA, Jirjes HM, AL-Obaidi AH, Alheety MA. Zn(II)-isatin-3-thiosemicarbazone complexes with phosphines or diamines for hydrogen storage and anticancer studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
A Mini Review on Isatin, an Anticancer Scaffold with Potential Activities against Neglected Tropical Diseases (NTDs). Pharmaceuticals (Basel) 2022; 15:ph15050536. [PMID: 35631362 PMCID: PMC9146800 DOI: 10.3390/ph15050536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
Isatin, chemically an indole-1H-2,3-dione, is recognised as one of the most attractive therapeutic fragments in drug design and development. The template has turned out to be exceptionally useful for developing new anticancer scaffolds, as evidenced by the increasing number of isatin-based molecules which are either in clinical use or in trials. Apart from its promising antiproliferative properties, isatin has shown potential in treating Neglected Tropical Diseases (NTDs) not only as a parent core, but also by attenuating the activities of various pharmacophores. The objective of this mini-review is to keep readers up to date on the latest developments in the biological potential of isatin-based scaffolds, targeting cancer and NTDs such as tuberculosis, malaria, and microbial infections.
Collapse
|
17
|
Calatayud DG, Neophytou S, Nicodemou E, Giuffrida SG, Ge H, Pascu SI. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Front Chem 2022; 10:830133. [PMID: 35494646 PMCID: PMC9039169 DOI: 10.3389/fchem.2022.830133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 01/28/2023] Open
Abstract
We highlight hereby recent developments in the emerging field of theranostics, which encompasses the combination of therapeutics and diagnostics in a single entity aimed for an early-stage diagnosis, image-guided therapy as well as evaluation of therapeutic outcomes of relevance to prostate cancer (PCa). Prostate cancer is one of the most common malignancies in men and a frequent cause of male cancer death. As such, this overview is concerned with recent developments in imaging and sensing of relevance to prostate cancer diagnosis and therapeutic monitoring. A major advantage for the effective treatment of PCa is an early diagnosis that would provide information for an appropriate treatment. Several imaging techniques are being developed to diagnose and monitor different stages of cancer in general, and patient stratification is particularly relevant for PCa. Hybrid imaging techniques applicable for diagnosis combine complementary structural and morphological information to enhance resolution and sensitivity of imaging. The focus of this review is to sum up some of the most recent advances in the nanotechnological approaches to the sensing and treatment of prostate cancer (PCa). Targeted imaging using nanoparticles, radiotracers and biomarkers could result to a more specialised and personalised diagnosis and treatment of PCa. A myriad of reports has been published literature proposing methods to detect and treat PCa using nanoparticles but the number of techniques approved for clinical use is relatively small. Another facet of this report is on reviewing aspects of the role of functional nanoparticles in multimodality imaging therapy considering recent developments in simultaneous PET-MRI (Positron Emission Tomography-Magnetic Resonance Imaging) coupled with optical imaging in vitro and in vivo, whilst highlighting feasible case studies that hold promise for the next generation of dual modality medical imaging of PCa. It is envisaged that progress in the field of imaging and sensing domains, taken together, could benefit from the biomedical implementation of new synthetic platforms such as metal complexes and functional materials supported on organic molecular species, which can be conjugated to targeting biomolecules and encompass adaptable and versatile molecular architectures. Furthermore, we include hereby an overview of aspects of biosensing methods aimed to tackle PCa: prostate biomarkers such as Prostate Specific Antigen (PSA) have been incorporated into synthetic platforms and explored in the context of sensing and imaging applications in preclinical investigations for the early detection of PCa. Finally, some of the societal concerns around nanotechnology being used for the detection of PCa are considered and addressed together with the concerns about the toxicity of nanoparticles–these were aspects of recent lively debates that currently hamper the clinical advancements of nano-theranostics. The publications survey conducted for this review includes, to the best of our knowledge, some of the most recent relevant literature examples from the state-of-the-art. Highlighting these advances would be of interest to the biomedical research community aiming to advance the application of theranostics particularly in PCa diagnosis and treatment, but also to those interested in the development of new probes and methodologies for the simultaneous imaging and therapy monitoring employed for PCa targeting.
