1
|
Zhang GD, Wang MM, Su Y, Fang H, Xue XL, Liu HK, Su Z. Mitochondria-targeted ruthenium complexes can be generated in vitro and in living cells to target triple-negative breast cancer cells by autophagy inhibition. J Inorg Biochem 2024; 256:112574. [PMID: 38677004 DOI: 10.1016/j.jinorgbio.2024.112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer, which owned severe resistance to platinum-based anticancer agents. Herein, we report a new metal-arene complex, Ru-TPE-PPh3, which can be synthesized in vitro and in living cells with copper catalyzed the cycloaddition reaction of Ru-azide and alkynyl (CuAAC). The complex Ru-TPE-PPh3 exhibited superior inhibition of the proliferation of TNBC MDA-MB-231 cells with an IC50 value of 4.0 μM. Ru-TPE-PPh3 could induce the over production of reactive oxygen species (ROS) to initiate the oxidative stress, and further damage the mitochondria both functionally and morphologically, as loss of mitochondrial membrane potential (MMP) and cutting the supply of adenosine triphosphate (ATP), the disappearance of cristae structure. Moreover, the damaged mitochondria evoked the occurrence of mitophagy with the autophagic flux blockage and cell death. The complex Ru-TPE-PPh3 also demonstrated excellent anti-proliferative activity in 3D MDA-MB-231 multicellular tumor spheroids (MCTSs), indicating the potential to inhibit solid tumors in living cells. This study not only provided a potent agent for the TNBC treatment, but also demonstrated the universality of the bioorthogonally catalyzed lethality (BCL) strategy through CuAAC reation.
Collapse
Affiliation(s)
- Guan-Dong Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xu-Ling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Granato JDT, Silva ETD, Lemos ASDO, Machado PDA, Midlej VDV, Antinarelli LMR, Silva Neto AFD, Souza MVN, Coimbra ES. 4-Quinolinylhydrazone analogues kill Leishmania (Leishmania) amazonensis by inducing apoptosis and mitochondria-dependent pathway cell death. Chem Biol Drug Des 2024; 103:e14535. [PMID: 38772877 DOI: 10.1111/cbdd.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Despite efforts, available alternatives for the treatment of leishmaniasis are still scarce. In this work we tested a class of 15 quinolinylhydrazone analogues and presented data that support the use of the most active compound in cutaneous leishmaniasis caused by Leishmania amazonensis. In general, the compounds showed activity at low concentrations for both parasitic forms (5.33-37.04 μM to promastigotes, and 14.31-61.98 μM to amastigotes). In addition, the best compound (MHZ15) is highly selective for the parasite. Biochemical studies indicate that the treatment of promastigotes with MHZ15 leads the loss of mitochondrial potential and increase in ROS levels as the primary effects, which triggers accumulation of lipid droplets, loss of plasma membrane integrity and apoptosis hallmarks, including DNA fragmentation and phosphatidylserine exposure. These effects were similar in the intracellular form of the parasite. However, in this parasitic form there is no change in plasma membrane integrity in the observed treatment time, which can be attributed to metabolic differences and the resilience of the amastigote. Also, ultrastructural changes such as vacuolization suggesting autophagy were observed. The in vivo effectiveness of MHZ15 in the experimental model of cutaneous leishmaniasis was carried out in mice of the BALB/c strain infected with L. amazonensis. The treatment by intralesional route showed that MHZ15 acted with great efficiency with significantly reduction in the parasite load in the injured paws and draining lymph nodes, without clinical signs of distress or compromise of animal welfare. In vivo toxicity was also evaluated and null alterations in the levels of hepatic enzymes aspartate aminotransferase, and alanine aminotransferase was observed. The data presented herein demonstrates that MHZ15 exhibits a range of favorable characteristics conducive to the development of an antileishmanial agent.
Collapse
Affiliation(s)
- Juliana da Trindade Granato
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Emerson Teixeira da Silva
- Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos Farmanguinhos, Rio de Janeiro, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Patrícia de Almeida Machado
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Victor do Valle Midlej
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Luciana Maria Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Adolfo Firmino da Silva Neto
- Departamento de Medicina Veterinária, Faculdade de Medicina, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Marcus Vinícius Nora Souza
- Fundação Oswaldo Cruz (Fiocruz), Instituto de Tecnologia em Fármacos Farmanguinhos, Rio de Janeiro, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
3
|
Thangavel SK, Mohamed Kasim MS, Rengan R. Promoting the Anticancer Activity with Multidentate Furan-2-Carboxamide Functionalized Aroyl Thiourea Chelation in Binuclear Half-Sandwich Ruthenium(II) Complexes. Inorg Chem 2024; 63:7520-7539. [PMID: 38590210 DOI: 10.1021/acs.inorgchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A new set of binuclear arene ruthenium complexes [Ru2(p-cymene)2(k4-N2OS)(L1-L3)Cl2] (Ru2L1-Ru2L3) encompassing furan-2-carboxamide-based aroylthiourea derivatives (H2L1-H2L3) was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes. In vitro antiproliferative activity of the complexes was examined against human cervical (HeLa), breast (MCF-7), and lung (A549) cancerous and noncancerous monkey kidney epithelial (Vero) cells. All the complexes are more efficacious against HeLa and MCF-7 cells with low inhibitory doses (3.86-11.02 μM). Specifically, Ru2L3 incorporating p-cymene and -OCH3 fragments exhibits high lipophilicity, significant cytotoxicity against cancer cells, and lower toxicity on noncancerous cells. Staining analysis indicates the apoptosis-associated cell morphological changes expressively in MCF-7 cells. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) analyses reveal that Ru2L3 can raise ROS levels, reduce MMP, and trigger mitochondrial dysfunction-mediated apoptosis. The catalytic oxidation of glutathione (GSH) to its disulfide form (GSSG) by the complexes may simultaneously increase the ROS levels, alluding to their observed cytotoxicity and apoptosis induction. Flow cytometry determined the quantitative classification of late apoptosis and S-phase arrest in MCF-7 and HeLa cells. Western blotting analysis confirmed that the complexes promote apoptosis by upregulating Caspase-3 and Caspase-9 and downregulating BCL-2. Molecular docking studies unfolded the strong binding affinities of the complexes with VEGFR2, an angiogenic signaling receptor, and BCL2, Cyclin D1, and HER2 proteins typically overexpressed on tumor cells.
