1
|
Liu X, Liu S, Jin X, Liu H, Sun K, Wang X, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. An encounter between metal ions and natural products: natural products-coordinated metal ions for the diagnosis and treatment of tumors. J Nanobiotechnology 2024; 22:726. [PMID: 39574109 PMCID: PMC11580416 DOI: 10.1186/s12951-024-02981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Natural products-coordinated metal ions to form the nanomedicines are in the spotlight for cancer therapy. Some natural products could be coordinated with metal ions forming nanomedicines via simple and green environmental self-assembly, which not only improved the bioavailability of natural products, but also conferred multiple therapeutic modalities and multimodal imaging. On the one hand, in the weak acidity, glutathione (GSH) and hydrogen peroxide (H2O2) overexpression of tumor microenvironment (TME), such carrier-free nanomedicines could be further enhanced the therapeutic effect via optimizing the species of metal ions. On the other hand, nanomedicines could exert the precise treatment of tumor under the guidance of multiple imaging. Hence, this review summarized the research progress in recent years on the application of natural product-coordinated metal ions in cancer therapy. In addition, the prospects and challenges for the application of natural product-coordinated metal ions were discussed, especially how to improve targeting ability and stability and assess the safety of metal ions, so as to facilitate the clinical translation and application of natural product-coordinated metal ions nanomedicines.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Suyi Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haifan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kunhui Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiongqin Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
3
|
Somade OT, Ajayi BO, Adeyi OE, Dada TA, Ayofe MA, Inalu DC, Ajiboye OI, Shonoiki OM, Adelabu AO, Onikola RT, Isiaka ID, Omotoso O, James AS, Olaniyan TO, Adegoke AM, Akamo AJ, Oyinloye BE, Adewole E. Ferulic acid interventions ameliorate NDEA-CCl 4-induced hepatocellular carcinoma via Nrf2 and p53 upregulation and Akt/PKB-NF-κB-TNF-α pathway downregulation in male Wistar rats. Toxicol Rep 2024; 12:119-127. [PMID: 38293309 PMCID: PMC10825481 DOI: 10.1016/j.toxrep.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Hepatocellular carcinoma is a prevalent form of liver cancer that is life threatening. Many chemically synthesized anti-cancer drugs have various degrees of side effects. Hence, this study investigated the effect of FEAC interventions on NDEA-CCl4-induced HCAR in male Wistar rats. HCAR was induced by intraperitoneal administration of 200 mg/kg of NDEA and 0.5 mL/kg CCl4 (as a promoter of HCAR). Following the induction of HCAR, rats were treated differently with two different doses (25 and 50 mg/kg) of FEAC. HCAR induction was confirmed by the significant elevation of serum levels of ALT, AST, and α-FP. Also elevated significantly were liver levels of Akt/PKB, NF-κB, TNF-α, MDA, GSH, and activities of GST, SOD, and CAT, while levels of liver p53 and Nrf2 were significantly lowered compared with normal rats. Treatment interventions with both 25 and 50 mg/kg of FEAC against the DEN-CCl4-induced HCAR gave comparable effects, marked by a significant reduction in the levels of serum ALT, AST and α-FP, as well as liver levels of MDA, GSH, Akt/PKB, NF-κB, TNF-α, GST, SOD, and CAT, while levels of liver p53 and Nrf2 were significantly elevated compared with normal rats. Put together and judging by the outcomes of this study, FEAC being a potent antioxidant may also be potent against chemical-induced HCAR via upregulation of p53 and Nrf2, as well as downregulation of the Akt/PKB-NF-κB pathway in rats.