Collapse
Affiliation(s)
- David G. Calatayud
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Electroceramics, Instituto de Ceramica y Vidrio - CSIC, Madrid, Spain
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| | - Sotia Neophytou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Eleni Nicodemou
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Sofia I. Pascu
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre of Therapeutic Innovations, University of Bath, Bath, United Kingdom
- *Correspondence: Sofia I. Pascu, ; David G. Calatayud,
| |
Collapse
|
18
|
Ragab A, Ammar YA, Ezzat A, Mahmoud AM, Mohamed MBI, El-Tabl AS, Farag RS. Synthesis, characterization, thermal properties, antimicrobial evaluation, ADMET study, and molecular docking simulation of new mono Cu (II) and Zn (II) complexes with 2-oxoindole derivatives. Comput Biol Med 2022; 145:105473. [PMID: 35395516 DOI: 10.1016/j.compbiomed.2022.105473] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
One of the interesting research fields is developing and assessing novel metal-containing medications. A new isatin-3-thiosemicarbazone derivative 4 was synthesized by two different methods based on hydrazone derivatives 2 and 3. Additionally, the chelation of thiosemicarbazone with copper (II) and zinc (II) forms a monobasic tridentate (ONS) complex with two five-member rings and a tetrahedral geometry structure. The structure of synthesized complexes was characterized using elemental analysis, FT-IR, mass spectra, and 1H/13C NMR. Thermogravimetric analysis revealed the upgrading of the thermal stability of metal complexes compared to their thiosemicarbazone ligand. The stoichiometric ratio of the coordination confirmed the formation of 1:1 (M: L) stoichiometry. In vitro antimicrobial activity was screened against two gram-positive, two gram-negative, and one fungal strain. Both ligand 4 and Zn complex 6 displayed high antimicrobial activity compared with copper complex 5 based on the zone of inhibition. Further, MIC and MBC were determined for both zinc and ligand. The zinc complex 6 displayed excellent antimicrobial activity with (MIC = 3.9-27.77 μg/mL) against bacterial strains and (MIC = 7.81 μg/mL) against C. albicans, as well as exhibited MBC values ranging between (MBC = 6.51-45.58 μg/mL) and (MFC = 13.58 μg/mL), respectively, and demonstrated bactericidal and fungicidal behavior. The in-silico ADMET study for ligand and two complexes were determined and showed non-AMES toxicity, non-carcinogenic, and obey the rule of five. A comparative docking study provided more insight into the binding mechanisms and suggested that antimicrobial activity may be due to inhibition of different targets.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ahmed Ezzat
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ammar M Mahmoud
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mahmoud Basseem I Mohamed
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Abdou S El-Tabl
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | - Rabie S Farag
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
19
|
Eldeeb M, Sanad EF, Ragab A, Ammar YA, Mahmoud K, Ali MM, Hamdy NM. Anticancer Effects with Molecular Docking Confirmation of Newly Synthesized Isatin Sulfonamide Molecular Hybrid Derivatives against Hepatic Cancer Cell Lines. Biomedicines 2022; 10:722. [PMID: 35327524 PMCID: PMC8945686 DOI: 10.3390/biomedicines10030722] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
The current study investigated the cytotoxic effect of ten sulfonamide-derived isatins, following molecular hybridization, based on the association principles, on hepatocellular carcinoma (HCC) HepG2 and Huh7 cell lines, compared for safety using human normal retina pigmented epithelial (RPE-1) cells. The ten compounds showed variable in vitro cytotoxicity on HepG2 and Huh7 cells, using the MTT assay. Four compounds (4/10) were highly cytotoxic to both HepG2 and HuH7. However, only 3 of these 4 were of the highest safety margin on RPE-1 cells in vitro and in the in vivo acute (14-day) oral toxicity study. These later, superior three compounds' structures are 3-hydroxy-3-(2-oxo-2-(p-tolyl)ethyl)-5-(piperidin-1-ylsulfonyl)indolin-2-one (3a), N-(4-(2-(2-oxo-5-(piperidin-1-ylsulfonyl)indolin-3-ylidene)acetyl)phenyl)acetamide (4b), and N-(3-(2-(2-oxo-5-(piperidin-1-ylsulfonyl)indolin-3-ylidene)acetyl)phenyl)acetamide (4c). The half-maximal inhibitory concentration (IC50) of the tested compounds (3a, 4b, and 4c) on HepG2 cells were approximately 16.8, 44.7, and 39.7 μM, respectively. The 3a, 4b, and 4c compounds significantly decreased the angiogenic marker epithelial growth factor receptor (EGFR) level and that was further confirmed via molecular docking inside the EFGR active site (PDB: 1M17). The binding free energies ranged between -19.21 and -21.74 Kcal/mol compared to Erlotinib (-25.65 Kcal/mol). The most promising compounds, 3a, 4b, and 4c, showed variable anticancer potential on "hallmarks of cancer", significant cytotoxicity, and apoptotic anti-angiogenic and anti-invasive effects, manifested as suppression of Bcl-2, urokinase plasminogen activation, and heparanase expression in HepG2-treated cells' lysate, compared to non-treated HepG2 cells. In conclusion, compound "3a" is highly comparable to doxorubicin regarding cell cycle arrest at G2/M, the pre-G0 phases and early and late apoptosis induction and is comparable to Erlotinib regarding binding to EGFR active site. Therefore, the current study could suggest that compound "3a" is, hopefully, the most safe and active synthesized isatin sulfonamide derivative for HCC management.
Collapse
Affiliation(s)
- Mahmoud Eldeeb
- Department of Biochemistry, Biotechnology Research Institute, National Research Centre, 12622 Giza, Egypt; (M.E.); (M.M.A.)
| | - Eman F. Sanad
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt;
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (for Boys, Cairo Branch), Al-Azhar University, 11884 Cairo, Egypt; (A.R.); (Y.A.A.)
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (for Boys, Cairo Branch), Al-Azhar University, 11884 Cairo, Egypt; (A.R.); (Y.A.A.)
| | - Khaled Mahmoud
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 12622 Giza, Egypt;
| | - Mamdouh M. Ali
- Department of Biochemistry, Biotechnology Research Institute, National Research Centre, 12622 Giza, Egypt; (M.E.); (M.M.A.)
| | - Nadia M. Hamdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt;
| |
Collapse
|
20
|
Influence of the Reaction Conditions in the Crystal Structures of Zn(II) and Ni(II) Coordination Compounds with a Dissymmetric Bis(Thiosemicarbazone) Ligand. CRYSTALS 2022. [DOI: 10.3390/cryst12030310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The new ligand HMeATSM, derived from condensation of 2-3-butanedione with 4-methyl-3-thiosemicarbazide and 2,4-dimethyl-3-thiosemicarbazide, has been synthesized. Its reactivity with nickel(II) and zinc(II) nitrates was explored and the resulting complexes were thoroughly characterized by elemental analysis, conductivity, mass spectrometry, IR, 1H and 13C NMR spectroscopies and their structures were confirmed by single-crystal X-ray diffraction. The results showed that the complex [Ni(MeATSM)]NO3 1 is formed under every reaction condition. In contrast, the reaction with zinc(II) nitrate depends on the temperature and the presence of LiOH.H2O, leading to the obtaining of complexes [Zn(MeATSM)(OH2)](NO3) 2 and [Zn(Me2TS)2(OH2)](NO3)2 3. The crystal structures of complexes 1 and 2 show that the dissymmetric ligand acts as a N2S2 tetradentate monoanionic ligand. The structural preferences of the metals also determine the structure of the complexes: whereas nickel(II) is in a square-planar environment, the zinc atom prefers a distorted square-base pyramid geometry imposed by the coordination mode and the planarity of the bis(thiosemicarbazone) ligand. In contrast, in complex 3, containing two bidentate Me2TS ligands, the Zn(II) is in a trigonal bipyramid arrangement. In all the complexes, the nitrate ion is not coordinated to the metal and acts as a counterion.
