1
|
Jin S, Feng C, Wang X. DNA or not DNA -that is the question determining the design of platinum anticancer drugs. Eur J Med Chem 2025; 282:117077. [PMID: 39579471 DOI: 10.1016/j.ejmech.2024.117077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/20/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Platinum drugs are the most widely used chemotherapeutics to treat various tumors. Their primary mode of action is supposed to be inducing apoptosis of cancer cells via covalent binding to DNA. This mechanism has shackled the design of new platinum drugs for many years. Mounting evidence shows that many platinum complexes form non-covalent adducts with DNA or interact with proteins to exhibit significant antitumor activity, thus implying some distinct mechanisms from that of traditional platinum drugs. These unconventional examples indicate that covalent DNA binding is not the precondition for the antitumor activity of platinum complexes, and diversified reactions or interactions with biomolecules, organelles, signal pathways, or immune system could lead to the antitumor activity of platinum complexes. The atypical mechanisms break the classical DNA-only paradigm and structure-activity relationships, thus opening a wide avenue for the design of innovative platinum anticancer drugs.
Collapse
Affiliation(s)
- Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Chenyao Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
2
|
Wang M, Li F, Wang Z, Lv L, Liu W. Research progress of natural product-conjugated platinum and gold complexes as potential antitumor agents. Eur J Med Chem 2024; 280:116956. [PMID: 39413444 DOI: 10.1016/j.ejmech.2024.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Cancer is widely recognized as a serious disease that poses a significant threat to human life and health. The distinctive chemical properties and pronounced antiproliferative activity of platinum drugs are considered to be responsible for their remarkable efficacy in clinical applications. However, undesirable side effects and resistance have severely hampered the treatment of various types of cancer with platinum-based drugs. Natural products (NPs) exhibit extensive pharmacological activities and represent an important source for developing cancer therapeutics. Therefore, the combination of metals and NPs is an attractive strategy for the development of new anticancer agents. Several studies have indicated that combining metals with NPs has a synergistic enhancement effect in antitumor activity. For transition metals, there has been burgeoning research output investigating NP-conjugated platinum and gold complexes. The present article reviews the progress made over the past 5-10 years on the development of NP-conjugated platinum and gold complexes, including a brief introduction to their chemistry and mechanism of action, and a summary of their benefits.
Collapse
Affiliation(s)
- Meiyu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Fuwei Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhaoran Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lin Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wukun Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Biswas M, Chaudhary K, Padhi SS, Banerjee A, Bharathavikru RS, Bandaru S, Panda SJ, Purohit CS, Das NR, Pathak RK. TTFA-Platin Conjugate: Deciphering the Therapeutic Roles of Combo-Prodrug through Evaluating Stability-Activity Relationship. J Med Chem 2024; 67:20986-21008. [PMID: 39611754 DOI: 10.1021/acs.jmedchem.4c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
This work introduces a novel Pt(II) based prodrug TTFA-Platin that integrates a β-diketonate ligand TTFA with a platinum scaffold to structurally resemble carboplatin and offers intermediate kinetic lability between cisplatin and carboplatin, striking a balance between therapeutic efficacy and safety. A comprehensive stability and speciation study was conducted in various biological media, mapping the therapeutic effects of TTFA-Platin. A control molecule, TMK-Platin, was synthesized to further validate the structural-stability relationship, which displayed poor activatable features in biological systems. In vitro studies against a panel of cancer cell lines revealed that TTFA-Platin exhibited significantly higher potency compared to TMK-Platin. In vivo studies revealed that TTFA-Platin exhibited significantly lower toxicity than the reference platinum compounds. Thus, leveraging ligands that fine-tune kinetic lability and offer therapeutic benefits can help develop more effective and safer cancer treatments, addressing the limitations of existing therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Sateesh Bandaru
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
| | - Nihar Ranjan Das
- Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | | |
Collapse
|
4
|
Palmeira-Mello MV, Costa AR, de Oliveira LP, Blacque O, Gasser G, Batista AA. Exploring the potential of ruthenium(II)-phosphine-mercapto complexes as new anticancer agents. Dalton Trans 2024; 53:10947-10960. [PMID: 38895770 DOI: 10.1039/d4dt01191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The search for new metal-based anticancer drug candidates is a fundamental task in medicinal inorganic chemistry. In this work, we assessed the potential of two new Ru(II)-phosphine-mercapto complexes as potential anticancer agents. The complexes, with the formula [Ru(bipy)(dppen)(Lx)]PF6 [(1), HL1 = 2-mercapto-pyridine and (2), HL2 = 2-mercapto-pyrimidine, bipy = 2,2'-bipyridine, dppen = cis-1,2-bis(diphenylphosphino)-ethylene] were synthesized and characterized by nuclear magnetic resonance (NMR) [1H, 31P(1H), and 13C], high resolution mass spectrometry (HR-MS), cyclic voltammetry, infrared and UV-Vis spectroscopies. Complex 2 was obtained as a mixture of two isomers, 2a and 2b, respectively. The composition of these metal complexes was confirmed by elemental analysis and liquid chromatography-mass spectrometry (LC-MS). To obtain insights into their lipophilicity, their distribution coefficients between n-octanol/PBS were determined. Both complexes showed affinity mainly for the organic phase, presenting positive log P values. Also, their stability was confirmed over 48 h in different media (i.e., DMSO, PBS and cell culture medium) via HPLC, UV-Vis and 31P{1H} NMR spectroscopies. Since enzymes from the P-450 system play a crucial role in cellular detoxification and metabolism, the microsomal stability of 1, which was found to be the most interesting compound of this study, was investigated using human microsomes to verify its potential oxidation in the liver. The analyses by LC-MS and ESI-MS reveal three main metabolites, obtained by oxidation in the dppen and bipy moieties. Moreover, 1 was able to interact with human serum albumin (HSA). The cytotoxicity of the metal complexes was tested in different cancerous and non-cancerous cell lines. Complex 1 was found to be more selective than cisplatin against MDA-MB-231 breast cancer cells when compared to MCF-10A non-cancerous cells. In addition, complex 1 affects cell morphology and migration, and inhibits colony formation in MDA-MB-231 cells, making it a promising cytotoxic agent against breast cancer.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Analu R Costa
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Leticia P de Oliveira
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Alzir A Batista
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Elsayed SA, Elnabky IM, Aboelnga MM, El-Hendawy AM. Palladium(ii), platinum(ii), and silver(i) complexes with 3-acetylcoumarin benzoylhydrazone Schiff base: Synthesis, characterization, biomolecular interactions, cytotoxic activity, and computational studies. RSC Adv 2024; 14:19512-19527. [PMID: 38895519 PMCID: PMC11184370 DOI: 10.1039/d4ra02738h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
New Pd(ii) (C1), Pt(ii) (C2), and Ag(i) (C3) complexes derived from 3-acetylcoumarin benzoylhydrazone (HL) Schiff base were synthesized and characterized by FTIR, 1H NMR, UV-visible spectroscopies along with elemental analysis (C, H, N), magnetic, molar conductivity measurements, and DFT calculations. The obtained results suggested that the ligand had different behaviors in the complexes: mono-negative tridentate (C1) and neutral tridentate (C2) as an ONO-donor and neutral bidentate (C3) as an ON-donor. Quantum chemistry calculations were performed to validate the stability of the suggested geometries and indicated that all the complexes possess tetra-coordinated metal ions. The binding affinity of all the compounds toward calf thymus (ctDNA), yeast (tRNA), and bovine serum albumin (BSA) was evaluated by absorption/emission spectral titration studies, which revealed the intercalative binding to ctDNA and tRNA and static binding upon complex formation with BSA. Molecular insights into the binding affinity of the characterized complexes were provided through conducting molecular docking analysis. Moreover, the cytotoxic activity (in vitro) of the compounds was screened against human cancerous cell lines and a non-cancerous lung fibroblast (WI38) one using cis-platin as a reference drug. The IC50 and selective index (SI) values indicated the higher cytotoxic activity of all the metal complexes compared to their parent ligand. Among all the compounds, the complex C2 showed the highest activity. These results confirmed the improvement of the anticancer activity of the ligand by incorporating the metal ions. In addition, flow cytometry results showed that complexes C1 and C2 induced cell cycle arrest at S and G1/S, respectively.