Collapse
Affiliation(s)
- Sathiya Kamatchi Thangavel
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
4
|
Brenda CT, Norma RF, Marcela RL, Nelly LV, Teresa F. Vanadium compounds as antiparasitic agents: An approach to their mechanisms of action. J Trace Elem Med Biol 2023; 78:127201. [PMID: 37210920 DOI: 10.1016/j.jtemb.2023.127201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Parasitic infections are a public health problem since they have high morbidity and mortality worldwide. In parasitosis such as malaria, leishmaniasis and trypanosomiasis it is necessary to develop new compounds for their treatment since an increase in drug resistance and toxic effects have been observed. Therefore, the use of different compounds that couple vanadium in their structure and that have a broad spectrum against different parasites have been proposed experimentally. OBJECTIVE Report the mechanisms of action exerted by vanadium in different parasites. CONCLUSION In this review, some of the targets that vanadium compounds have were identified and it was observed that they have a broad spectrum against different parasites, which represents an advance to continue investigating therapeutic options.
Collapse
Affiliation(s)
- Casarrubias-Tabarez Brenda
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico; Posgrado en Ciencias Biologicas, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - Rivera-Fernández Norma
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Microbiology and Parasitology. School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - Rojas-Lemus Marcela
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - López-Valdez Nelly
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico
| | - Fortoul Teresa
- Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacan, Mexico City, Mexico; Department of Cellular and Tissue Biology, School of Medicine, UNAM, C.P. 04510, Coyoacan, Mexico City, Mexico.
| |
Collapse
|
5
|
de Freitas V, Costa TR, Nogueira AR, Polloni L, Alves de Melo Fernandes T, Correia LIV, Borges BC, Teixeira SC, Silva MJB, Amorim FG, Quinton L, Saraiva AL, Espindola FS, Iwai LK, Rodrigues RS, Yoneyama KAG, de Melo Rodrigues Ávila V. Biochemical characterization and assessment of leishmanicidal effects of a new L-amino acid oxidase from Crotalus durissus collilineatus snake venom (CollinLA AO-I). Toxicon 2023; 230:107156. [PMID: 37169266 DOI: 10.1016/j.toxicon.2023.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
This study reports the isolation of CollinLAAO-I, a new L-amino acid oxidase from Crotalus durissus collilineatus snake venom, its biochemical characterization and leishmanicidal potential in Leishmania spp. CollinLAAO-I (63.1 kDa) was successfully isolated with high purity using two chromatographic steps and represents 2.5% of total venom proteins. CollinLAAO-I displayed high enzymatic activity (4262.83 U/mg/min), significantly reducing after 28 days. The enzymatic activity of CollinLAAO-I revealed higher affinity for hydrophobic amino acids such as L-leucine, high enzymatic activity in a wide pH range (6.0-10.0), at temperatures from 0 to 25 °C, and showed complete inhibition in the presence of Na+ and K+. Cytotoxicity assays revealed IC50 of 18.49 and 11.66 μg/mL for Leishmania (L.) amazonensis and Leishmania (L.) infantum, respectively, and the cytotoxicity was completely suppressed by catalase. CollinLAAO-I significantly increased the intracellular concentration of reactive oxygen species (ROS) and reduced the mitochondrial potential of both Leishmania species. Furthermore, CollinLAAO-I decreased the parasite capacity to infect macrophages by around 70%, indicating that even subtoxic concentrations of CollinLAAO-I can interfere with Leishmania vital processes. Thus, the results obtained for CollinLAAO-I provide important support for developing therapeutic strategies against leishmaniasis.
Collapse
Affiliation(s)
- Vitor de Freitas
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Tássia Rafaella Costa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Amanda Rodrigues Nogueira
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Lorena Polloni
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Thales Alves de Melo Fernandes
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Lucas Ian Veloso Correia
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Laboratory of Osteoimmunology and Tumor Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratory of Osteoimmunology and Tumor Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Liège, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Liège, Belgium
| | - André Lopes Saraiva
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Foued Salmen Espindola
- Laboratory of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Leo Kei Iwai
- Laboratory of Applied Toxinology (LETA) and Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Renata Santos Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
6
|
In vitro anti-Leishmania activity of new isomeric cobalt(II)complexes and in silico insights: Mitochondria impairment and apoptosis-like cell death of the parasite. J Inorg Biochem 2023; 240:112088. [PMID: 36630792 DOI: 10.1016/j.jinorgbio.2022.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
The synthesis, physico-chemical characterization and in vitro antiproliferative activity against the promastigote form of Leishmania amazonensis of two new cobalt(II) coordination compounds (i.e. [Co(HL1)Cl2]0.4,2H2O (1) and [Co(HL2)(Cl)(CH3OH)](ClO4).2H2O (2)) are reported, where HL1 = 4-{3-[bis(pyridin-2-ylmethyl)amino]-2-hydroxypropoxy}-2H-chromen-2-one and HL2 = 7-{3-[bis(pyridin-2-ylmethyl)amino]-2-hydroxypropoxy}-2H-chromen-2-one. X-ray diffraction studies were performed for complex (2) and the structure of complex (1) was built through Density Functional Theory (DFT) calculations. Complex (1) presented no cytotoxicity to LLC-MK2, but complex (2) was toxic. IC50 against promastigotes of L. amazonensis for complex (1) were 4.90 (24 h), 3.50 (48 h) and 3. 80 μmol L-1 (72 h), and for complex (2) were 2.09, 4.20 and 2.80 μmol L-1, respectively. Due to the high toxicity presented by complex (2) against LLC-MK2 host cells, mechanistic studies, to shed light on the probable mode of leishmanicidal activity, were carried out only for the non-cytotoxic complex. Complex (1) was able to elevate mitochondrial membrane potential of the parasites after treatment. Transmission electron microscopy revealed typical apoptotic condensation of chromatin, altered kinetoplast and mitochondria structures, suggesting that apoptosis-like cell death of the protozoa is probably mediated by an apoptotic mechanism associated with mitochondrial dysfunction (intrinsic pathway). Molecular docking studies with complex (1) upon protein tyrosine phosphatase (LmPRL-1) suggests a plausible positive complex anchoring mainly by hydrophobic and hydrogen bond forces close to the enzyme's catalytic site. These promising results for complex 1 will prompt future investigations against amastigote form of L. amazonensis.