Collapse
|
21
|
Haribabu J, Garisetti V, Malekshah RE, Srividya S, Gayathri D, Bhuvanesh N, Mangalaraja RV, Echeverria C, Karvembu R. Design and synthesis of heterocyclic azole based bioactive compounds: Molecular structures, quantum simulation, and mechanistic studies through docking as multi-target inhibitors of SARS-CoV-2 and cytotoxicity. J Mol Struct 2022; 1250:131782. [PMID: 34697505 PMCID: PMC8528790 DOI: 10.1016/j.molstruc.2021.131782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023]
Abstract
Two heterocyclic azole compounds, 3-(2,3-dihydrobenzo[d]thiazol-2-yl)-4H-chromen-4-one (SVS1) and 5-(1H-indol-3-yl)-4-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (SVS2) were obtained unexpectedly from 2-aminothiophenol and 4-oxo-4H-chromene-3-carbaldehyde (for SVS1), and (E)-2-((1H-indol-3-yl)methylene)-N-methylhydrazine-1-carbothioamide in the presence of anhydrous FeCl3 (for SVS2), respectively. The compounds were well characterized by analytical and spectroscopic tools. The molecular structures of both the compounds were determined by single crystal X-ray diffraction (XRD) study. The results obtained from density functional theory (DFT) study revealed the molecular geometry and electron distribution of the compounds, which were correlated well with the three-dimensional structures obtained from the single crystal XRD. DMol3 was used to calculate quantum chemical parameters [chemical potential (µ), global hardness (η), global softness (σ), absolute electronegativity (χ) and electrophilicity index (ω)] of SVS1 and SVS2. Molecular docking study was performed to elucidate the binding ability of SVS1 and SVS2 with SARS-CoV-2 main protease and human angiotensin-converting enzyme-2 (ACE-2) molecular targets. Interestingly, the binding efficiency of the compounds with the molecular targets was comparable with that of remdesivir (SARS-CoV-2), chloroquine and hydroxychloroquine. SVS1 showed better docking energy than SVS2. The molecular docking study was complemented by molecular dynamics simulation study of SARS-CoV-2 main protease-SVS1 complex, which further exemplified the binding ability of SVS1 with the target. In addition, SVS1, SVS2 and cisplatin were assessed for their cytotoxicity against a panel of three human cancer cells such as HepG-2 (hepatic carcinoma), T24 (bladder) and EA.hy926 (endothelial), as well as Vero (kidney epithelial cells extracted from an African green monkey) normal cells using MTT assay. The results showed that SVS2 has significant cytotoxicity against HepG-2 and EA.hy926 cells with the IC50 values of 33.8 μM (IC50 = 49.9 μM-cisplatin and 8.6 μM-doxorubicin) and 29.2 (IC50 = 26.6 μM-cisplatin and 3.8 μM-doxorubicin), respectively.
Collapse
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India,Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | - Vasavi Garisetti
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran,Department of Chemistry, Iran University of Science and Technology, Tehran 16846‒13114, Iran
| | - Swaminathan Srividya
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Dasararaju Gayathri
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Ramalinga Viswanathan Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion, Chile
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile,Corresponding authors
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India,Corresponding authors
| |
Collapse
|
22
|
El-Ghamry HA, Fawzy A, Farghaly TA, Bawazeer TM, Alqarni N, Alkhatib FM, Gaber M. Evaluation of the efficiency of divalent cobalt and copper chelates based on isatin derivatives and thiosemicarbazide ligands as inhibitors for the corrosion of Sabic iron in acidic medium. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Wang ZF, Wei QC, Li JX, Zhou Z, Zhang S. A new class of nickel(II) oxyquinoline-bipyridine complexes as potent anticancer agents induces apoptosis and autophagy in A549/DDP tumor cells through mitophagy pathways. Dalton Trans 2022; 51:7154-7163. [DOI: 10.1039/d2dt00669c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of nickel(II) oxyquinoline-bipyridine complexes, namely, [Ni(La1)2(Lb6)] (Ni1), [Ni(La1)2(Lb2)] CH3OH (Ni2), [Ni(La7)2(Lb11)]2H2O (Ni3), [Ni(La1)2(Lb9)] (Ni4), [Ni(La1)2(Lb8)] (Ni5), [Ni(La2)2(Lb1)] (Ni6), [Ni(La2)2(Lb6)]CH3OH (Ni7), [Ni(La2)2(Lb11)]CH3OH (Ni8), [Ni(La2)2(Lb3)] (Ni9), [Ni(La2)2(Lb2)]CH3OH (Ni10), [Ni(La2)2(Lb5)]CH3OH...