Collapse
Affiliation(s)
- Shadia A Elsayed
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Islam M Elnabky
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Ahmed M El-Hendawy
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| |
Collapse
|
6
|
Navarro-Peñaloza R, Anacleto-Santos J, Rivera-Fernández N, Sánchez-Bartez F, Gracia-Mora I, Caballero AB, Gamez P, Barba-Behrens N. Anti-toxoplasma activity and DNA-binding of copper(II) and zinc(II) coordination compounds with 5-nitroimidazole-based ligands. J Biol Inorg Chem 2024; 29:33-49. [PMID: 38099935 PMCID: PMC11001709 DOI: 10.1007/s00775-023-02029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/14/2023] [Indexed: 04/10/2024]
Abstract
Tetrahedral copper(II) and zinc(II) coordination compounds from 5-nitroimidazole derivatives, viz. 1-(2-chloroethyl)-2-methyl-5-nitroimidazole (cenz) and ornidazole 1-(3-chloro-2-hydroxypropyl)-2-methyl-5-nitroimidazole (onz), were synthesized and spectroscopically characterized. Their molecular structures were determined by X-ray diffraction studies. The complexes [Cu(onz)2X2], [Zn(onz)2X2], [Cu(cenz)2X2] and [Zn(cenz)2X2] (X- = Cl, Br), are stable in solution and exhibit positive LogD7.4 values that are in the range for molecules capable of crossing the cell membrane via passive difussion. Their biological activity against Toxoplasma gondi was investigated, and IC50 and lethal dose (LD50) values were determined. The ornidazole copper(II) compounds showed very good antiparasitic activity in its tachyzoite morphology. The interaction of the coordination compounds with DNA was examined by circular dichroism, fluorescence (using intercalating ethidium bromide and minor groove binding Hoechst 33258) and UV-Vis spectroscopy. The copper(II) compounds interact with the minor groove of the biomolecule, whereas weaker electrostatic interactions take place with the zinc(II) compounds. The spectroscopic data achieved for the two series of complexes (namely with copper(II) and zinc(II) as metal center) agree with the respective DNA-damage features observed by gel electrophoresis.
Collapse
Affiliation(s)
- Rubí Navarro-Peñaloza
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Francisco Sánchez-Bartez
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Isabel Gracia-Mora
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica,, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica,, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Norah Barba-Behrens
- Departamento de Química Inorgánica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Vergaro V, Dell'Anna MM, Shahsavari HR, Baldassarre F, Migoni D, Mastrorilli P, Fanizzi FP, Ciccarella G. Synthesis of a light-responsive platinum curcumin complex, chemical and biological investigations and delivery to tumor cells by means of polymeric nanoparticles. NANOSCALE ADVANCES 2023; 5:5340-5351. [PMID: 37767039 PMCID: PMC10521244 DOI: 10.1039/d3na00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023]
Abstract
Platinum-based anticancer drugs are common in chemotherapy, but problems such as systemic toxicity and acquired resistance of some tumors hamper their clinical applications and therapeutic efficacy. It is necessary to synthesize Pt-based drugs and explore strategies to reduce side effects and improve pharmacokinetic profiles. Photo-responsive chemotherapeutics have emerged as an alternative strategy against several cancers, as photoactivation offers spatial selectivity and fewer side effects. Here, we combine chemical synthesis and nanotechnology to create a multifunctional platinum drug delivery system based on the novel metal complex [Pt(ppy)(curc)] (ppy = deprotonated 2-phenylpyridine, curc = deprotonated curcumin)] embodying the naturally occurring bioactive molecule, curcumin. The ultrasonication method coupled with the layer-by-layer technology was employed to produce nanocolloids, which demonstrated a good biocompatibility, higher solubility in aqueous solution, stability, large drug loading, and good biological activity in comparison with the free drug. In vitro release experiments revealed that the polymeric nanoformulation is relatively stable under physiological conditions (pH = 7.4 and 37 °C) but sensitive to acidic environments (pH = 5.6 and 37 °C) which would trigger the release of the loaded drug. Our approach modifies the bioavailability of this Pt-based drug increasing its therapeutic action in terms of both cytotoxic and anti-metastasis effects.
Collapse
Affiliation(s)
- Viviana Vergaro
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| | | | - Hamid R Shahsavari
- DICATECh, Politecnico di Bari via Orabona, 4 70125 Bari Italy
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Francesca Baldassarre
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| | - Danilo Migoni
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
| | | | - Francesco Paolo Fanizzi
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| |
Collapse
|
8
|
Dar MO, Mir RH, Mohiuddin R, Masoodi MH, Sofi FA. Metal complexes of xanthine and its derivatives: Synthesis and biological activity. J Inorg Biochem 2023; 246:112290. [PMID: 37327591 DOI: 10.1016/j.jinorgbio.2023.112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Xanthine and its derivatives are considered an important class of N-heterocyclic purine compounds that have gained significant importance in medicinal chemistry. N-heterocyclic carbene (NHC) and N-coordinated metal complexes of xanthine and its derivatives have revealed a range of new possibilities for their use as therapeutic agents in addition to their established catalytic behavior. The metal complexes of xanthine and its derivatives have been designed and synthesized for the exploration of their potential therapeutic applications. These metal complexes based on the xanthine scaffold exhibited various potential medicinal applications including anticancer, antibacterial, and antileishmanial activity. The metal complexes of xanthine and its derivatives shall pave the way for the rational design and development of new therapeutic agents. In the present comprehensive review, we highlighted the recent advancements in the synthesis and medicinal applications of metal complexes based on N-heterocyclic carbene (NHC) derived from xanthine scaffolds.