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babajide O. Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Olubisi E. Adeyi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Temitope A. Dada
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mukodaz A. Ayofe
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - David C. Inalu
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Opeyemi I. Ajiboye
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olaoluwawunmi M. Shonoiki
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Aminat O. Adelabu
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Rasaq T. Onikola
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ismaila D. Isiaka
- Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Opeyemi Omotoso
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Adewale S. James
- School of Biomedical Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Tunde O. Olaniyan
- Instituto Politécnico Nacional, Centro de Biotecnologĭa Genómica, Reynosa 88710, Mexico
| | - Ayodeji M. Adegoke
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Adio J. Akamo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babatunji E. Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB, 5454, Ado-Ekiti 360001, Nigeria
| | - Ezekiel Adewole
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
4
|
Vasile Scaeteanu G, Badea M, Olar R. Coordinative Compounds Based on Unsaturated Carboxylate with Versatile Biological Applications. Molecules 2024; 29:2321. [PMID: 38792182 PMCID: PMC11124441 DOI: 10.3390/molecules29102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This review presents an overview of the biological applications of coordinative compounds based on unsaturated carboxylates accompanied by other ligands, usually N-based heterocyclic species. The interest in these compounds arises from the valuable antimicrobial and antitumor activities evidenced by some species, as well as from their ability to generate metal-containing polymers suitable for various medical purposes. Therefore, we describe the recently discovered aspects related to the synthesis, structure, and biological activity of a wide range of unsaturated carboxylate-containing species and metal ions, originating mostly from 3d series. The unsaturated carboxylates encountered in coordinative compounds are acrylate, methacrylate, fumarate, maleate, cinnamate, ferulate, coumarate, and itaconate. Regarding the properties of the investigated compounds, it is worth mentioning the good ability of some to inhibit the development of resistant strains or microbial biofilms on inert surfaces or, even more, exert antitumor activity against resistant cells. The ability of some species to intercalate into DNA strands as well as to scavenge ROS species is also addressed.
Collapse
Affiliation(s)
- Gina Vasile Scaeteanu
- Department of Soil Sciences, University of Agronomic Sciences and Veterinary Medicine, 59 Mărăști Str., 011464 Bucharest, Romania;
| | - Mihaela Badea
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., S5, 050663 Bucharest, Romania;
| | - Rodica Olar
- Department of Inorganic and Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., S5, 050663 Bucharest, Romania;
| |
Collapse
|
5
|
Li R, Wu Y, Li Y, Shuai W, Wang A, Zhu Y, Hu X, Xia Y, Ouyang L, Wang G. Targeted regulated cell death with small molecule compounds in colorectal cancer: Current perspectives of targeted therapy and molecular mechanisms. Eur J Med Chem 2024; 265:116040. [PMID: 38142509 DOI: 10.1016/j.ejmech.2023.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC), a tumor of the digestive system, is characterized by high malignancy and poor prognosis. Currently, targeted therapy of CRC is far away from satisfying. The molecular mechanisms of regulated cell death (RCD) have been clearly elucidated, which can be intervened by drug or genetic modification. Numerous studies have provided substantial evidence linking these mechanisms to the progression and treatment of CRC. The RCD includes apoptosis, autophagy-dependent cell death (ADCD), ferroptosis, necroptosis, and pyroptosis, and immunogenic cell death, etc, which provide potential targets for anti-cancer treatment. For the last several years, small-molecule compounds targeting RCD have been a well concerned therapeutic strategy for CRC. This present review aims to describe the function of small-molecule compounds in the targeted therapy of CRC via targeting apoptosis, ADCD, ferroptosis, necroptosis, immunogenic dell death and pyroptosis, and their mechanisms. In addition, we prospect the application of newly discovered cuproptosis and disulfidptosis in CRC. Our review may provide references for the targeted therapy of CRC using small-molecule compounds targeting RCD, including the potential targets and candidate compounds.