Collapse
|
24
|
Chen Z, Ye X, Yuan K, Liu W, Liu K, Li Y, Huang C, Yu Z, Wu D. Lycorine nanoparticles induce apoptosis through mitochondrial intrinsic pathway and inhibit migration and invasion in HepG2 cells. IEEE Trans Nanobioscience 2021; 21:549-559. [PMID: 34851831 DOI: 10.1109/tnb.2021.3132104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lycorine-nanoparticles (LYC-NPs) were successfully synthesized using anti-solvent precipitation-freeze drying method, and characterized using transmission electron microscopy (TEM), particle size analysis and Fourier transform infrared spectroscopy (FTIR). Then, the antitumor effects of LYC-NPs against HepG2 cells were investigated, and the underlying molecular mechanisms were explored. Our results showed that LYC-NPs displayed potent antiproliferative against HepG2 cells concentration dependently. Flow cytometry analysis exhibited that LYC-NPs triggered apoptosis and impeded cell cycle in G0/G1 phase. Moreover, the up-regulated expression of cleaved caspases-3 and Bax, and decrease of mitochondrial membrane potential and the Bcl-2 expression were involved in LYC-NPs apoptosis, implying that LYC-NPs induced apoptosis via the mitochondrial-mediated apoptosis pathway. Furthermore, LYC-NPs distinctly impaired HepG2 cells migration and invasion with down-regulation of matrix metalloproteinase-2 (MMP-2) and MMP-9 expression. These results indicated that LYC-NPs could be an favorable agent for restraining the growth and metastasis of HepG2 cells.
Collapse
|
25
|
A Novel Copper Oxide Nanoparticle Conjugated by Thiosemicarbazone Promote Apoptosis in Human Breast Cancer Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Lavanya M, Haribabu J, Ramaiah K, Suresh Yadav C, Kumar Chitumalla R, Jang J, Karvembu R, Varada Reddy A, Jagadeesh M. 2′-Thiophenecarboxaldehyde derived thiosemicarbazone metal complexes of copper(II), palladium(II) and zinc(II) ions: Synthesis, spectroscopic characterization, anticancer activity and DNA binding studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Gomathi K, Haribabu J, Saranya S, Gayathri D, Jeyalakshmi K, Sendilvelan S, Echeverria C, Karvembu R. Effective inhibition of insulin amyloid fibril aggregation by nickel(II) complexes containing heterocyclic thiosemicarbazones. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:1069-1081. [PMID: 34455461 DOI: 10.1007/s00249-021-01566-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
The sensitivity of protein molecular structures makes them susceptible to aggregation in conditions unfavorable for the maintenance of their native folds. The aggregation of proteins leads to many disorders, but the inhibition of amyloid fibril formation using metal-containing small molecules is gaining popularity. Herein we report the effect of nickel(II) complexes (N1, N2, N3, and N4) bearing thiosemicarbazones on the inhibition of amyloid fibril formation by insulin. The interactions of the complexes with amyloid fibrils were investigated using various biophysical techniques, including light scattering, intrinsic fluorescence assay, thioflavin T (ThT) assay, and Fourier transform-infrared spectroscopy. The results revealed that the phenyl-substituted N3 was an efficient inhibitor of amyloid fibril formation and maintained the insulin in its native structure despite conditions promoting fibrillation. Nickel(II) complexes containing indole based thiosemicarbazones were efficient in inhibiting the amyloid fibril formation and maintaining the insulin in its native structure in unfavorable conditions.
Collapse
Affiliation(s)
- Kannayiram Gomathi
- Department of Mechanical Engineering, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, 600095, India.
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.,Facultad de Medicina, Universidad de Atacama, Copayapu 485, 1531772, Copiapo, Chile
| | - Sivaraj Saranya
- Department of Mechanical Engineering, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, 600095, India.,Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Dasararaju Gayathri
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Kumaramangalam Jeyalakshmi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.,Department of Chemistry, M. Kumarasamy College of Engineering, Karur, 639113, India
| | - Subramanian Sendilvelan
- Department of Mechanical Engineering, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, 600095, India
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, 1531772, Copiapo, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.
| |
Collapse
|
28
|
Matesanz AI, Herrero JM, Quiroga AG. Chemical and Biological Evaluation of Thiosemicarbazone-Bearing Heterocyclic Metal Complexes. Curr Top Med Chem 2021; 21:59-72. [PMID: 33092510 DOI: 10.2174/1568026620666201022144004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 01/07/2023]
Abstract
Thiosemicarbazones (TSCNs) constitute a broad family of compounds (R1R2C=N-NH-C(S)- NR3R4), particularly attractive because many of them display some biological activity against a wide range of microorganisms and cancer cells. Their activity can be related to their electronic and structural properties, which offer a rich set of donor atoms for metal coordination and a high electronic delocalization providing different binding modes for biomolecules. Heterocycles such as pyrrole, imidazole and triazole are present in biological molecules such as Vitamine B12 and amino acids and could potentially target multiple biological processes. Considering this, we have explored the chemistry and biological properties of thiosemicarbazones series and their complexes bearing heterocycles such as pyrrole, imidazole, thiazole and triazole. We focus at the chemistry and cytotoxicity of those derivatives to find out the structure activity relationships, and particularly we analyzed those examples with the TSCN units in which the mechanism of action information has been profoundly studied and pathways determined, to promote future studies for heterocycle derivatives.
Collapse
Affiliation(s)
- Ana I Matesanz
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Jorge M Herrero
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| | - Adoración G Quiroga
- Departamento Quimica Inorganica, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Ferraz de Paiva RE, Vieira EG, Rodrigues da Silva D, Wegermann CA, Costa Ferreira AM. Anticancer Compounds Based on Isatin-Derivatives: Strategies to Ameliorate Selectivity and Efficiency. Front Mol Biosci 2021; 7:627272. [PMID: 33614708 PMCID: PMC7889591 DOI: 10.3389/fmolb.2020.627272] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
In this review we compare and discuss results of compounds already reported as anticancer agents based on isatin-derivatives, metalated as well as non-metallated. Isatin compounds can be obtained from plants, marine animals, and is also found in human fluids as a metabolite of amino acids. Its derivatives include imines, hydrazones, thiosemicarbazones, among others, already focused on numerous anticancer studies. Some of them have entered in pre-clinical and clinical tests as antiangiogenic compounds or inhibitors of crucial proteins. As free ligands or coordinated to metal ions, such isatin derivatives showed promising antiproliferative properties against different cancer cells, targeting different biomolecules or organelles. Binding to metal ions usually improves its biological properties, indicating a modulation by the metal and by the ligand in a synergistic process. They also reveal diverse mechanisms of action, being able of binding DNA, generating reactive species that cause oxidative damage, and inhibiting selected proteins. Strategies used to improve the efficiency and selectivity of these compounds comprise structural modification of the ligands, metalation with different ions, syntheses of mononuclear and dinuclear species, and use of inserted or anchored compounds in selected drug delivery systems.