Collapse
|
7
|
Pawar S, Kumawat MK, Kundu M, Kumar K. Synthetic and medicinal perspective of antileishmanial agents: An overview. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Santiago-Silva KMD, Bortoleti BTDS, Brito TDO, Costa IC, Lima CHDS, Macedo F, Miranda-Sapla MM, Pavanelli WR, Bispo MDLF. Exploring the antileishmanial activity of N1, N2-disubstituted-benzoylguanidines: synthesis and molecular modeling studies. J Biomol Struct Dyn 2022; 40:11495-11510. [PMID: 34355671 DOI: 10.1080/07391102.2021.1959403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this report, we describe the synthesis and evaluation of nine N1,N2-disubstituted-benzoylguanidines against promastigotes and amastigotes forms of Leishmania amazonensis. The derivatives 2g and 2i showed low IC50 values against promastigote form (90.8 ± 0.05 µM and 68.4 ± 0.03 µM, respectively), low cytotoxicity profile (CC50 396 ± 0.02 µM and 857.9 ± 0.06 µM) for peritoneal macrophages cells and SI of 5.5 and 12.5, respectively. Investigations about the mechanism of action of 2g and 2i showed that both compounds cause mitochondrial depolarization, increase in ROS levels, and generation of autophagic vacuoles on free promastigotes forms. These compounds were also capable of reducing the number of infected macrophages with amastigotes forms (59.5% ± 0.08% and 98.1% ± 0.46%) and the number of amastigotes/macrophages (79.80% ± 0.05% and 96.0% ± 0.16%), through increasing induction of microbicide molecule NO. Additionally, ADMET-Tox in silico predictions showed drug-like features and free of toxicological risks. The molecular docking studies with arginase and gp63 showed that relevant intermolecular interactions could explain the experimental results. Therefore, these results reinforce that benzoylguanidines could be a starting scaffold for the search for new antileishmanial drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kaio Maciel de Santiago-Silva
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.,Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas (ICC), Fiocruz, Curitiba, PR, Brazil
| | - Tiago de Oliveira Brito
- Laboratório de Pesquisa em Moléculas Bioativas (LPMBA), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Ivete Conchon Costa
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Fernando Macedo
- Laboratório de Pesquisa em Moléculas Bioativas (LPMBA), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Laboratório de Imunoparasitologia das Doenças Negligenciadas e Câncer (LIDNC), Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marcelle de Lima Ferreira Bispo
- Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
9
|
Rosa LB, Galuppo C, Lima RLA, Fontes JV, Siqueira FS, Júdice WAS, Abbehausen C, Miguel DC. Antileishmanial activity and insights into the mechanisms of action of symmetric Au(I) benzyl and aryl-N-heterocyclic carbenes. J Inorg Biochem 2022; 229:111726. [PMID: 35065320 DOI: 10.1016/j.jinorgbio.2022.111726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 01/03/2023]
Abstract
Leishmania amazonensis and L. braziliensis are the main etiological agents of the American Tegumentary Leishmaniasis (ATL). Taking into account the limited effectiveness and high toxicity of the current drug arsenal to treat ATL, novel options are urgently needed. Inspired by the fact that gold-based compounds are promising candidates for antileishmanial drugs, we studied the biological action of a systematic series of six (1)-(6) symmetric Au(I) benzyl and aryl-N-heterocyclic carbenes. All compounds were active at low micromolar concentrations with 50% effective concentrations ranging from 1.57 to 8.30 μM against Leishmania promastigotes. The mesityl derivative (3) proved to be the best candidate from this series, with a selectivity index ~13 against both species. The results suggest an effect of the steric and electronic parameters of the N-substituent in the activity. Intracellular infections were drastically reduced after 24h of (2)-(5) incubation in terms of infection rate and amastigote burden. Further investigations showed that our compounds induced significant parasites' morphological alterations and membrane permeability. Also, (3) and (6) were able to reduce the residual activity of three Leishmania recombinant cysteine proteases, known as possible targets for Au(I) complexes. Our promising results open the possibility of exploring gold complexes as leishmanicidal molecules to be further screened in in vivo models of infection.
