1
|
Shi HL, Yuan SW, Xi XQ, Xie YL, Yue C, Zhang YJ, Yao LG, Xue C, Tang CD. Engineering of formate dehydrogenase for improving conversion potential of carbon dioxide to formate. World J Microbiol Biotechnol 2023; 39:352. [PMID: 37864750 DOI: 10.1007/s11274-023-03739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/24/2023] [Indexed: 10/23/2023]
Abstract
Formate dehydrogenase (FDH) is a D-2-hydroxy acid dehydrogenase, which can reversibly reduce CO2 to formate and thus act as non-photosynthetic CO2 reductase. In order to increase catalytic efficiency of formate dehydrogenase for CO2 reduction, two mutants V328I/F285W and V354G/F285W were obtained of which reduction activity was about two times more than the parent CbFDHM2, and the formate production from CO2 catalyzed by mutants were 2.9 and 2.7-fold higher than that of the parent CbFDHM2. The mutants had greater potential in CO2 reduction. The optimal temperature for V328I/F285W and V354G/F285W was 55 °C, and they showed increasement of relative activity under 45 °C to 55 °C compared with parent. The optimal pH for the mutants was 9.0, and they showed excellent stability in pH 4.0-11.5. The kcat/Km values of mutants were 1.75 times higher than that of the parent. Then the molecular basis for its improvement of biochemical characteristics were preliminarily elucidated by computer-aided methods. All of these results further established a solid foundation for molecular modification of formate dehydrogenase and CO2 reduction.
Collapse
Affiliation(s)
- Hong-Ling Shi
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, Liaoning, People's Republic of China
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Shu-Wei Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 Jianshe East Road, Xinxiang, 453007, Henan, People's Republic of China
| | - Xiao-Qi Xi
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Yu-Li Xie
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Chao Yue
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Ying-Jun Zhang
- Henan Engineering Technology Research Center for Mushroom-based Foods, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China
| | - Lun-Guang Yao
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, Liaoning, People's Republic of China.
| | - Cun-Duo Tang
- Henan Provincial Engineering Laboratory of Insect Bio-reactor and College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, People's Republic of China.
| |
Collapse
|
2
|
Sapountzaki E, Rova U, Christakopoulos P, Antonopoulou I. Renewable Hydrogen Production and Storage Via Enzymatic Interconversion of CO 2 and Formate with Electrochemical Cofactor Regeneration. CHEMSUSCHEM 2023; 16:e202202312. [PMID: 37165995 DOI: 10.1002/cssc.202202312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
The urgent need to reduce CO2 emissions has motivated the development of CO2 capture and utilization technologies. An emerging application is CO2 transformation into storage chemicals for clean energy carriers. Formic acid (FA), a valuable product of CO2 reduction, is an excellent hydrogen carrier. CO2 conversion to FA, followed by H2 release from FA, are conventionally chemically catalyzed. Biocatalysts offer a highly specific and less energy-intensive alternative. CO2 conversion to formate is catalyzed by formate dehydrogenase (FDH), which usually requires a cofactor to function. Several FDHs have been incorporated in bioelectrochemical systems where formate is produced by the biocathode and the cofactor is electrochemically regenerated. H2 production from formate is also catalyzed by several microorganisms possessing either formate hydrogenlyase or hydrogen-dependent CO2 reductase complexes. Combination of these two processes can lead to a CO2 -recycling cycle for H2 production, storage, and release with potentially lower environmental impact than conventional methods.
Collapse
Affiliation(s)
- Eleftheria Sapountzaki
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| |
Collapse
|
3
|
Kobayashi A, Taketa M, Sowa K, Kano K, Higuchi Y, Ogata H. Structure and function relationship of formate dehydrogenases: an overview of recent progress. IUCRJ 2023; 10:544-554. [PMID: 37668215 PMCID: PMC10478512 DOI: 10.1107/s2052252523006437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/24/2023] [Indexed: 09/06/2023]
Abstract
Formate dehydrogenases (FDHs) catalyze the two-electron oxidation of formate to carbon dioxide. FDHs can be divided into several groups depending on their subunit composition and active-site metal ions. Metal-dependent (Mo- or W-containing) FDHs from prokaryotic organisms belong to the superfamily of molybdenum enzymes and are members of the dimethylsulfoxide reductase family. In this short review, recent progress in the structural analysis of FDHs together with their potential biotechnological applications are summarized.