Collapse
Affiliation(s)
| | - Eduardo Guimarães Vieira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Rodrigues da Silva
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Anchau Wegermann
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Maria Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Dorairaj DP, Haribabu J, Chithravel V, Vennila KN, Bhuvanesh N, Echeverria C, Hsu SC, Karvembu R. Spectroscopic, anticancer and antioxidant studies of fluxional trans-[PdCl2(S-acylthiourea)2] complexes. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Haribabu J, Srividya S, Mahendiran D, Gayathri D, Venkatramu V, Bhuvanesh N, Karvembu R. Synthesis of Palladium(II) Complexes via Michael Addition: Antiproliferative Effects through ROS-Mediated Mitochondrial Apoptosis and Docking with SARS-CoV-2. Inorg Chem 2020; 59:17109-17122. [PMID: 33231439 PMCID: PMC7724763 DOI: 10.1021/acs.inorgchem.0c02373] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Indexed: 12/27/2022]
Abstract
Metal complexes have numerous applications in the current era, particularly in the field of pharmaceutical chemistry and catalysis. A novel synthetic approach for the same is always a beneficial addition to the literature. Henceforth, for the first time, we report the formation of three new Pd(II) complexes through the Michael addition pathway. Three chromone-based thiosemicarbazone ligands (SVSL1-SVSL3) and Pd(II) complexes (1-3) were synthesized and characterized by analytical and spectroscopic tools. The Michael addition pathway for the formation of complexes was confirmed by spectroscopic studies. Distorted square planar structure of complex 2 was confirmed by single-crystal X-ray diffraction. Complexes 1-3 were subjected to DNA- and BSA-binding studies. The complex with cyclohexyl substituent on the terminal N of thiosemicarbazone (3) showed the highest binding efficacy toward these biomolecules, which was further understood through molecular docking studies. The anticancer potential of these complexes was studied preliminarily by using MTT assay in cancer and normal cell lines along with the benchmark drugs (cisplatin, carboplatin, and gemcitabine). It was found that complex 3 was highly toxic toward MDA-MB-231 and AsPC-1 cancer cells with IC50 values of 0.5 and 0.9 μM, respectively, and was more efficient than the standard drugs. The programmed cell death mechanism of the complexes in MDA-MB-231 cancer cells was confirmed. Furthermore, the complexes induced apoptosis via ROS-mediated mitochondrial signaling pathway. Conveniently, all the complexes showed less toxicity (≥50 μM) against MCF-10a normal cell line. Molecular docking studies were performed with VEGFR2, EGFR, and SARS-CoV-2 main protease to illustrate the binding efficiency of the complexes with these receptors. To our surprise, binding potential of the complexes with SARS-CoV-2 main protease was higher than that with chloroquine and hydroxychloroquine.
Collapse
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Swaminathan Srividya
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Dharmasivam Mahendiran
- Department of Pathology, Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dasararaju Gayathri
- Centre of Advanced
Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India
| | - Vemula Venkatramu
- Department of Physics, Krishna University
Dr. MRAR PG Centre, Nuzvid 521201, India
| | - Nattamai Bhuvanesh
- Department
of Chemistry, Texas A & M University, College Station, Texas 77842, United States
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
32
|
Silva DES, Becceneri AB, Solcia MC, Santiago JVB, Moreira MB, Gomes Neto JA, Pavan FR, Cominetti MR, Pereira JCM, Netto AVG. Cytotoxic and apoptotic effects of ternary silver(i) complexes bearing 2-formylpyridine thiosemicarbazones and 1,10-phenanthroline. Dalton Trans 2020; 49:5264-5275. [PMID: 32242564 DOI: 10.1039/d0dt00253d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
New silver(i) compounds containing 2-formylpyridine-N(4)-R-thiosemicarbazones and 1,10-phenanthroline (phen) were synthesized and characterized by spectroscopic techniques (IR and NMR), elemental analysis, ESI-MS and molar conductance measurements. In these complexes, both phen and thiosemicarbazone ligands are coordinated in a chelating bidentate fashion. Compounds 1-3 not only showed good in vitro antiproliferative activity against human lung (A549) and breast tumor cells (MDA-MB-231 and MCF-7), with IC50 values ranging from 1.49 to 20.90 μM, but were also demonstrated to be less toxic towards human breast non-tumor cells (MCF-10A). Cellular uptake studies indicated that compounds 1-3 were taken up by the MDA-MB-231 cells in 6 hours. Cell death assays in the MDA-MB-231 cells were conducted with compound 1 aiming to evaluate its effects on cell morphology, induction of apoptosis, the cell cycle, reactive oxygen species (ROS) formation and mitochondrial membrane potential (Δψm). Compound 1 caused morphological changes, such as cell shrinkage and rounding, increased the sub-G1 phase population, and induced apoptotic cell death, ROS formation and loss of mitochondrial membrane potential (Δψm). DNA binding results revealed that 1 interacted with the ct-DNA minor groove. Complexes 1-3 also exhibited good in vitro activity against M. tuberculosis H37Rv, with MIC values ranging from 3.37 to 4.65 μM.