Collapse
Affiliation(s)
- Letícia B Rosa
- Department of Animal Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Carolina Galuppo
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Rochanna L A Lima
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Josielle V Fontes
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Fábio S Siqueira
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Wagner A S Júdice
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Camilla Abbehausen
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Danilo C Miguel
- Department of Animal Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
10
|
Monte Neto RLD, Moreira POL, de Sousa AM, Garcia MADN, Maran SR, Moretti NS. Antileishmanial metallodrugs and the elucidation of new drug targets linked to post-translational modifications machinery: pitfalls and progress. Mem Inst Oswaldo Cruz 2022; 117:e210403. [PMID: 35320824 PMCID: PMC8944189 DOI: 10.1590/0074-02760220403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Despite the increasing number of manuscripts describing potential alternative antileishmanial compounds, little is advancing on translating these knowledges to new products to treat leishmaniasis. This is in part due to the lack of standardisations during pre-clinical drug discovery stage and also depends on the alignment of goals among universities/research centers, government and pharmaceutical industry. Inspired or not by drug repurposing, metal-based antileishmanial drugs represent a class that deserves more attention on its use for leishmaniasis chemotherapy. Together with new chemical entities, progresses have been made on the knowledge of parasite-specific drug targets specially after using CRISPR/Cas system for functional studies. In this regard, Leishmania parasites undergoe post-translational modification as key regulators in several cellular processes, which represents an entire new field for drug target elucidation, once this is poorly explored. This perspective review describes the advances on antileishmanial metallodrugs and the elucidation of drug targets based on post-translational modifications, highlighting the limitations on the drug discovery/development process and suggesting standardisations focused on products addressed to who need it most.
Collapse
Affiliation(s)
- Rubens Lima do Monte Neto
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisas em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Paulo Otávio Lourenço Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisas em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Alessandra Mara de Sousa
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisas em Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Miguel Antonio do Nascimento Garcia
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Biologia Molecular de Patógenos, São Paulo, SP, Brasil
| | - Suellen Rodrigues Maran
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Biologia Molecular de Patógenos, São Paulo, SP, Brasil
| | - Nilmar Silvio Moretti
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Biologia Molecular de Patógenos, São Paulo, SP, Brasil
| |
Collapse
|
11
|
Monte Neto RLD, Moreira POL, de Sousa AM, Garcia MADN, Maran SR, Moretti NS. Antileishmanial metallodrugs and the elucidation of new drug targets linked to post-translational modifications machinery: pitfalls and progress. Mem Inst Oswaldo Cruz 2022. [DOI: 10.1590/0074-02760210403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Briones Nieva CA, Cid AG, Romero AI, García-Bustos MF, Villegas M, Bermúdez JM. An appraisal of the scientific current situation and new perspectives in the treatment of cutaneous leishmaniasis. Acta Trop 2021; 221:105988. [PMID: 34058160 DOI: 10.1016/j.actatropica.2021.105988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is a Neglected Tropical Diseases caused by protozoan parasites of the genus Leishmania. It is a major health problem in many tropical and subtropical regions of the world and can produce three different clinical manifestations, among which cutaneous leishmaniasis has a higher incidence in the world than the other clinical forms. There are no recognized and reliable means of chemoprophylaxis or vaccination against infections with different forms of leishmaniasis. In addition, chemotherapy, unfortunately, remains, in many respects, unsatisfactory. Therefore, there is a continuing and urgent need for new therapies against leishmaniasis that are safe and effective in inducing a long-term cure. This review summarizes the latest advances in currently available treatments and improvements in the development of drug administration. In addition, an analysis of the in vivo assays was performed and the challenges facing promising strategies to treat CL are discussed. The treatment of leishmaniasis will most likely evolve into an approach that uses multiple therapies simultaneously to reduce the possibility of developing drug resistance. There is a continuous effort to discover new drugs to improve the treatment of leishmaniasis, but this is mainly at the level of individual researchers. Undoubtedly, more funding is needed in this area, as well as greater participation of the pharmaceutical industry to focus efforts on the development of chemotherapeutic agents and vaccines for this and other neglected tropical diseases.
Collapse
Affiliation(s)
- C A Briones Nieva
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - Alicia Graciela Cid
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - Analía Irma Romero
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - María Fernanda García-Bustos
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Salta, Argentina
| | - Mercedes Villegas
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - José María Bermúdez
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina.
| |
Collapse
|
13
|
Ruthenium Complexes as Promising Candidates against Lung Cancer. Molecules 2021; 26:molecules26154389. [PMID: 34361543 PMCID: PMC8348655 DOI: 10.3390/molecules26154389] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is one of the most common malignancies with the highest mortality rate and the second-highest incidence rate after breast cancer, posing a serious threat to human health. The accidental discovery of the antitumor properties of cisplatin in the early 1960s aroused a growing interest in metal-based compounds for cancer treatment. However, the clinical application of cisplatin is limited by serious side effects and drug resistance. Therefore, other transition metal complexes have been developed for the treatment of different malignant cancers. Among them, Ru(II/III)-based complexes have emerged as promising anticancer drug candidates due to their potential anticancer properties and selective cytotoxic activity. In this review, we summarized the latest developments of Ru(II/III) complexes against lung cancer, focusing mainly on the mechanisms of their biological activities, including induction of apoptosis, necroptosis, autophagy, cell cycle arrest, inhibition of cell proliferation, and invasion and metastasis of lung cancer cells.