Collapse
Affiliation(s)
- Mohammad Ovais Dar
- Department of Pharmaceutical Chemistry, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India
| | - Roohi Mohiuddin
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir 190001, India
| | - Mubashir H Masoodi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India
| | - Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India.
| |
Collapse
|
9
|
Del Pino JMV, Scalambra F, Bermejo-Casadesús C, Massaguer A, García-Maroto F, Romerosa A. Study of the biological activity of photoactive bipyridyl-Ru(II) complexes containing 1,3,5-triaza-7-phosphaadamantane (PTA). J Inorg Biochem 2023; 246:112291. [PMID: 37352655 DOI: 10.1016/j.jinorgbio.2023.112291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
The water-soluble ruthenium complex cis-[Ru(dcbpyH)2(PTAH)2]Cl2·3H2O (1) (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine; PTA = 1,3,5-triaza-7-phosphaadamantane) has been synthesized and characterised by NMR, IR spectroscopy, elemental analysis, and single-crystal X-ray diffraction. The optical properties of 1 were studied, including photoactivation under visible light, as well as its biological properties, together with those of the previously published Ru complexes cis-[Ru(bpy)2(PTA)2]Cl2 (2), trans-[Ru(bpy)2(PTA)2](CF3SO3)2 (3) and cis-[Ru(bpy)2(H2O)(PTA)](CF3SO3)2 (4) (bpy = 2,2'-bipyridine). Anticancer activities of the complexes against human lung (A549), cervical (HeLa) and prostate (PC3) carcinoma cells were evaluated under dark conditions and upon photoactivation with visible light. None of the complexes exhibited cytotoxic activity in the absence of light irradiation (IC50 > 100 μM). However, after photoactivation, the cytotoxicity of complexes 1, 2 and 3 against the three cell lines markedly increased, resulting in IC50 values between 25.3 μM and 9.3 μM. Notably, these complexes did not show toxicity against red blood cells. These findings show the potential of complexes 1, 2 and, particularly, 3 for selective and controlled cancer photochemotherapy. The reactivity of the Ru complexes against DNA under UV-Vis irradiation was studied by analysing plasmid mobility. Experimental data shows that 4 unfolds supercoiled DNA (SC DNA) both in the dark and under visible irradiation, while 1 and 3 are only active under light, being 2 inactive in either case. The unfolding activities of complexes 3 and 4 were dependent on the air present in the reaction. The measured intracellular levels of reactive oxygen species (ROS) upon irradiation with complexes 1, 2 and 3 suggest that their mechanism of action is related to oxidative stress.
Collapse
Affiliation(s)
| | - Franco Scalambra
- Área de Química Inorgánica-CIESOL, Universidad de Almería, Almería, Spain
| | | | - Anna Massaguer
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | | | - Antonio Romerosa
- Área de Química Inorgánica-CIESOL, Universidad de Almería, Almería, Spain.
| |
Collapse
|
10
|
Herrera-Ramírez P, Berger SA, Josa D, Aguilà D, Caballero AB, Fontova P, Soto-Cerrato V, Martínez M, Gamez P. Steric hindrance, ligand ejection and associated photocytotoxic properties of ruthenium(II) polypyridyl complexes. J Biol Inorg Chem 2023; 28:403-420. [PMID: 37059909 PMCID: PMC10149480 DOI: 10.1007/s00775-023-01998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/23/2023] [Indexed: 04/16/2023]
Abstract
Two ruthenium(II) polypyridyl complexes were prepared with the {Ru(phen)2}2+ moiety and a third sterically non-hindering bidentate ligand, namely 2,2'-dipyridylamine (dpa) and N-benzyl-2,2'-dipyridylamine (Bndpa). Hence, complexes [Ru(phen)2(dpa)](PF6)2 (1) and [Ru(phen)2(Bndpa)](PF6)2 (2) were characterized and their photochemical behaviour in solution (acetonitrile and water) was subsequently investigated. Compounds 1 and 2, which do not exhibit notably distorted octahedral coordination environments, contrarily to the homoleptic "parent" compound [Ru(phen)3](PF6)2, experience two-step photoejection of the dpa and Bndpa ligand upon irradiation (1050-430 nm) for several hours. DNA-binding studies revealed that compounds 1 and 2 affect the biomolecule differently upon irradiation; while 2 solely modifies its electrophoretic mobility, complex 1 is also capable of cleaving it. In vitro cytotoxicity studies with two cancer-cell lines, namely A549 (lung adenocarcinoma) and A375 (melanoma), showed that both 1 and 2 are not toxic in the dark, while only 1 is significantly cytotoxic if irradiated, 2 remaining non-toxic under these conditions. Light irradiation of the complex cation [Ru(phen)2(dpa)]2+ leads to the generation of transient Ru species that is present in the solution medium for several hours, and that is significantly cytotoxic, ultimately producing non-toxic free dpa and [Ru(phen)(OH2)2]2+.
Collapse
Affiliation(s)
- Piedad Herrera-Ramírez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Sarah Alina Berger
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - Dana Josa
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
| | - David Aguilà
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Ana B Caballero
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Pere Fontova
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Chemistry, Universidad de Burgos, 09001, Burgos, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.
| | - Patrick Gamez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028, Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
11
|
Pan A, Bhaduri R, Mandal S, Kumar Tarai S, Bagchi A, Biswas A, Moi SC. Photophysical study on DNA & BSA binding and cytotoxic behaviour of piperidine-Pt(II) complexes: their kinetics & mechanism and molecular docking. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
D'Errico S, Falanga AP, Greco F, Piccialli G, Oliviero G, Borbone N. State of art in the chemistry of nucleoside-based Pt(II) complexes. Bioorg Chem 2023; 131:106325. [PMID: 36577221 DOI: 10.1016/j.bioorg.2022.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
After the fortuitous discovery of the anticancer properties of cisplatin, many Pt(II) complexes have been synthesized, to obtain less toxic leads which could overcome the resistance phenomena. Given the importance of nucleosides and nucleotides as antimetabolites, studying their coordinating properties towards Pt(II) ions is challenging for bioorganic and medicinal chemistry. This review aims to describe the results achieved so far in the aforementioned field, paying particular attention to the synthetic aspects, the chemical-physical characterization, and the biological activities of the nucleoside-based Pt(II) complexes.
Collapse
Affiliation(s)
- Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Sergio Pansini, 5, 80131 Naples, Italy.