Collapse
Affiliation(s)
- Débora E S Silva
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | - Amanda B Becceneri
- Department de Gerontology, Federal University of São Carlos, CEP 13565-905 São Carlos, SP, Brazil
| | - Mariana C Solcia
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, CEP 14800-903 Araraquara, SP, Brazil
| | - João V B Santiago
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | - Mariete B Moreira
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | - José A Gomes Neto
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | - Fernando R Pavan
- School of Pharmaceutical Sciences, UNESP - São Paulo State University, CEP 14800-903 Araraquara, SP, Brazil
| | - Márcia R Cominetti
- Department de Gerontology, Federal University of São Carlos, CEP 13565-905 São Carlos, SP, Brazil
| | - José C M Pereira
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| | - Adelino V G Netto
- Department of General and Inorganic Chemistry, Department of Analytical Chemistry, UNESP - São Paulo State University, Institute of Chemistry, CEP 14800-060 Araraquara, SP, Brazil.
| |
Collapse
|
33
|
Sousa LM, Souza WA, Paixão DA, Fazzi RB, Tezuka DY, Lopes CD, Carneiro ZA, Moreira MB, Pivatto M, Netto AV, de Albuquerque S, Ferreira FB, De Oliveira RJ, Resende JA, Lino RC, De Oliveira Júnior RJ, Da Costa Ferreira AM, Guerra W. DNA binding, cleavage, apoptosis and cytotoxicity studies of three heteroleptic nickel complexes bearing β-diketones. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Haribabu J, Srividya S, Umapathi R, Gayathri D, Venkatesu P, Bhuvanesh N, Karvembu R. Enhanced anticancer activity of half-sandwich Ru(II)-p-cymene complex bearing heterocyclic hydrazone ligand. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Musthafa M, Konakanchi R, Ganguly R, Balachandran C, Aoki S, Sreekanth A. Synthesis, characterization, theoretical, molecular docking and in vitro biological activity studies of Ru(II) ( η6- p-cymene) complexes with novel aniline substituted aroyl selenoureas. J Biomol Struct Dyn 2020; 39:4346-4361. [PMID: 32597724 DOI: 10.1080/07391102.2020.1778531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A sequence of aroyl selenourea ligands (L1-L3) substituted by aniline and their Ru(II) (η6-p-cymene) complexes (1-3), [Ru(II) (η6-p-cymene) L] (L = monodentate aroyl selenourea ligand) have been synthesized and characterized the composition of the ligands and their metal complexes. The molecular structures of ligand L1 and complex 3 were also confirmed by single XRD crystal method. The single-crystal XRD study showed that aroyl selenourea ligand coordinates with Ru via Se novel neutral monodentate atom. In vitro DNA interaction studies were investigated by Fluorescence and UV-Visible spectroscopic methods which showed that the intercalative mode of binding is in the order of 1 > 2 > 3 with Ru(II) (η6-p-cymene) complexes. Spectroscopic methods have been used for measuring the binding affinity of bovine serum albumin to complex. Moreover, the cytotoxic study of complexes (1-3) were evaluated against HeLa S3, A549, and IMR90 cells, resulting in complexes 1 and 2 showed promising cytotoxic activity against HeLa S3 cell with IC50 values of 24 and 26 µM, respectively. Also, the morphological changes of HeLa S3 and A549 cells were confirmed by fluorescence microscope in the presence of complexes 1 and 2 using AO (acridine orange, 200 µM) and EB (ethidium bromide, 100 µM). In addition, the docking results strongly support the protein binding studies of the complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Moideen Musthafa
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - Ramaiah Konakanchi
- Chemistry Division, H&S Department, Malla Reddy Engineering College for Women (Autonomous Institution), Hyderabad, Telangana, India
| | - Rakesh Ganguly
- Division of Chemistry & Biological Chemistry, Nanyang Technological University, Singapore, Singapore
| | | | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Research Institute for Science and Technology, Tokyo University of Science, Yamazaki, Noda, Japan
| | - Anandaram Sreekanth
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
36
|
Heng MP, Tan CH, Saad HM, Sim KS, Tan KW. Mitochondria-dependent apoptosis inducer: Testosterone-N4-ethylthiosemicarbazonate and its metal complexes with selective cytotoxicity towards human colorectal carcinoma cell line (HCT 116). Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Heng MP, Sim KS, Tan KW. Nickel and zinc complexes of testosterone N4-substituted thiosemicarbazone: Selective cytotoxicity towards human colorectal carcinoma cell line HCT 116 and their cell death mechanisms. J Inorg Biochem 2020; 208:111097. [PMID: 32438269 DOI: 10.1016/j.jinorgbio.2020.111097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Two new Schiff base ligands (TE and TF) were prepared from conjugation of testosterone with 4-(4-ethylphenyl)-3-thiosemicarbazide and 4-(4-fluorophenyl)-3-thiosemicarbazide, respectively. Their nickel (NE and NF) and zinc (ZE and ZF) complexes were reported. X-ray crystallography revealed a distorted square planar geometry was adopted by NE. The compounds demonstrated excellent selectivity towards the colorectal carcinoma cell line HCT 116 despite their weak preferences towards the prostate cancer cell lines (PC-3 and LNCaP). Against HCT 116, all these compounds were able to arrest cell cycle at G0/G1 phase and induce apoptosis via mitochondria-dependent (TE, NE, and TF) and extrinsic apoptotic pathway (ZE, NF, and ZF). Moreover, only ZE was able to act as topoisomease I poison and halt its enzymatic reactions although all compounds presented excellent affinity towards DNA.