Collapse
|
14
|
Dorairaj DP, Lin YF, Haribabu J, Murugan T, Narwane M, Karvembu R, Neelakantan MA, Kao CL, Chiu CC, Hsu SCN. Binding mode transformation and biological activity on the Ru(II)-DMSO complexes bearing heterocyclic pyrazolyl ligands. J Inorg Biochem 2021; 223:111545. [PMID: 34303108 DOI: 10.1016/j.jinorgbio.2021.111545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Three Ru(II)-DMSO complexes (1-3) containing 2-(3-pyrazolyl)pyridine (PzPy), 2-pyrazol-3-ylfuran (PzO), or 2-pyrazol-3-ylthiophene (PzS) ligand, were synthesized and characterized. The monodentate coordination of the heterocyclic pyrazolyl ligand (PzPy) with Ru(II) ion via N atom was confirmed by single crystal X-ray diffraction. Complex 1 could be converted to the known η2-bidentate PzPy complex cis(Cl), cis(S)-[RuCl2(PzPy)(DMSO)2] (4) under reflux conditions. The mechanism underlying binding mode transformation was studied by 1H NMR spectroscopy and density functional theory (DFT) calculations. The binding abilities of the complexes (1-4) with calf-thymus (CT) DNA and bovine serum albumin (BSA) were investigated using spectroscopic and molecular docking techniques. Among the four Ru(II) complexes, complexes 1 and 3 inhibited the long-term proliferation of human breast cancer cells, whereas complexes 2 and 4 did not inhibit their proliferation to a considerable extent. Interestingly, complexes 1 and 3 did not induce significant cell death but rather attenuated the clonogenicity of breast cancer cells by upregulating reactive oxygen species (ROS), endoplasmic reticulum (ER) and autophagic stress.
Collapse
Affiliation(s)
- Dorothy Priyanka Dorairaj
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Ya-Fan Lin
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jebiti Haribabu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Theetharappan Murugan
- Chemistry Research Centre, National Engineering College, K.R. Nagar, Kovilpatti, 628503 Thoothukudi District, Tamilnadu, India
| | - Manmath Narwane
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | | | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department of Medical Research, Kaohsiung Medical University Hospital, Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
15
|
Nikpour S, Tabatabaie F, Sharifi I, Mostafavi M, Oliaee RT, Sharifi F, Babaei Z, Jafari E, Salarkia E, Shahbazzadeh D. The Fraction of the Snake Venom, Its Leishmanicidal Effect, and the Stimulation of an Anti- Leishmania Response in Infected Macrophages. Endocr Metab Immune Disord Drug Targets 2021; 21:1115-1124. [PMID: 33176669 DOI: 10.2174/1871530320999201110211222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Due to the lack of an effective vaccine and complexity of the control measures against vectors and reservoir hosts, the control of leishmaniasis depends primarily on chemotherapy. This study was aimed to assess the snake venom, Naja naja oxiana fraction 11(NNOVF11) on Leishmania infantum and its broad mode of action. METHODS A wide range of in vitro advanced assays including high-performance liquid chromatography (HPLC), MTT (3-[4, 5-Dimethylthiazol-2-yl]-2, 5diphenyltetrazolium bromide; Thiazolyl blue), macrophage assays, quantitative real-time polymerase chain reaction (qPCR), flow cytometry and enzyme- linked immunosorbent assay (ELISA) on L. infantum promastigote and amastigote stages were used. IC50 values of L. infantum stages, CC50 value, and apoptosis were also analyzed. RESULTS The NNOV-F11 demonstrated strong antileishmanial activity against L. infantum stages in a dose-dependent manner compared to the untreated control group. Interleukin (IL)-12, TNF-α, and iNOS genes expression as the indicators of T helper(h)1 response significantly increased; in contrast, the expression level of IL-10, as the representative of Th2 response significantly decreased (p < 0.001). Reactive oxygen species (ROS) detection showed a significant increase (p < 0.001) after treatment with different concentrations of NNOV-F11, unlike arginase (ARG) activity, which displayed a significant reduction (p < 0.001). CONCLUSION NNOV-F11 possessed a potent inhibitory effect on L. infantum stages with the multifunctional and broad mode of actions, which promoted the immunomodulatory role, induced ROS production, stimulated apoptotic-like mechanisms, and inhibited L-ARG activity, which collectively led to the parasite death. Further studies are crucial to assess the effect of the NNOV-F11 on animal models or clinical settings.
Collapse
Affiliation(s)
- Saeideh Nikpour
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tabatabaie
- Department of Parasitology and Mycology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh T Oliaee
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Delavar Shahbazzadeh
- Laboratory of Venom and Biotherapeutics Molecules, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Navarro M, Justo RMS, Delgado GYS, Visbal G. Metallodrugs for the Treatment of Trypanosomatid Diseases: Recent Advances and New Insights. Curr Pharm Des 2021; 27:1763-1789. [PMID: 33185155 DOI: 10.2174/1381612826666201113104633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Trypanosomatid parasites are responsible for many Neglected Tropical Diseases (NTDs). NTDs are a group of illnesses that prevail in low-income populations, such as in tropical and subtropical areas of Africa, Asia, and the Americas. The three major human diseases caused by trypanosomatids are African trypanosomiasis, Chagas disease and leishmaniasis. There are known drugs for the treatment of these diseases that are used extensively and are affordable; however, the use of these medicines is limited by several drawbacks such as the development of chemo-resistance, side effects such as cardiotoxicity, low selectivity, and others. Therefore, there is a need to develop new chemotherapeutic against these tropical parasitic diseases. Metal-based drugs against NTDs have been discussed over the years as alternative ways to overcome the difficulties presented by approved antiparasitic agents. The study of late transition metal-based drugs as chemotherapeutics is an exciting research field in chemistry, biology, and medicine due to the ability to develop multitarget antiparasitic agents. The evaluation of the late transition metal complexes for the treatment of trypanosomatid diseases is provided here, as well as some insights about their mechanism of action.