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
13
|
Gunaseelan D, Ali MSBN, Albert A, Prabhakaran R, Beno DL, Nagarethinam B. Biochemical and molecular anticancer approaches for Boerhaavia diffusa root extracts in oral cancer. J Cancer Res Ther 2022; 18:S244-S252. [PMID: 36510972 DOI: 10.4103/jcrt.jcrt_932_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Boerhaavia diffusa is a medicinal herb with anti-inflammatory, antiproliferative, anticancer, and immunomodulatory properties, found across India. Aim and Objectives The present study is designed to investigate the therapeutic potential for B. diffusa root extracts in oral cancer cell line. Materials and Methods The aqueous and methanolic extracts of B. diffusa were prepared using Soxhlet apparatus. In order to determine the phytochemical constituents of B. diffusa, the extracts were subjected to gas chromatography-mass spectrometry analysis. The antioxidant potential of B. diffusa extracts was assessed by 2,2-Diphenyl-picrylhydrazyl, ferric ion-reducing antioxidant power, catalase and peroxidase assays. The effective concentration of B. diffusa root on cell viability was analyzed by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The ability of B. diffusa root extracts to modify the cell-cycle phases was performed by FACS analysis. The apoptotic inducing potential of B. diffusa in oral cancer cells was confirmed by acridine orange-ethidium bromide and 4',6-diamidino-2-phenylindole staining. The protein profile of apoptotic processes was validated by the Western blot analysis; docking studies were also performed. Results We observed that antioxidant activity was higher in B. diffusa methanolic extract compared with aqueous extract. The results showed that the methanolic and aqueous extracts of B. diffusa exhibited significant cytotoxic effect with IC50 value of 36 μg/ml and 30 μg/ml, respectively. The apoptotic DNA fragmentation and the apoptotic inducing potential in KB oral cancer cell line were higher for the methanolic extract compared with the aqueous extract. These results were also confirmed by in-silico analysis. Conclusion The results indicate that extracts obtained from the roots of B. diffusa inhibit the progression of oral cancer. These compounds of pharmacological importance can be either used alone or in combination with other drugs to treat oral cancer.
Collapse
Affiliation(s)
- Dharani Gunaseelan
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Center, SASTRA Deemed University, Kumbakonam, Tamil Nadu, India
| | | | - Abhishek Albert
- Department of Biochemistry, Cancer Biology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Rajkumar Prabhakaran
- Department of Biochemistry, Cancer Biology Unit, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Daniel Lysias Beno
- Department of Histopathology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Baskaran Nagarethinam
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Center, SASTRA Deemed University, Kumbakonam; Department of Technology Dissemination, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| |
Collapse
|
14
|
Bhaduri R, Pan A, Kumar Tarai S, Mandal S, Bagchi A, Biswas A, Ch. Moi S. In vitro anticancer activity of Pd(II) complexes with pyridine scaffold: Their bioactivity, role in cell cycle arrest, and computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
An experimental and Theoretical Approach of Coordination compounds derived from meso-tetra(thiophen-2-yl)porphyrin: DNA interactions and cytotoxicity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Moradi MM, Aliomrani M, Tangestaninejad S, Varshosaz J, Kazemian H, Emami F, Rostami M. Hyaluronic acid targeted Metal Organic Framework based on Iron (III) for delivery of Platinum curcumin cytotoxic agent to triple negative Breast cancer cell line. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammad Mahdi Moradi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical science Isfahan University of Medical Science Isfahan Iran
| | - Mehdi Aliomrani
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical science Isfahan University of Medical Science Isfahan Iran
| | | | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical science Isfahan University of Medical Science Isfahan Iran
| | - Hossein Kazemian
- Northern Analytical Lab Services University of Northern British Columbia Prince George BC Canada
- Department of Chemistry, Faculty of Science and Engineering University of Northern British Columbia Prince George BC Canada
| | - Fatemeh Emami
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical science Isfahan University of Medical Science Isfahan Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Centre and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
17
|
Low-Intensity Light-Responsive Anticancer Activity of Platinum(II) Complex Nanocolloids on 2D and 3D In Vitro Cancer Cell Model. Bioinorg Chem Appl 2022; 2022:9571217. [PMID: 35502219 PMCID: PMC9056248 DOI: 10.1155/2022/9571217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the therapeutic efficacy of low-intensity visible light responsive nanocolloids of a Pt-based drug using a 2D and three-dimensional (3D) in vitro cancer cell model. Biocompatible and biodegradable polymeric nanocolloids, obtained using the ultrasonication method coupled with Layer by Layer technology, were characterized in terms of size (100 ± 20 nm), physical stability, drug loading (78%), and photoactivation through spectroscopy studies. The in vitro biological effects were assessed in terms of efficacy, apoptosis induction, and DNA-Pt adducts formation. Biological experiments were performed both in dark and under visible light irradiation conditions, exploiting the complex photochemical properties. The light-stimuli responsive nanoformulation gave a significant enhancement in drug bioactivity. This allowed us to achieve satisfying results by using nanomolar drug concentration (50 nM), which was ineffective in darkness condition. Furthermore, our nanocolloids were validated in 3D in vitro spheroids using confocal microscopy and cytofluorimetric assay to compare their behavior on culture in 2D monolayers. The obtained results confirmed that these nanocolloids are promising tools for delivering Pt-based drugs.
Collapse
|
18
|
Evaluation of Heteroleptic Pt (II) β-Diketonate Complexes as Precatalysts for the Photoactivated Curing of Silicone Resins. Catalysts 2022. [DOI: 10.3390/catal12030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A library of platinum (II) complexes of general formula (O,O′-β-diketonate)PtLX (L = dimethylsulfoxide, pyridine, triphenylphosphine; X = chloride, γ-acetylacetonate) has been prepared, using synthetic methodologies available in the literature. The library has been supplemented with a novel platinum (II) complex bearing a triazenido N-oxide ligand. The complexes have been characterized and tested as precatalysts for the photoactivated curing of silicone resins. Correlations have been established between the nature of the employed ligands, the ultraviolet-visible (UV-Vis) absorption spectrum of the complexes and their catalytic performance, which enable the tailored preparation of complexes with improved performance in view of possible technological applications.