Collapse
Affiliation(s)
- Mok Piew Heng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kong Wai Tan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia..
| |
Collapse
|
38
|
Parsa FG, Feizi MAH, Safaralizadeh R, Hosseini-Yazdi SA, Mahdavi M. Molecular mechanisms of apoptosis induction in K562 and KG1a leukemia cells by a water-soluble copper(II) thiosemicarbazone complex. J Biol Inorg Chem 2020; 25:383-394. [PMID: 32274578 DOI: 10.1007/s00775-020-01769-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/25/2020] [Indexed: 11/26/2022]
Abstract
Thiosemicarbazones (TSCs) and their metal complexes exhibit pronounced and selective cytotoxic potential against a broad span of cancers. Here, we assessed the anti-cancer activity of a water-soluble copper(II) complex of thiosemicarbazone (Cu-TSC) against two cancer cell lines of human leukemia. Our analysis revealed that Cu-TSC treatment results in a time and dose-dependent growth inhibition in K562 and KG1a cells while sparing normal human fibroblast (HFF2) cells. The IC50 values for the Cu-TSC treatment were measured to be 21.7 ± 1.5 µM and 50.25 ± 2.5 µM for K562 and KG1a cells, respectively. Cell cycle analysis indicated that Cu-TSC induces the accumulation of cells in the sub-G1 fraction as well as the reversible arrest in G0/G1 and G2/M phases in K562 and KG1a cells, respectively. Furthermore, the occurrence of apoptosis as the prime mode of cell death was verified through apoptotic body formation, phosphatidylserine externalization, and caspase-3 activation. Additionally, the real-time quantitative PCR analysis revealed that Cu-TSC triggers apoptosis in both cell lines via the upregulation of caspases-8, -9, and the changing of Bax/Bcl2 ratio. Finally, flow cytometric analysis confirmed that Cu-TSC treatment causes the enhancement of reactive oxygen species formation in both K562 and KG1a cells. Altogether, these findings suggest that Cu-TSC is a promising inducer of apoptosis in leukemia cells and carries potential as an anti-cancer compound.
Collapse
Affiliation(s)
| | | | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Majid Mahdavi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
39
|
Iron oxide nanoparticle core-shell magnetic microspheres: Applications toward targeted drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102134. [DOI: 10.1016/j.nano.2019.102134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
|
40
|
Zhang Y, Du H, Liu H, He Q, Xu Z. Isatin dimers and their biological activities. Arch Pharm (Weinheim) 2020; 353:e1900299. [DOI: 10.1002/ardp.201900299] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ya‐Zhou Zhang
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hong‐Zhi Du
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hai‐Lin Liu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Qian‐Song He
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Zhi Xu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| |
Collapse
|
41
|
Haribabu J, Balachandran C, Tamizh MM, Arun Y, Bhuvanesh NSP, Aoki S, Karvembu R. Unprecedented formation of palladium(II)-pyrazole based thiourea from chromone thiosemicarbazone and [PdCl 2(PPh 3) 2]: Interaction with biomolecules and apoptosis through mitochondrial signaling pathway. J Inorg Biochem 2020; 205:110988. [PMID: 31981770 DOI: 10.1016/j.jinorgbio.2019.110988] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Abstract
Two novel pyrazole based thiourea palladium(II) complexes, [PdCl(PPh3)(C9H8NO2S-pz)] (1) and [PdCl(PPh3)(C14H10NO2S-pz)] (2) [pz = pyrazole (C3H2N2)] have been obtained unexpectedly from chromone thiosemicarbazones (L1 and L2) and [PdCl2(PPh3)2]. The compounds have been fully characterized by physicochemical studies. The single crystal X-ray diffraction and spectral studies revealed square planar geometry for the complexes. The conversion of chromone thiosemicarbazone into pyrazole based thiourea might have happened through coordination to palladium(II) ion after enolization, Michael addition and ring opening followed by cyclization. To the best of our knowledge, this is the first report for the conversion of chromone thiosemicarbazone into pyrazole based thiourea moiety. Plausible mechanism was proposed based on the spectroscopic studies. Calf thymus (CT) DNA binding of the compounds was explored using various spectroscopic and molecular docking methods. DNA cleavage studies suggested that complexes 1 and 2 had the capacity to cleave the supercoiled DNA (pUC19) to its naked form. In vitro cytotoxic property of the ligands and complexes has been evaluated against three human cancer cells such as A549, HepG-2 and U937. Complex 2 exhibited potent cytotoxic activity against HepG-2 cells with the IC50 value of 10.4 μM. In addition, mechanistic studies showed that complex 2 induced apoptosis through mitochondrial signaling pathway in HepG-2 cells. Beneficially, complex 2 showed less toxicity against human lung (IMR90) normal cells and hence it emerges as a potential candidate for further studies.
Collapse
Affiliation(s)
- Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India; Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Manoharan Muthu Tamizh
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Arumbakkam, Chennai 600106, India
| | - Yuvaraj Arun
- Organic Chemistry Division, CSIR-Central Leather Research Institute, Chennai 600020, India
| | | | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.
| |
Collapse
|
42
|
Elamathi C, Fronczek FR, Madankumar A, Prabhakaran R. Synthesis and spectral characterizations of water soluble Cu(ii) complexes containing N-heterocyclic chelates: cell-proliferation, antioxidant and nucleic acid/serum albumin interactions. NEW J CHEM 2020. [DOI: 10.1039/c9nj04136b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Water soluble N-heterocyclic copper(ii) complexes were synthesized, characterized and studied their DNA/protein binding interactions, antioxidation and antiproliferative potentials. The complex 4 found to be better than other complexes.