Collapse
Affiliation(s)
- Ami Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Midori Taketa
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| | - Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kenji Kano
- Office of Society Academia Collaboration for Innovation, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo, Koto 3-2-1 Kamigori, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
4
|
Bragança PMS, Carepo MSP, Pauleta SR, Pinter TBJ, Elia M, Cordas CM, Moura I, Pecoraro VL, Moura JJG. Incorporation of a molybdenum atom in a Rubredoxin-type Centre of a de novo-designed α 3DIV-L21C three-helical bundle peptide. J Inorg Biochem 2023; 240:112096. [PMID: 36603242 PMCID: PMC11232944 DOI: 10.1016/j.jinorgbio.2022.112096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
The rational design and functionalization of small, simple, and stable peptides scaffolds is an attractive avenue to mimic catalytic metal-centres of complex proteins, relevant for the design of metalloenzymes with environmental, biotechnological and health impacts. The de novo designed α3DIV-L21C framework has a rubredoxin-like metal binding site and was used in this work to incorporate a Mo-atom. Thermostability studies using differential scanning calorimetry showed an increase of 4 °C in the melting temperature of the Mo-α3DIV-L21C when compared to the apo-α3DIV-L21C. Circular dichroism in the visible and far-UV regions corroborated these results showing that Mo incorporation provides stability to the peptide even though there were almost no differences observed in the secondary structure. A formal reduction potential of ∼ -408 mV vs. NHE, pH 7.6 was determined. Combining electrochemical results, EPR and UV-visible data we discuss the oxidation state of the molybdenum centre in Mo-α3DIV-L21C and propose that is mainly in a Mo (VI) oxidation state.
Collapse
Affiliation(s)
- Pedro M S Bragança
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Microbial Stress Lab, UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Marta S P Carepo
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Escola de Psicologia e Ciências da Vida, Departamento de Ciências da Vida, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 1749-024 Lisboa, Portugal.
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Tyler B J Pinter
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Maddalena Elia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristina M Cordas
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Vincent L Pecoraro
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
5
|
Cordas CM, Valério GN, Stepnov A, Kommedal E, Kjendseth ÅR, Forsberg Z, Eijsink VGH, Moura JJG. Electrochemical characterization of a family AA10 LPMO and the impact of residues shaping the copper site on reactivity. J Inorg Biochem 2023; 238:112056. [PMID: 36332410 DOI: 10.1016/j.jinorgbio.2022.112056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Research on enzymes for lignocellulose biomass degradation has progressively increased in recent years due to the interest in taking advantage of this natural resource. Among these enzymes are the lytic polysaccharide monooxygenases (LPMOs) that oxidatively depolymerize crystalline cellulose using a reactive oxygen species generated in a reduced mono‑copper active site. The copper site comprises of a highly conserved histidine-brace, providing three equatorial nitrogen ligands, whereas less conserved residues close to the copper contribute to shaping and confining the site. The catalytic copper site is exposed to the solvent and to the crystalline substrates, and as so, the influence of the copper environment on LPMO properties, including the redox potential, is of great interest. In the current work, a direct electrochemical study of an LPMO (ScLPMO10C) was conducted allowing to retrieve kinetic and thermodynamic data associated with the redox transition in the catalytic centre. Moreover, two residues that do not bind to the copper but shape the copper sites were mutated, and the properties of the mutants were compared with those of the wild-type enzyme. The direct electrochemical studies, using cyclic voltammetry, yielded redox potentials in the +200 mV range, well in line with LPMO redox potentials determined by other methods. Interestingly, while the mutations hardly affected the formal redox potential of the enzyme, they drastically affected the reactivity of the copper site and enzyme functionality.