Collapse
|
19
|
Multifunctional novel rosin derivatives based on dehydroabietylamine with metal ion sensing and DNA/BSA binding activities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Jovanović‐Stević S, Ćoćić D, Puchta R, Bogojeski J, Jurišević M, Gajović N, Jakovljević S, Arsenijević N, Jovanović I, Petrović B. Assessment of biological activity of the caffeine‐derived Pt (II) and Pd (II) complexes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Snežana Jovanović‐Stević
- Institute for Information Technologies Kragujevac, Department of Science University of Kragujevac Kragujevac Serbia
| | - Dušan Ćoćić
- Faculty of Science University of Kragujevac Kragujevac Serbia
| | - Ralph Puchta
- Inorganic Chemistry, Department of Chemistry and Pharmacy University of Erlangen‐Nürnberg Erlangen Germany
- Computer Chemistry Center, Department of Chemistry and Pharmacy University of Erlangen‐Nürnberg Erlangen Germany
- ZISC (Zentralinstitut für Scientific Computing) Universität Erlangen‐Nürnberg Erlangen Germany
| | | | - Milena Jurišević
- Faculty of Medical Sciences, Department of Clinical Pharmacy University of Kragujevac Kragujevac Serbia
| | - Nevena Gajović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research University of Kragujevac Kragujevac Serbia
| | | | - Nebojša Arsenijević
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research University of Kragujevac Kragujevac Serbia
| | - Ivan Jovanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research University of Kragujevac Kragujevac Serbia
| | | |
Collapse
|
21
|
Bhaduri R, Mukherjee S, Mitra I, Ghosh S, Chatterji U, Dodda SR, Moi SC. Anticancer activity and cell death mechanism of Pt(II) complexes: Their in vitro bio-transformation to Pt(II)-DNA adduct formation and BSA binding study by spectroscopic method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120096. [PMID: 34214741 DOI: 10.1016/j.saa.2021.120096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Pt(II) complex cis-[Pt(PEA)(OH2)2] X2, C-2 (where, PEA = 2-Pyridylethylamine and X = ClO4- or NO3-) was synthesized by hydrolysis of cis-[Pt(PEA)Cl2] C-1. Glutathione (GSH) and DL-penicilamine (DL-pen) substituted complexes cis-[Pt(PEA)(GSH)],C-3 and cis-[Pt(PEA)DL-pen)]X C-4 were synthesized and characterized by spectroscopic methods. Kinetic studies were traced on complex C-2 with the thiols, GSH and DL-pen. Pt(II)-Sulfur adduct formation mechanisms of the substituted products C-3 and C-4 were established from the kinetic investigation. At pH 4.0, C-2 - thiols interactions follow two consecutive steps: the first step is dependent, and the second is independent of [thiol]. The association equilibrium constant (KE), substitution rate constants for both steps (k1 & k2), and activation parameters (ΔH‡ and ΔS‡) have been assessed to propose the mechanism. Agarose gel electrophoresis mobilization pattern of DNA with complexes was performed to visualize the interaction nature. CT-DNA and BSA binding activities of the complexes have been executed by electronic, fluorescence spectroscopy, and viscometric titration methods. Evaluation of thermodynamic parameters (ΔH0, ΔS0, and ΔG0) from BSA binding constants was executed to propose the driving forces of interaction between these species. A molecular docking study was performed to evaluate the binding mode of complexes with BDNA strands. Anticancer activity of the complexes C-1 to C-4 was explored on both A549 and HEp-2 cell lines, compared with approved anticancer drugs cisplatin, carboplatin, and oxaliplatin. All these complexes were tested by NBT assay on normal cell line skeletal muscle cells (L6 myotubes) to observe the adverse effects compared to recognized anticancer medications. The ultimate aim is to explore the role of anticancer agents on cell death mechanism, which has been performed by flow-cytometer on HEp-2 cell lines.
Collapse
Affiliation(s)
- Rituparna Bhaduri
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India
| | - Subhajit Mukherjee
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India
| | - Ishani Mitra
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India
| | - Subarna Ghosh
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, W.B., India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, W.B., India
| | - Subba Reddy Dodda
- Department of Biotechnology, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, WB, India
| | - Sankar Ch Moi
- Department of Chemistry, National Institute of Technology Durgapur, M.G. Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
22
|
Zhu R, Chen X, Shu N, Shang Y, Wang Y, Yang P, Tang Y, Wang F, Xu J. Computational Study of Photochemical Relaxation Pathways of Platinum(II) Complexes. J Phys Chem A 2021; 125:10144-10154. [PMID: 34792355 DOI: 10.1021/acs.jpca.1c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of functional platinum(II) complexes (Pt1-Pt3), which present high activity in four-photon absorption, in vivo imaging, and precise cancer therapy, as previously reported by the experimental work of Zhang et al. (Inorg. Chem. 2021, 60, 2362-2371), are computationally investigated in the article. We find that after the complex goes through four-photon absorption to the S1 state, it undergoes intersystem crossing to the T2 state and eventually reaches the T1 state through internal conversion. On the T1 state, both radiative and nonradiative decay to S0 exit. The radiative decay forms the basis for the phosphorescence imaging in tissues as reported in the original paper. In addition, the nonradiative decay can simultaneously generate cytotoxic singlet oxygen by the excited energy transfer process, also known as triplet oxygen's quenching of triplet states. We conclude that the phosphorescence property as well as the photosensitizer character jointly bring high activity of in vivo imaging and photodynamic therapy to these complexes.
Collapse
Affiliation(s)
- Rongji Zhu
- Key Laboratory for Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023 Jiangsu, China
| | - Xi Chen
- College of Science, Nanjing Forestry University, Nanjing, 210037 Jiangsu, China
| | - Na Shu
- Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex System (NSLSCS) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 Jiangsu, China
| | - Yunlong Shang
- Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex System (NSLSCS) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 Jiangsu, China
| | - Yichen Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advances Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, 213164 Changzhou, China
| | - Pu Yang
- Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex System (NSLSCS) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 Jiangsu, China
| | - Yihan Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advances Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, 213164 Changzhou, China
| | - Fei Wang
- Department of Chemistry, Le Moyne College, Syracuse, New York 13214, United States
| | - Jiawei Xu
- Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex System (NSLSCS) and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023 Jiangsu, China
| |
Collapse
|
23
|
Petrović ĐS, Milić SSJ, Đukić MB, Radojević ID, Jelić RM, Jurišević MM, Radić GP, Gajović NM, Arsenijević NN, Jovanović IP, Marković NV, Lj. Stojković D, Jevtić VV. Synthesis, characterization, HSA/DNA binding, cytotoxicity study, and antimicrobial activity of new palladium(II) complexes with some esters of (S,S)-propylenediamine-N,N'-di-2-(3-methyl)butanoic acid. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Elsayed SA, Elnabky IM, di Biase A, El‐Hendawy AM. New mixed ligand copper(II) hydrazone‐based complexes: Synthesis, characterization, crystal structure, DNA/RNA/BSA binding, in vitro anticancer, apoptotic activity, and cell cycle analysis. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shadia A. Elsayed
- Chemistry Department, Faculty of Science Damietta University New Damietta 34517 Egypt
| | - Islam M. Elnabky
- Chemistry Department, Faculty of Science Damietta University New Damietta 34517 Egypt
| | - Armando di Biase
- Department of Chemistry University of Milan C. Golgi 19 Milan 20133 Italy
| | - Ahmed M. El‐Hendawy
- Chemistry Department, Faculty of Science Damietta University New Damietta 34517 Egypt
| |
Collapse
|
25
|
Palmeira-Mello MV, Caballero AB, Lopez-Espinar A, Guedes GP, Caubet A, de Souza AMT, Lanznaster M, Gamez P. DNA-interacting properties of two analogous square-planar cis-chlorido complexes: copper versus palladium. J Biol Inorg Chem 2021; 26:727-740. [PMID: 34453615 PMCID: PMC8437883 DOI: 10.1007/s00775-021-01888-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Two square-planar coordination compounds, namely [Cu(CPYA)Cl2] (1) and [Pd(CPYA)Cl2] (2), were prepared from the ligand 4-chloro-N-(pyridin-2-ylmethyl)aniline (CPYA) and two chloride salts, and were fully characterized, including by X-ray diffraction. Spectroscopic, electrophoretic and AFM studies revealed that the two isostructural compounds were interacting differently with DNA. In both cases, the initial interaction involves electrostatic contacts of the CPYA ligand in the minor groove (as suggested by molecular docking), but subsequent strong binding occurs with the palladium(II) complex 2, whereas the binding with the copper complex 1 is weaker and concentration dependent. The strong binding of 2 eventually leads to the cleavage of the double strand and the redox activity of 1 allows to oxidatively cleave the biomolecule.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói, RJ, 24020-141, Brazil
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Laboratório de Modelagem Molecular and QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Aida Lopez-Espinar
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói, RJ, 24020-141, Brazil
| | - Amparo Caubet
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Alessandra M Teles de Souza
- Laboratório de Modelagem Molecular and QSAR (ModMolQSAR), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, Niterói, RJ, 24020-141, Brazil
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
26
|
Zuccolo M, Arrighetti N, Perego P, Colombo D. Recent Progresses in Conjugation with Bioactive Ligands to Improve the Anticancer Activity of Platinum Compounds. Curr Med Chem 2021; 29:2566-2601. [PMID: 34365939 DOI: 10.2174/0929867328666210806110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Platinum (Pt) drugs, including cisplatin, are widely used for the treatment of solid tumors. Despite the clinical success, side effects and occurrence of resistance represent major limitations to the use of clinically available Pt drugs. To overcome these problems, a variety of derivatives have been designed and synthetized. Here, we summarize the recent progress in the development of Pt(II) and Pt(IV) complexes with bioactive ligands. The development of Pt(II) and Pt(IV) complexes with targeting molecules, clinically available agents, and other bioactive molecules is an active field of research. Even if none of the reported Pt derivatives has been yet approved for clinical use, many of these compounds exhibit promising anticancer activities with an improved pharmacological profile. Thus, planning hybrid compounds can be considered as a promising approach to improve the available Pt-based anticancer agents and to obtain new molecular tools to deepen the knowledge of cancer progression and drug resistance mechanisms.