Collapse
Affiliation(s)
- C. Elamathi
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| | | | - A. Madankumar
- Cancer biology Lab
- Molecular and Nanomedicine Research Unit
- Sathyabama Institute of Science and Technology
- Chennai 600 119
- India
| | - R. Prabhakaran
- Department of Chemistry
- Bharathiar University
- Coimbatore 641 046
- India
| |
Collapse
|
43
|
Saranya S, Haribabu J, Vadakkedathu Palakkeezhillam VN, Jerome P, Gomathi K, Rao KK, Hara Surendra Babu VH, Karvembu R, Gayathri D. Molecular structures, Hirshfeld analysis and biological investigations of isatin based thiosemicarbazones. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Li Y, Li Y, Wang N, Lin D, Liu X, Yang Y, Gao Q. Synthesis, DNA/BSA binding studies and in vitro biological assay of nickel(II) complexes incorporating tridentate aroylhydrazone and triphenylphosphine ligands. J Biomol Struct Dyn 2019; 38:4977-4996. [PMID: 31739745 DOI: 10.1080/07391102.2019.1694995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023]
Abstract
Two new nickel (II) triphenylphosphine complexes derived from tridentate aroylhydrazone ligands [H2L1 = 2-hydroxy-3-methoxybenzylidene)benzohydrazone and H2L2 = N'-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone] and triphenylphosphine were prepared and their molecular structures were determined by single crystal X-ray diffraction analysis. Both nickel(II) complexes showed slightly distorted square planar geometry with one tridentate aroylhydrazone ligand coordinated through ONO donor atoms and one triphenylphosphine ligand coordinated to the nickel center through the phosphorus atom. DNA interaction studies indicated that both complexes possessed higher affinity to herring sperm DNA (HS-DNA) than the corresponding free aroylhydrazone ligand. Molecular docking investigations showed that both complexes could bind to DNA through intercalation of the phenyl rings between adjacent base pairs in the double helix. Meanwhile, bovine serum albumin (BSA) binding studies revealed the complexes could effectively interact with BSA and change the secondary structure of BSA. Further pharmacological evaluations of the synthesized complexes by in vitro antioxidant assays demonstrated high antioxidant activity against NO· and O2˙- radicals. The anticancer activity of each complex was assessed through in vitro cytotoxicity assays (CCK-8 kit) toward A549 and MCF-7 cancer cell and normal L-02 cell lines. Significantly, the Ni(II) complex derived from H2L1 ligand was found to be more effective cytotoxic toward MCF-7cancerous cell with the IC50 value equaled 9.7 μM, which showed potent cytotoxic activity over standard drug cisplatin.
Collapse
Affiliation(s)
- Yun Li
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Yueqin Li
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Nana Wang
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Dong Lin
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Xiaohui Liu
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Yong Yang
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Qinwei Gao
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
45
|
Zinc(II) complexes of indole thiosemicarbazones: DNA/protein binding, molecular docking and in vitro cytotoxicity studies. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Qin QP, Wang ZF, Wang SL, Luo DM, Zou BQ, Yao PF, Tan MX, Liang H. In vitro and in vivo antitumor activities of three novel binuclear platinum(II) complexes with 4′-substituted-2,2′:6′,2″-terpyridine ligands. Eur J Med Chem 2019; 170:195-202. [DOI: 10.1016/j.ejmech.2019.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
|
47
|
Structural analysis and biological functionalities of iron(III)– and manganese(III)–thiosemicarbazone complexes: in vitro anti-proliferative activity on human cancer cells, DNA binding and cleavage studies. J Biol Inorg Chem 2019; 24:365-376. [DOI: 10.1007/s00775-019-01653-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/13/2019] [Indexed: 01/28/2023]
|
48
|
Elamathi C, Butcher R, Prabhakaran R. Anomalous coordination behaviour of 6-methyl-2-oxo-1,2-dihydroquinoline-3-carboxaldehyde-4(N)-substituted Schiff bases in Cu(II) complexes: Studies of structure, biomolecular interactions and cytotoxicity. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C. Elamathi
- Department of Chemistry; Bharathiar University; Coimbatore 641 046 India
| | - Ray Butcher
- Department of Inorganic and Structural Chemistry; Howard University; Washington DC 20059 USA
| | - R. Prabhakaran
- Department of Chemistry; Bharathiar University; Coimbatore 641 046 India
| |
Collapse
|
49
|
Jeyalakshmi K, Haribabu J, Balachandran C, Swaminathan S, Bhuvanesh NSP, Karvembu R. Coordination Behavior of N,N′,N″-Trisubstituted Guanidine Ligands in Their Ru–Arene Complexes: Synthetic, DNA/Protein Binding, and Cytotoxic Studies. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00702] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kumaramangalam Jeyalakshmi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
- Department of Science and Humanities, M. Kumarasamy College of Engineering, Karur 639113, India
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | - Chandrasekar Balachandran
- Department of Hematology, Fujita Health University, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| | | | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
50
|
Murugesh N, Haribabu J, Arumugam K, Balachandran C, Swaathy R, Aoki S, Sreekanth A, Karvembu R, Vedachalam S. NHC-catalyzed green synthesis of functionalized chromones: DFT mechanistic insights and in vitro activities in cancer cells. NEW J CHEM 2019. [DOI: 10.1039/c9nj02650a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A simple green protocol for the synthesis of 3-aminochromone derivatives using a NHC catalyzed intramolecular hydroacylation reaction was developed. Further functional 3-aminochromes were evaluated for their anticancer activity.
Collapse
Affiliation(s)
- Nithya Murugesh
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620 015
- India
| | - Jebiti Haribabu
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620 015
- India
| | | | | | - Rajagopal Swaathy
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620 015
- India
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences
- Tokyo University of Science
- 2641 Yamazaki
- Japan
- Research Institute of Science and Technology
| | - Anandaram Sreekanth
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620 015
- India
| | - Ramasamy Karvembu
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620 015
- India
| | | |
Collapse
|