Collapse
Affiliation(s)
- Cristina M Cordas
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gabriel N Valério
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Anton Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Åsmund R Kjendseth
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway.
| | - José J G Moura
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Bio-inspired CO2 reduction reaction catalysis using soft-oxometalates. J Inorg Biochem 2022; 234:111903. [DOI: 10.1016/j.jinorgbio.2022.111903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
|
7
|
Hernández-Ibáñez N, Gomis-Berenguer A, Montiel V, Ania CO, Iniesta J. Fabrication of a biocathode for formic acid production upon the immobilization of formate dehydrogenase from Candida boidinii on a nanoporous carbon. CHEMOSPHERE 2022; 291:133117. [PMID: 34861253 DOI: 10.1016/j.chemosphere.2021.133117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The immobilization of the non-metallic enzyme formate dehydrogenase from Candida boidinii (CbFDH) into a nanoporous carbon with appropriate pore structure was explored for the bioelectrochemical conversion of CO2 to formic acid (FA). Higher FA production rates were obtained upon immobilization of CbFDH compared to the performance of the enzyme in solution, despite the lower nominal CbFDH to NADH (β-nicotinamide adenine dinucleotide reduced) cofactor ratio and the lower amount of enzyme immobilized. The co-immobilization of the enzyme and a rhodium complex as mediator in the nanoporous carbon allowed the electrochemical regeneration of the cofactor. Preparative electrosynthesis of FA carried out on biocathodes of relatively large dimensions (ca. 3 cm × 2 cm) confirmed the higher production rate of FA for the immobilized enzyme. Furthermore, the incorporation of a Nafion binder in the biocathodes did not modify the immobilization extent of the CbFDH in the carbon support. Coulombic efficiencies close to 46% were obtained for the electrosynthesis carried out at -0.8 V for the biocathodes prepared using the lowest Nafion binder content and the co-immobilized enzyme and rhodium redox mediator. Although these values may yet be improved, they confirm the feasibility of these biocathodes in larger scales (6 cm2) beyond most common electrode dimensions reported in the literature (ca. a few mm2).
Collapse
Affiliation(s)
- Naiara Hernández-Ibáñez
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain
| | | | - Vicente Montiel
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain
| | - Conchi O Ania
- CEMHTI (UPR 3079, CNRS), University of Orléans, 45071, Orléans, France.
| | - Jesús Iniesta
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain.
| |
Collapse
|
8
|
Ahmad Rizal Lim FN, Marpani F, Anak Dilol VE, Mohamad Pauzi S, Othman NH, Alias NH, Nik Him NR, Luo J, Abd Rahman N. A Review on the Design and Performance of Enzyme-Aided Catalysis of Carbon Dioxide in Membrane, Electrochemical Cell and Photocatalytic Reactors. MEMBRANES 2021; 12:membranes12010028. [PMID: 35054554 PMCID: PMC8778536 DOI: 10.3390/membranes12010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022]
Abstract
Multi-enzyme cascade catalysis involved three types of dehydrogenase enzymes, namely, formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), alcohol dehydrogenase (ADH), and an equimolar electron donor, nicotinamide adenine dinucleotide (NADH), assisting the reaction is an interesting pathway to reduce thermodynamically stable molecules of CO2 from the atmosphere. The biocatalytic sequence is interesting because it operates under mild reaction conditions (low temperature and pressure) and all the enzymes are highly selective, which allows the reaction to produce three basic chemicals (formic acid, formaldehyde, and methanol) in just one pot. There are various challenges, however, in applying the enzymatic conversion of CO2, namely, to obtain high productivity, increase reusability of the enzymes and cofactors, and to design a simple, facile, and efficient reactor setup that will sustain the multi-enzymatic cascade catalysis. This review reports on enzyme-aided reactor systems that support the reduction of CO2 to methanol. Such systems include enzyme membrane reactors, electrochemical cells, and photocatalytic reactor systems. Existing reactor setups are described, product yields and biocatalytic productivities are evaluated, and effective enzyme immobilization methods are discussed.