Collapse
Affiliation(s)
- Marco Zuccolo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Diego Colombo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| |
Collapse
|
27
|
Elsayed SA, Badr HE, di Biase A, El-Hendawy AM. Synthesis, characterization of ruthenium(II), nickel(II), palladium(II), and platinum(II) triphenylphosphine-based complexes bearing an ONS-donor chelating agent: Interaction with biomolecules, antioxidant, in vitro cytotoxic, apoptotic activity and cell cycle analysis. J Inorg Biochem 2021; 223:111549. [PMID: 34315119 DOI: 10.1016/j.jinorgbio.2021.111549] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023]
Abstract
Four new transition metal complexes, [M(PPh3)(L)].CH3OH (M = Ni(II) (1), Pd(II) (2)) [Pt (PPh3)2(HL)]Cl (3) and [Ru(CO)(PPh3)2(L)] (4) (H2L = 2,4-dihydroxybenzaldehyde-S-methyldithiocarbazate, PPh3 = triphenylphosphine) have been synthesized and characterized by elemental analyses (C, H, N), FTIR, NMR (1H, 31P), ESI-MS and UV-visible spectroscopy. The molecular structure of (1) and (2) complexes was confirmed by single-crystal X-ray crystallography. It showed a distorted square planar geometry for both complexes around the metal center, and the H2L adopt a bi-negative tridentate chelating mode. The interaction with biomolecules viz., calf thymus DNA (ct DNA), yeast RNA (tRNA), and BSA (bovine serum albumin) was examined by both UV-visible and fluorescence spectroscopies. The antioxidant activity of all compounds is discussed on basis of DPPH• (2,2-diphenyl-1-picrylhydrazyl) scavenging activity and showed better antioxidant activity for complexes compared to the ligand. The in vitro cytotoxicity of the compounds was tested on human (breast cancer (MCF7), colon cancer (HCT116), liver cancer (HepG2), and normal lung fibroblast (WI38)) cell lines, showing that complex (1) the most potent against MCF7 and complex (4) against HCT116 cell lines based on IC50 and selective indices (SI) values. So, both complexes were chosen for further studies such as DNA fragmentation, cell apoptosis, and cell cycle analyses. Complex (1) induced MCF7 cell death by cellular apoptosis and arrest cells at S phase. Complex (4) induced HCT116 cell death predominantly by cellular necrosis and arrested cell division at G2/M phase due to DNA damage.
Collapse
Affiliation(s)
- Shadia A Elsayed
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| | - Hagar E Badr
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Armando di Biase
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Ahmed M El-Hendawy
- Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| |
Collapse
|
28
|
Investigations of adsorption behavior and anti-cancer activity of curcumin on pure and platinum-functionalized B12N12 nanocages. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Unraveling the binding mechanism of an Oxovanadium(IV) - Curcumin complex on albumin, DNA and DNA gyrase by in vitro and in silico studies and evaluation of its hemocompatibility. J Inorg Biochem 2021; 221:111402. [PMID: 33975249 DOI: 10.1016/j.jinorgbio.2021.111402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 11/20/2022]
Abstract
An oxovanadium(IV) - curcumin based complex, viz. [VO(cur)(2,2´-bipy)(H2O)] where cur is curcumin and bipy is bipyridine, previously synthesized, has been studied for interaction with albumin and DNA. Fluorescence emission spectroscopy was used to evaluate the interaction of the complex with bovine serum albumin (BSA) and the BSA-binding constant (Kb) was calculated to be 2.56 x 105 M-1, whereas a single great-affinity binding site was revealed. Moreover, the hemocompatibility test demonstrated that the complex presented low hemolytic fraction (mostly below 1%), in all concentrations tested (0-250 μΜ of complex, 5% DMSO) assuring a safe application in interaction with blood. The binding of the complex to DNA was also investigated using absorption, fluorescence, and viscometry methods indicating a binding through a minor groove mode. From competitive studies with ethidium bromide the apparent binding constant value to DNA was estimated to be 4.82 x 106 M-1. Stern-Volmer quenching phenomenon gave a ΚSV constant [1.92 (± 0.05) x 104 M-1] and kq constant [8.33 (± 0.2) x 1011 M-1s-1]. Molecular docking simulations on the crystal structure of BSA, calf thymus DNA, and DNA gyrase, as well as pharmacophore analysis for BSA target, were also employed to study in silico the ability of [VO(cur)(2,2´-bipy)(H2O)] to bind to these target bio-macromolecules and explain the observed in vitro activity.