Collapse
Affiliation(s)
- Maribel Navarro
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rodrigo M S Justo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Giset Y Sánchez Delgado
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Gonzalo Visbal
- Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Brazil
| |
Collapse
|
17
|
The Effect of Naja naja oxiana Snake Venom Against Leishmania tropica Confirmed by Advanced Assays. Acta Parasitol 2021; 66:475-486. [PMID: 33159262 DOI: 10.1007/s11686-020-00301-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/13/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The aim of this study was to explore the activity of Naja naja oxiana venom on Leishmania tropica and its modes of action. METHODS Different fractions of Naja naja oxiana venom (NNOV) were prepared and characterized by high-performance liquid chromatography. The superior component, fraction k (FK) was selected. The activity of the fraction was assessed using advanced assays. RESULTS Interleukin (IL)-12, TNF-α and iNOS gene expression as the indicators of Th1 significantly increased. In contrast, the level of IL-10, as the marker of T helper 2 substantially decreased (p < 0.001). Reactive oxygen species (ROS) detection showed a significant increase (p < 0.001) after treatment with different concentrations of NNOV-FK, unlike arginase (L-ARG) activity which showed a significant reduction (p < 0.001). The NNOV-FK showed significant lethal activity on the L. tropica stages. CONCLUSION The findings demonstrated that NNOV-FK represented a strong leishmanicidal activity on L. tropica stages. The major modes of NNOV-FK action are multidimensional, which perceives the induction of a synergistic response and upregulation of the immune-modulatory role towards Th1 response against L. tropica stages as well as apoptotic and anti-metabolic action as a model drug to generate ROS, block the polyamine synthesis and lead to parasite death.
Collapse
|
18
|
Swaminathan S, Haribabu J, Kalagatur NK, Nikhil M, Balakrishnan N, Bhuvanesh NSP, Kadirvelu K, Kolandaivel P, Karvembu R. Tunable Anticancer Activity of Furoylthiourea-Based Ru II -Arene Complexes and Their Mechanism of Action. Chemistry 2021; 27:7418-7433. [PMID: 33404126 DOI: 10.1002/chem.202004954] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Indexed: 11/08/2022]
Abstract
Fourteen new RuII -arene (p-cymene/benzene) complexes (C1-C14) have been synthesized by varying the N-terminal substituent in the furoylthiourea ligand and satisfactorily characterized by using analytical and spectroscopic techniques. Electrostatic potential maps predicted that the electronic effect of the substituents was mostly localized, with some influence seen on the labile chloride ligands. The structure-activity relationships of the Ru-p-cymene and Ru-benzene complexes showed opposite trends. All the complexes were found to be highly toxic towards IMR-32 cancer cells, with C5 (Ru-p-cymene complex containing C6 H2 (CH3 )3 as N-terminal substituent) and C13 (Ru-benzene complex containing C6 H4 (CF3 ) as N-terminal substituent) showing the highest activity among each set of complexes, and hence they were chosen for further study. These complexes showed different behavior in aqueous solutions, and were also found to catalytically oxidize glutathione. They also promoted cell death by apoptosis and cell cycle arrest. Furthermore, the complexes showed good binding ability with the receptors Pim-1 kinase and vascular endothelial growth factor receptor 2, commonly overexpressed in cancer cells.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Naveen Kumar Kalagatur
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | - Maroli Nikhil
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | | | - Krishna Kadirvelu
- DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore, 641046, Tamil Nadu, India
| | | | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| |
Collapse
|
19
|
Silva DKC, Teixeira JS, Moreira DRM, da Silva TF, Barreiro EJDL, de Freitas HF, Pita SSDR, Teles ALB, Guimarães ET, Soares MBP. In Vitro, In Vivo and In Silico Effectiveness of LASSBio-1386, an N-Acyl Hydrazone Derivative Phosphodiesterase-4 Inhibitor, Against Leishmania amazonensis. Front Pharmacol 2021; 11:590544. [PMID: 33390966 PMCID: PMC7772393 DOI: 10.3389/fphar.2020.590544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis are group of neglected diseases with worldwide distribution that affect about 12 million people. The current treatment is limited and may cause severe adverse effects, and thus, the search for new drugs more effective and less toxic is relevant. We have previously investigated the immunomodulatory effects of LASSBio-1386, an N-acylhydrazone derivative. Here we investigated the in vitro and in vivo activity of LASSBio-1386 against L. amazonensis. LASSBio-1386 inhibited the proliferation of promastigotes of L. amazonensis (EC50 = 2.4 ± 0.48 µM), while presenting low cytotoxicity to macrophages (CC50 = 74.1 ± 2.9 µM). In vitro incubation with LASSBio-1386 reduced the percentage of Leishmania-infected macrophages and the number of intracellular parasites (EC50 = 9.42 ± 0.64 µM). Also, in vivo treatment of BALB/c mice infected with L. amazonensis resulted in a decrease of lesion size, parasitic load and caused histopathological alterations, when compared to vehicle-treated control. Moreover, LASSBio-1386 caused ultrastructural changes, arrested cell cycle in G0/G1 phase and did not alter the membrane mitochondrial potential of L. amazonensis. Aiming to its possible molecular interactions, we performed docking and molecular dynamics studies on Leishmania phosphodiesterase B1 (PDB code: 2R8Q) and LASSBio-1386. The computational analyses suggest that LASSBio-1386 acts against Leishmania through the modulation of leishmanial PDE activity. In conclusion, our results indicate that LASSBio-1386 is a promising candidate for the development of new leishmaniasis treatment.