Collapse
Affiliation(s)
- Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yumeng Zhu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Pellerito C, Presentato A, Lazzara G, Cavallaro G, Alduina R, Fiore T. New Biocide Based on Tributyltin(IV) Ferulate-Loaded Halloysite Nanotubes for Preserving Historical Paper Artworks. Molecules 2023; 28:7953. [PMID: 38138442 PMCID: PMC10745945 DOI: 10.3390/molecules28247953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Combining biologically active compounds with nanocarriers is an emerging and promising strategy for enhancing the activities of molecules while reducing their levels of toxicity. Green nanomaterials have recently gained momentum in developing protocols for treating and preserving artifacts. In this study, we designed a functional biohybrid material by incorporating tributyltin(IV) ferulate (TBT-F) into halloysite nanotubes (HNTs), generating a new formulation called HNT/TBT-F. The primary objective was to develop a formulation with robust antimicrobial properties and reinforcing features for treating paper with artistic and historical value. To characterize HNT/TBT-F, assess the HNT's loading capacity, and investigate the TBT-F release kinetics from the nanotubes, various analytical techniques, including UV-Vis and infrared spectroscopies, thermogravimetry, and microscopy analysis, were employed. Furthermore, we evaluated the antimicrobial potential of TBT-F and HNT/TBT-F against Kocuria rhizophila, a bacterial strain known for its opportunistic behavior and a cause of artifact biodeterioration. HNT/TBT-F exhibited a significantly stronger bactericidal effect than TBT-F alone against K. rhizophila cells growing planktonically or those forming a biofilm. This enhanced performance could relate to the confinement of TBT-F within the nanotubes, which likely improved its physical-chemical stability and increased the local concentration of TBT-F upon contact with the bacterial cells. Additionally, we evaluated the mechanical properties of a paper treated with HNT/TBT-F, assessing any potential alterations in its color. The findings of this study highlight the favorable attributes of the HNT/TBT-F formulation and its potential for developing protocols aimed at consolidating and preserving culturally significant paper objects.
Collapse
Affiliation(s)
- Claudia Pellerito
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Giuseppe Lazzara
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Giuseppe Cavallaro
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Tiziana Fiore
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| |
Collapse
|
7
|
Xue Z, Liu J, Li Q, Yao Y, Yang Y, Ran C, Zhang Z, Zhou Z. Synthesis of lipoic acid ferulate and evaluation of its ability to preserve fish oil from oxidation during accelerated storage. Food Chem X 2023; 19:100802. [PMID: 37780313 PMCID: PMC10534146 DOI: 10.1016/j.fochx.2023.100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023] Open
Abstract
Lipoic acid ferulate (LAF) was synthesized and its anti-free radical ability in vitro was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS) assays. Protective effects of LAF in stabilizing fish oil were tested, compared to antioxidants such as lipoic acid, ferulic acid and tert-butylhydroxyquinone (TBHQ) by measuring peroxide values, thiobarbituric acid reactants, p-anisidine values, nuclear magnetic resonance (NMR) spectra and gas chromatography-mass spectrometry (GC-MS) spectra of fish oil during accelerated storage (12 days, 80 °C). The inhibitory effect of these antioxidants on fish oil oxidation followed the order TBHQ ≧ LAF > ferulic acid > lipoic acid. In addition, the omega-3 polyunsaturated fatty acids were the first to be oxidized. The formation of oxidation products followed a first-order kinetic model, and the addition of LAF effectively reduced the reaction rate constants. Therefore, LAF can effectively slow down the formation of oxidative products and prolong the shelf life of fish oil.