Collapse
|
30
|
Zhang Q, Wang S, Zhu Y, Zhang C, Cao H, Ma W, Tian X, Wu J, Zhou H, Tian Y. Functional Platinum(II) Complexes with Four-Photon Absorption Activity, Lysosome Specificity, and Precise Cancer Therapy. Inorg Chem 2021; 60:2362-2371. [PMID: 33494602 DOI: 10.1021/acs.inorgchem.0c03245] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiphoton materials are in special demand in the field of photodynamic therapy and multiphoton fluorescence imaging. However, rational design methodology for these brands of materials is still nascent. This is despite transition-metal complexes favoring optimized nonlinear-optical (NLO) activity and heavy-atom-effected phosphorescent emission. Here, three four-photon absorption (4PA) platinum(II) complexes (Pt1-Pt3) are achieved by the incorporation of varied functionalized C^N^C ligands with high yields. Pt1-Pt3 exhibit triplet metal-to-ligand charge-transfer transitions at ∼460 nm, which are verified multiple times by transient absorption spectra, time-dependent density functional theory calculations, and low-temperature emission spectra. Further, Pt1-Pt3 undergo 4PA. Notably, one of the complexes, Pt2, has maximum 4PA cross-sectional values of up to 15.2 × 10-82 cm8 s3 photon-3 under excitation of a 1600 nm femtosecond laser (near-IR II window). The 4PA cross sections vary when Pt2 is binding to lecithin and when it displays its lysosome-specific targeting behavior. On the basis of the excellent 4PA property of Pt2, we believe that those 4PA platinum(II) complexes have great potential applications in cancer theranostics.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Shujing Wang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Yingzhong Zhu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Chengkai Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Hongzhi Cao
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Wen Ma
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230601, P. R. China
| | - Jieying Wu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
31
|
Rendošová M, Gyepes R, Maruščáková IC, Mudroňová D, Sabolová D, Kello M, Vilková M, Almáši M, Huntošová V, Zemek O, Vargová Z. An in vitro selective inhibitory effect of silver(i) aminoacidates against bacteria and intestinal cell lines and elucidation of the mechanism of action by means of DNA binding properties, DNA cleavage and cell cycle arrest. Dalton Trans 2021; 50:936-953. [PMID: 33350415 DOI: 10.1039/d0dt03332d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel silver(i) aminoacidate complexes {[Ag(HVal)(H2O)(NO3)]}n (AgVal) and {[Ag3(HAsp)2(NO3)]}n·nH2O (AgAsp) were prepared, investigated and fully characterized by vibrational spectroscopy (mid-IR), elemental analysis, thermogravimetric analysis, X-ray crystallography and mass spectrometry. Their stability in D2O and PBS buffer was verified by time-dependent 1H and 13C NMR measurements. Their in vitro antibacterial activity (against pathogenic Staphylococcus aureus CCM4223, Escherichia coli CCM4787) and that against probiotic bacteria Lactobacillus plantarum CCM7102 and Lactobacillus reuteri (L26) were determined and potential dosing concentration was evaluated. The cytotoxicity of both the complexes against intestinal porcine epithelial (IPEC-1) and human epithelial colorectal adenocarcinoma (CaCo-2) cell lines was determined using the colorimetric MTT assay and against human metastatic melanoma (A2058), human pancreatic adenocarcinoma (PaTu 8902), human cervical adenocarcinoma (HeLa), human colorectal carcinoma (HCT116), human leukaemic T cell lymphoma (Jurkat), and human dermal fibroblasts (HDF) using colorimetric MTS assay. The selectivity index (SI) was identified for intestinal cancer (CaCo-2) and healthy (IPEC-1) cells. The mechanism of action of AgVal and AgAsp was further elucidated and discussed by the study of their binding affinity toward the CT DNA, the ability to cleave the supercoiled form of pUC19 DNA and the ability to influence numbers of cells within each cell cycle.
Collapse
Affiliation(s)
- Michaela Rendošová
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pan A, Mitra I, Mukherjee S, Ghosh S, Chatterji U, Moi SC. Development of Anticancer Activity of the Pt(II) Complex with N-Heterocyclic Amine: Its In Vitro Pharmacokinetics with Thiol and Thio-Ethers, DNA and BSA Binding, and Cell Cycle Arrest. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Angana Pan
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| | - Ishani Mitra
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| | - Subhajit Mukherjee
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| | - Subarna Ghosh
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Sankar Chandra Moi
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| |
Collapse
|
33
|
Tran QH, Le DV. A NEW SPECTROSCOPY METHOD FOR THE QUANTITATIVE DETERMINATION OF IRON(III) BASED ON CURCUMIN REAGENT. ACTA CHEMICA IASI 2021. [DOI: 10.47743/achi-2021-1-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
34
|
De Castro F, Vergaro V, Benedetti M, Baldassarre F, Del Coco L, Dell'Anna MM, Mastrorilli P, Fanizzi FP, Ciccarella G. Visible Light-Activated Water-Soluble Platicur Nanocolloids: Photocytotoxicity and Metabolomics Studies in Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:6836-6851. [PMID: 35019346 DOI: 10.1021/acsabm.0c00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticle-based drug delivery systems for cancer therapy offer a great promising opportunity as they specifically target cancer cells, also increasing the bioavailability of anticancer drugs characterized by low water solubility. Platicur, [Pt(cur) (NH3)2](NO3), is a cis-diamine-platinum(II) complex linked to curcumin. In this work, an ultrasonication method, coupled with layer by layer technology, allows us to obtain highly aqueous stable Platicur nanocolloids of about 100 nm. The visible light-activated Platicur nanocolloids showed an increased drug release and antitumor activity on HeLa cells, with respect to Platicur nanocolloids in darkness. This occurrence could give very interesting insight into selective activation of the nanodelivered Pt(II) complex and possible side-effect lowering. For the first time, the metabolic effects of Platicur nanocolloid photoactivation, in the HeLa cell line, have been investigated using an NMR-based metabolomics approach coupled with statistical multivariate data analysis. The reported results highlight specific metabolic differences between photoactivated and non-photoactivated Platicur NC-treated HeLa cancer cells.
Collapse
Affiliation(s)
- Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Francesca Baldassarre
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | | | | | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
35
|
Tu S, Fei BL, Wang P, Kong LY, Long JY, Li DD. DNA and BSA binding study of an optically pure rosin derivative and its two copper(II) complexes. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1817414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shuangyan Tu
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Bao-Li Fei
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Pingping Wang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ling-Yan Kong
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jian-Ying Long
- College of Science, Nanjing Forestry University, Nanjing, China
| | - Dong-Dong Li
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
36
|
D’Errico S, Falanga AP, Capasso D, Di Gaetano S, Marzano M, Terracciano M, Roviello GN, Piccialli G, Oliviero G, Borbone N. Probing the DNA Reactivity and the Anticancer Properties of a Novel Tubercidin-Pt(II) Complex. Pharmaceutics 2020; 12:E627. [PMID: 32635488 PMCID: PMC7407906 DOI: 10.3390/pharmaceutics12070627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Herein, we reported on the synthesis of a novel Pt(II) neutral complex having as ligand the nucleoside tubercidin, a potent anti-tumor agent extracted from the bacterium Streptomyces Tubercidicus. In detail, the chelation of the metal by a diamine linker installed at C6 purine position of tubercidin assured the introduction of a cisplatin-like unit in the molecular scaffold. The behavior of the synthesized complex with a double-strand DNA model was monitored by CD spectroscopy and compared with that of cisplatin and tubercidin. In addition, the cell viability was evaluated against HeLa, A375 and WM266 human cancer cell lines using the MTT test. Lastly, the results of the apoptotic assay (FITC Annexin V) performed on the HeLa cancer cell line are also reported.