Collapse
Affiliation(s)
- Dahara Keyse Carvalho Silva
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Jessicada Silva Teixeira
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Diogo Rodrigo Magalhães Moreira
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Tiago Fernandes da Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eliezer Jesus de Lacerda Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Humberto Fonseca de Freitas
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - Samuel Silva da Rocha Pita
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - André Lacerda Braga Teles
- Departamento de Ciências da Vida, Laboratório de Modelagem Molecular Medicinal e Toxicológica, Universidade Estadual da Bahia (UNEB), Salvador, Brazil
| | - Elisalva Teixeira Guimarães
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Instituto Senai de Inovação em Sistemas Avançados em Saúde, Senai/Cimatec, Salvador, Brazil
| |
Collapse
|
20
|
Barbosa LG, Costa TR, Borges IP, Costa MS, Carneiro AC, Borges BC, Silva MJB, Amorim FG, Quinton L, Yoneyama KAG, de Melo Rodrigues V, Sampaio SV, Rodrigues RS. A comparative study on the leishmanicidal activity of the L-amino acid oxidases BjussuLAAO-II and BmooLAAO-II isolated from Brazilian Bothrops snake venoms. Int J Biol Macromol 2020; 167:267-278. [PMID: 33242552 DOI: 10.1016/j.ijbiomac.2020.11.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
This study aims to examine whether two L-amino acid oxidases isolated from Bothrops snake venom (SV-LAAOs) were cytotoxic to Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis, two causative agents of leishmaniasis, which is an endemic disease in tropical and subtropical countries. The SV-LAAOs BjussuLAAO-II and BmooLAAO-II were isolated from Bothrops jararacussu and Bothrops moojeni venom, respectively, through a three-step chromatography process that used molecular exclusion, hydrophobic interaction, and affinity columns. BmooLAAO-II is a new SV-LAAO isoform that we isolated in this study. The purified BjussuLAAO-II and BmooLAAO-II had high L-amino acid oxidase-specific activity: 3481.17 and 4924.77 U/mg/min, respectively. Both SV-LAAOs were strongly cytotoxic to the two Leishmania species, even at low concentrations. At the same concentration, BjussuLAAO-II and BmooLAAO-II exerted different cytotoxic effects on the parasites. We reported for the first time that the SV-LAAOs suppressed cell proliferation and altered the mitochondrial membrane potential of the two Leishmania species. Surprisingly, BjussuLAAO-II increased the intracellular reactive oxygen species production only in L. (L.) amazonensis, while BmooLAAO-II increased the intracellular reactive oxygen species production only in L. (V.) braziliensis, indicating that these SV-LAAOs had a certain specificity of action.
Collapse
Affiliation(s)
- Luana Gonçalves Barbosa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Tássia Rafaella Costa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Isabela Pacheco Borges
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Mônica Soares Costa
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Anna Cecília Carneiro
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Bruna Cristina Borges
- Laboratory of Osteoimmunology and Tumor Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratory of Osteoimmunology and Tumor Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Liège, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Liège, Belgium
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Renata Santos Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia - UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
21
|
Costa MS, Gonçalves YG, Borges BC, Silva MJB, Amstalden MK, Costa TR, Antunes LMG, Rodrigues RS, Rodrigues VDM, de Faria Franca E, Zoia MAP, de Araújo TG, Goulart LR, Von Poelhsitz G, Yoneyama KAG. Ruthenium (II) complex cis-[Ru II(ŋ 2-O 2CC 7H 7O 2)(dppm) 2]PF 6-hmxbato induces ROS-mediated apoptosis in lung tumor cells producing selective cytotoxicity. Sci Rep 2020; 10:15410. [PMID: 32958783 PMCID: PMC7506019 DOI: 10.1038/s41598-020-72420-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Ruthenium complexes have been extensively explored as potential molecules for cancer treatment. Considering our previous findings on the remarkable cytotoxic activity exhibited by the ruthenium (II) complex 3-hydroxy-4-methoxybenzoate (hmxbato)-cis-[RuII(ŋ2-O2CC7H7O2)(dppm)2]PF6 against Leishmania promastigotes and also the similar metabolic characteristics between trypanosomatids and tumor cells, the present study aimed to analyze the anticancer potential of hmxbato against lung tumor cells, as well as the partial death mechanisms involved. Hmxbato demonstrated selective cytotoxicity against A549 lung tumor cells. In addition, this complex at a concentration of 3.8 µM was able to expressively increase the generation of reactive oxygen species (ROS) in tumor cells, causing an oxidative stress that may culminate in: (1) reduction in cellular proliferation; (2) changes in cell morphology and organization patterns of the actin cytoskeleton; (3) cell arrest in the G2/M phase of the cell cycle; (4) apoptosis; (5) changes in the mitochondrial membrane potential and (6) initial DNA damage. Furthermore, we demonstrated that the induction of programmed cell death can occur by the intrinsic apoptotic pathway through the activation of caspases. It is also worth highlighting that hmxbato exhibited predominant actions on A549 tumor cells in comparison to BEAS-2B normal bronchial epithelium cells, which makes this complex an interesting candidate for the design of new drugs against lung cancer.
Collapse
Affiliation(s)
- Mônica Soares Costa
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Pará avenue, 1720, Uberlândia, MG, CEP 38400-902, Brazil.
| | | | - Bruna Cristina Borges
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Martin Krähenbühl Amstalden
- Departamento de Análises Clínicas, Toxicologia e Ciências Alimentares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, CEP 14040-903, Brazil
| | - Tássia Rafaella Costa
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Pará avenue, 1720, Uberlândia, MG, CEP 38400-902, Brazil
| | - Lusânia Maria Greggi Antunes
- Departamento de Análises Clínicas, Toxicologia e Ciências Alimentares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, CEP 14040-903, Brazil
| | - Renata Santos Rodrigues
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Pará avenue, 1720, Uberlândia, MG, CEP 38400-902, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Pará avenue, 1720, Uberlândia, MG, CEP 38400-902, Brazil
| | - Eduardo de Faria Franca
- Laboratório de Cristalografia e Química Computacional, Instituto de Química, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Mariana Alves Pereira Zoia
- Laboratório de Nanobiotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Thaise Gonçalves de Araújo
- Laboratório de Nanobiotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Luiz Ricardo Goulart
- Laboratório de Nanobiotecnologia, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Gustavo Von Poelhsitz
- Instituto de Química, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlândia, UFU, Pará avenue, 1720, Uberlândia, MG, CEP 38400-902, Brazil.