Collapse
Affiliation(s)
- Fatin Nasreen Ahmad Rizal Lim
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Fauziah Marpani
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
- Catalysis for Sustainable Water and Energy Nexus Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
- Correspondence: ; Tel.: +60-35543-6510; Fax: +60-35543-6300
| | - Victoria Eliz Anak Dilol
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Syazana Mohamad Pauzi
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Nur Hidayati Othman
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
- Catalysis for Sustainable Water and Energy Nexus Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Nur Hashimah Alias
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
- Catalysis for Sustainable Water and Energy Nexus Research Group, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Nik Raikhan Nik Him
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Norazah Abd Rahman
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (F.N.A.R.L.); (V.E.A.D.); (S.M.P.); (N.H.O.); (N.H.A.); (N.R.N.H.); (N.A.R.)
| |
Collapse
|
9
|
Cordas CM, Nguyen GS, Valério GN, Jønsson M, Söllner K, Aune IH, Wentzel A, Moura JJG. Discovery and characterization of a novel Dyp-type peroxidase from a marine actinobacterium isolated from Trondheim fjord, Norway. J Inorg Biochem 2021; 226:111651. [PMID: 34740038 DOI: 10.1016/j.jinorgbio.2021.111651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022]
Abstract
A new dye-decolorizing peroxidase (DyP) was discovered through a data mining workflow based on HMMER software and profile Hidden Markov Model (HMM) using a dataset of 1200 genomes originated from a Actinobacteria strain collection isolated from Trondheim fjord. Instead of the conserved GXXDG motif known for Dyp-type peroxidases, the enzyme contains a new conserved motif EXXDG which has been not reported before. The enzyme can oxidize an anthraquinone dye Remazol Brilliant Blue R (Reactive Blue 19) and other phenolic compounds such as ferulic acid, sinapic acid, caffeic acid, 3-methylcatechol, dopamine hydrochloride, and tannic acid. The acidic pH optimum (3 to 4) and the low temperature optimum (25 °C) were confirmed using both biochemical and electrochemical assays. Kinetic and thermodynamic parameters associated with the catalytic redox center were attained by electrochemistry.
Collapse
Affiliation(s)
- Cristina M Cordas
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Giang-Son Nguyen
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway.
| | - Gabriel N Valério
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Malene Jønsson
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - Katharina Söllner
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - Ingvild H Aune
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - Alexander Wentzel
- Sustainable Biotechnology and Bioprospecting, Department of Biotechnology and Nanomedicine, SINTEF Industry, Norway
| | - José J G Moura
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
10
|
Directed evolution of formate dehydrogenase and its application in the biosynthesis of L-phenylglycine from phenylglyoxylic acid. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Gao K, Lu Y. Putative Extracellular Electron Transfer in Methanogenic Archaea. Front Microbiol 2021; 12:611739. [PMID: 33828536 PMCID: PMC8019784 DOI: 10.3389/fmicb.2021.611739] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
It has been suggested that a few methanogens are capable of extracellular electron transfers. For instance, Methanosarcina barkeri can directly capture electrons from the coexisting microbial cells of other species. Methanothrix harundinacea and Methanosarcina horonobensis retrieve electrons from Geobacter metallireducens via direct interspecies electron transfer (DIET). Recently, Methanobacterium, designated strain YSL, has been found to grow via DIET in the co-culture with Geobacter metallireducens. Methanosarcina acetivorans can perform anaerobic methane oxidation and respiratory growth relying on Fe(III) reduction through the extracellular electron transfer. Methanosarcina mazei is capable of electromethanogenesis under the conditions where electron-transfer mediators like H2 or formate are limited. The membrane-bound multiheme c-type cytochromes (MHC) and electrically-conductive cellular appendages have been assumed to mediate the extracellular electron transfer in bacteria like Geobacter and Shewanella species. These molecules or structures are rare but have been recently identified in a few methanogens. Here, we review the current state of knowledge for the putative extracellular electron transfers in methanogens and highlight the opportunities and challenges for future research.
Collapse
Affiliation(s)
- Kailin Gao
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
12
|
Moon M, Park GW, Lee JP, Lee JS, Min K. Recent progress in formate dehydrogenase (FDH) as a non-photosynthetic CO2 utilizing enzyme: A short review. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Efficient bio-electroreduction of CO2 to formate on a iron phthalocyanine-dispersed CDC in microbial electrolysis system. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv 2019; 37:107408. [DOI: 10.1016/j.biotechadv.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
15
|
|