Collapse
Affiliation(s)
- Stefano D’Errico
- CESTEV, University of Naples Federico II, via Tommaso De Amicis, 95, 80145 Napoli, Italy; (S.D.); (D.C.)
| | - Andrea Patrizia Falanga
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, via Sergio Pansini, 5, 80131 Napoli, Italy;
| | - Domenica Capasso
- CESTEV, University of Naples Federico II, via Tommaso De Amicis, 95, 80145 Napoli, Italy; (S.D.); (D.C.)
| | - Sonia Di Gaetano
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone, 16, 80134 Napoli, Italy; (S.D.G.); (G.N.R.)
| | - Maria Marzano
- Dipartimento di Farmacia, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy; (M.M.); (M.T.); (G.P.); (N.B.)
| | - Monica Terracciano
- Dipartimento di Farmacia, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy; (M.M.); (M.T.); (G.P.); (N.B.)
| | - Giovanni Nicola Roviello
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone, 16, 80134 Napoli, Italy; (S.D.G.); (G.N.R.)
| | - Gennaro Piccialli
- Dipartimento di Farmacia, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy; (M.M.); (M.T.); (G.P.); (N.B.)
- ISBE-IT—Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, via Sergio Pansini, 5, 80131 Napoli, Italy;
- ISBE-IT—Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy; (M.M.); (M.T.); (G.P.); (N.B.)
- ISBE-IT—Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, University of Naples Federico II, via Domenico Montesano, 49, 80131 Napoli, Italy
| |
Collapse
|
37
|
In vitro biological evaluation and consideration about structure-activity relationship of silver(I) aminoacidate complexes. J Inorg Biochem 2020; 210:111170. [PMID: 32652262 DOI: 10.1016/j.jinorgbio.2020.111170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
Abstract
Two silver(I) aminoacidate complexes {[Ag4(L-HAla)4(NO3)3]NO3}n (AgAla, complex 1, Ala = alanine) and {[Ag(L-Phe)]}n (AgPhe, complex 2, Phe = phenylalanine) were prepared and characterized by elemental, spectral analysis (FT-IR, NMR techniques) and single crystal X-ray analysis in solid state and their solution stability was measured in biological testing time-scale by 1H NMR. The bridging coordination modes of the zwitterionic Ala and deprotonated Phe ligands led to the formation of 1D polymeric chains of the complexes. The significant argentophilic interactions are presented in the structure of AgAla. Antimicrobial testing of prepared Ag(I) complexes was evaluated by IC50 and MIC values and were compared with AgGly, silver(I) sulfadiazine and AgNO3 samples. Moreover, MTS test was used to the testing of broad range antiproliferative activity of studied compounds against different cancer cell lines and also to the investigation of calf thymus DNA interactions by absorption spectroscopy, fluorescence spectroscopy, Ethidium bromide/Hoechst 33258 displacement experiments and circular dichroism spectroscopy. To evaluate the pUC19 DNA fragmentation by silver(I) complexes, the agarose gel electrophoresis was used. In addition to biological evaluation we used lipophilicity measurement results in the discussion about structure-activity relationship (SAR).
Collapse
|
38
|
Tran QH, Doan TT. A novel study on curcumin metal complexes: solubility improvement, bioactivity, and trial burn wound treatment in rats. NEW J CHEM 2020. [DOI: 10.1039/d0nj01159b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper describes a new technique to enhance the solubility of metal curcumin complexes.
Collapse
Affiliation(s)
- Quang Hieu Tran
- Division of Chemistry
- Basic Sciences Department
- Saigon Technology University
- Ho Chi Minh City 700000
- Vietnam
| | - Thanh Thao Doan
- Faculty of Food Technology
- Saigon Technology University
- Ho Chi Minh City 700000
- Vietnam
| |
Collapse
|
39
|
Fogagnolo M, Bergamini P, Marchesi E, Marvelli L, Gambari R, Lampronti I. Polytopic carriers for platinum ions: from digalloyl depside to tannic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj01352h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multinuclear platinum complexes of the natural antioxidant tannic acid and its aglycone part methyl digallate can be prepared via an environmentally friendly, solvent-free process exploiting the convenient precursor [PtCO3(Me2SO-S)2].
Collapse
Affiliation(s)
- Marco Fogagnolo
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Paola Bergamini
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Elena Marchesi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Lorenza Marvelli
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie
- Sezione di Biochimica e Biologia Molecolare
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Ilaria Lampronti
- Dipartimento di Scienze della Vita e Biotecnologie
- Sezione di Biochimica e Biologia Molecolare
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| |
Collapse
|
40
|
de Moura TR, Zanetti RD, Silva DES, de Farias RL, Mauro AE, Pereira JCM, de Souza AA, da Silva Siqueira F, de Souza Júdice WA, Lima MA, Rocha FV, Deflon VM, Vieira de Godoy Netto A. Palladium( ii) complexes bearing 1-iminothiolate-3,5-dimethylpyrazoles: synthesis, cytotoxicity, DNA binding and enzymatic inhibition studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj02825h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work describes the enzymatic inhibitory activity of four novel Pd(ii) complexes towards topoisomerase IIα and cathepsins B and L.In silicostudies agree well with the enhancedin vitrocathepsin B inhibition induced by compound4(58% at 10 μM).
Collapse
Affiliation(s)
- Thales Reggiani de Moura
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Renan Diego Zanetti
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Debora Eduarda Soares Silva
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Renan Lira de Farias
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Antonio Eduardo Mauro
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - José Clayston Melo Pereira
- UNESP – Univ. Estadual Paulista
- Instituto de Química
- Departamento de Química Geral e Inorgânica
- Araraquara
- Brazil
| | - Aline Aparecida de Souza
- UMC - Univ. de Mogi das Cruzes
- Centro Interdisciplinar de Investigação Bioquímica
- Mogi das Cruzes
- Brazil
| | - Fábio da Silva Siqueira
- UMC - Univ. de Mogi das Cruzes
- Centro Interdisciplinar de Investigação Bioquímica
- Mogi das Cruzes
- Brazil
| | | | - Mauro Almeida Lima
- UFSCar – Univ. Federal de São Carlos
- Departamento de Química
- São Carlos
- Brazil
| | | | | | | |
Collapse
|
41
|
dos Santos Pereira AK, Nakahata DH, Manzano CM, de Alencar Simoni D, Pereira DH, Lustri WR, Formiga ALB, Corbi PP. Synthesis, crystallographic studies, molecular modeling and in vitro biological studies of silver(I) complexes with aminoadamantane ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|