| |
Collapse
|
22
|
Copaifera spp. oleoresins impair Toxoplasma gondii infection in both human trophoblastic cells and human placental explants. Sci Rep 2020; 10:15158. [PMID: 32938966 PMCID: PMC7495442 DOI: 10.1038/s41598-020-72230-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
The combination of pyrimethamine and sulfadiazine is the standard care in cases of congenital toxoplasmosis. However, therapy with these drugs is associated with severe and sometimes life-threatening side effects. The investigation of phytotherapeutic alternatives to treat parasitic diseases without acute toxicity is essential for the advancement of current therapeutic practices. The present study investigates the antiparasitic effects of oleoresins from different species of Copaifera genus against T. gondii. Oleoresins from C. reticulata, C. duckei, C. paupera, and C. pubiflora were used to treat human trophoblastic cells (BeWo cells) and human villous explants infected with T. gondii. Our results demonstrated that oleoresins were able to reduce T. gondii intracellular proliferation, adhesion, and invasion. We observed an irreversible concentration-dependent antiparasitic action in infected BeWo cells, as well as parasite cell cycle arrest in the S/M phase. The oleoresins altered the host cell environment by modulation of ROS, IL-6, and MIF production in BeWo cells. Also, Copaifera oleoresins reduced parasite replication and TNF-α release in villous explants. Anti-T. gondii effects triggered by the oleoresins are associated with immunomodulation of the host cells, as well as, direct action on parasites.
Collapse
|
23
|
Sakane KK, Bhattacharjee T, Fagundes J, Marcolino LMC, Ferreira I, Pinto JG, Ferreira-Strixino J. Biochemical changes in Leishmania braziliensis after photodynamic therapy with methylene blue assessed by the Fourier transform infrared spectroscopy. Lasers Med Sci 2020; 36:821-827. [PMID: 32748166 DOI: 10.1007/s10103-020-03110-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022]
Abstract
Photodynamic therapy (PDT) with photosensitizer methylene blue was applied to Leishmania braziliensis, and Fourier transform infrared (FTIR) spectroscopy was used to study biochemical changes in the parasite after PDT in comparison to untreated (C), only irradiation (I), and only photosensitizer (PS). Spectral analysis suggests increase in lipids, proteins, and protein secondary structures in PDT compared with C and decrease in nucleic acids and carbohydrates. Interestingly, these trends are different from PDT of Leishmania major species, wherein lipids decrease; there are minimal changes in secondary structures and increase in nucleic acids and carbohydrates. The study thus suggests possibility of different biomolecular players/pathways in PDT-induced death of L. braziliensis and L. major.
Collapse
Affiliation(s)
- Kumiko Koibuchi Sakane
- Infrared Spectroscopy Laboratory, Research and Development Institute R&DI, University of Vale do Paraíba - Univap, Shishima Hifumi Avenue, 2911, São Jose dos Campos, São Paulo, 12244-000, Brazil
| | - Tanmoy Bhattacharjee
- Sir John Walsh Research Institute, 310 Great King Street, Dunedin, 9016, New Zealand
| | - Jaciara Fagundes
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
| | - Luciana Maria Cortez Marcolino
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
| | - Isabelle Ferreira
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
- Instituto de Ciências da Saúde - ICS, UNIP, Rod. Presidente Dutra, km 157, 5 - Rio Comprido, São José dos Campos, São Paulo, SP 12240-420, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil
| | - Juliana Ferreira-Strixino
- Photobiology Applied to Health Laboratory - Research and Development Institute - PI&D, University of Vale do Paraiba, Univap, Shishima Hifumi Avenue 2911, São José dos Campos, São Paulo, 12244-000, Brazil.
| |
Collapse
|
24
|
Duffin RN, Blair VL, Kedzierski L, Andrews PC. Alkyl gallium(III) quinolinolates: A new class of highly selective anti-leishmanial agents. Eur J Med Chem 2019; 186:111895. [PMID: 31771825 DOI: 10.1016/j.ejmech.2019.111895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
A series of eight alkyl gallium complexes of general formulae [GaMe2(L)] and [Ga(Me)2L] have been synthesised, characterised and their antimicrobial activity against bacteria, cancer cells and Leishmania assessed. All eight complexes are novel, with the solid-state structures of all complexes successfully authenticated by single crystal X-ray diffraction. The dimethyl complexes all adopt a four-coordinate tetrahedral confirmation, while the monomethyl complexes are five-coordinate trigonal bipyramidal. All complexes were screened for their anti-bacterial activity either by solution state diffusion, or a solid-state stab test. The five soluble complexes underwent testing against two differing mammalian cell controls, with excellent selectivity observed against COS-7 cells, with an IC50 range of 88.5 μM to ≥100 μM. Each soluble complex was also tested for their anti-cancer capabilities, with no significant activity observed. Excellent activity was exhibited against the protozoan parasite Leishmania major (strain: V121) in both the promastigote and amastigote forms, with IC50 values ranging from 1.11 μM-13.4 μM for their anti-promastigote activity and % infection values of 3.5% ± 0.65-11.5% ± 0.65 for the more clinically relevant amastigote. Selectivity indices for each were found to be in the ranges of 6.61-64.7, with significant selectivity noted for two of the complexes. At minimum, the gallium complexes show a 3-fold enhancement in activity towards the Leishmaniaamastigotes over the parent quinolinols alone.
Collapse
Affiliation(s)
- Rebekah N Duffin
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Victoria L Blair
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Lukasz Kedzierski
- Faculty of Veterinary and Agricultural Sciences at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Victoria, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC, 3800, Australia.
| |
Collapse
|