Collapse
Affiliation(s)
- Zhiyong Xue
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Juan Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qing Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuanyuan Yao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yalin Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Ran
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan 430000, China
| |
Collapse
|
8
|
Sampaio JG, Pressete CG, Costa AV, Martins FT, de Almeida Lima GD, Ionta M, Teixeira RR. Methoxylated Cinnamic Esters with Antiproliferative and Antimetastatic Effects on Human Lung Adenocarcinoma Cells. Life (Basel) 2023; 13:1428. [PMID: 37511803 PMCID: PMC10381754 DOI: 10.3390/life13071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide, and malignant melanomas are highly lethal owing to their elevated metastatic potential. Despite improvements in therapeutic approaches, cancer treatments are not completely effective. Thus, new drug candidates are continuously sought. We synthesized mono- and di-methoxylated cinnamic acid esters and investigated their antitumor potential. A cell viability assay was performed to identify promising substances against A549 (non-small-cell lung cancer) and SK-MEL-147 (melanoma) cells. (E)-2,5-dimethoxybenzyl 3-(4-methoxyphenyl)acrylate (4m), a monomethoxylated cinnamic acid derivative, was identified as the lead antitumor compound, and its antitumor potential was deeply investigated. Various approaches were employed to investigate the antiproliferative (clonogenic assay and cell cycle analysis), proapoptotic (annexin V assay), and antimigratory (wound-healing and adhesion assays) activities of 4m on A549 cells. In addition, western blotting was performed to explore its mechanism of action. We demonstrated that 4m inhibits the proliferation of A549 by promoting cyclin B downregulation and cell cycle arrest at G2/M. Antimigratory and proapoptotic activities of 4m on A549 were also observed. The antitumor potential of 4m involved its ability to modulate the mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway once phosphorylated-ERK expression was considerably reduced in response to treatment. Our findings demonstrate that 4m is a promising anticancer drug candidate.
Collapse
Affiliation(s)
- João Graciano Sampaio
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Carolina Girotto Pressete
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, MG, Brazil
| | - Adilson Vidal Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Guararema, Alegre 29500-000, ES, Brazil
| | - Felipe Terra Martins
- Departamento de Química, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
| | - Graziela Domingues de Almeida Lima
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, MG, Brazil
| | - Marisa Ionta
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-000, MG, Brazil
| | - Róbson Ricardo Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
9
|
Guzmán-López EG, Reina M, Hernández-Ayala LF, Galano A. Rational Design of Multifunctional Ferulic Acid Derivatives Aimed for Alzheimer's and Parkinson's Diseases. Antioxidants (Basel) 2023; 12:1256. [PMID: 37371986 DOI: 10.3390/antiox12061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ferulic acid has numerous beneficial effects on human health, which are frequently attributed to its antioxidant behavior. In this report, many of them are reviewed, and 185 new ferulic acid derivatives are computationally designed using the CADMA-Chem protocol. Consequently, their chemical space was sampled and evaluated. To that purpose, selection and elimination scores were used, which are built from a set of descriptors accounting for ADME properties, toxicity, and synthetic accessibility. After the first screening, 12 derivatives were selected and further investigated. Their potential role as antioxidants was predicted from reactivity indexes directly related to the formal hydrogen atom transfer and the single electron transfer mechanisms. The best performing molecules were identified by comparisons with the parent molecule and two references: Trolox and α-tocopherol. Their potential as polygenic neuroprotectors was investigated through the interactions with enzymes directly related to the etiologies of Parkinson's and Alzheimer's diseases. These enzymes are acetylcholinesterase, catechol-O-methyltransferase, and monoamine oxidase B. Based on the obtained results, the most promising candidates (FA-26, FA-118, and FA-138) are proposed as multifunctional antioxidants with potential neuroprotective effects. The findings derived from this investigation are encouraging and might promote further investigations on these molecules.
Collapse
Affiliation(s)
- Eduardo Gabriel Guzmán-López
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Miguel Reina
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Luis Felipe Hernández-Ayala
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| |
Collapse
|
10
|
Shi H, Ma J, Li Q, Du X, Meng Z, Ru J, Ma C. Four organotin(IV) complexes derived from 2,6-difluoro-3-(propylsulfonamido)benzoic acid: synthesis, structure, in vitro cytostatic activity and antifungal activity evaluation. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
11
|
Bao X, Li W, Jia R, Meng D, Zhang H, Xia L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol Rep 2023:10.1007/s43440-023-00494-0. [PMID: 37202657 PMCID: PMC10374777 DOI: 10.1007/s43440-023-00494-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Cancer is a significant disease that poses a major threat to human health. The main therapeutic methods for cancer include traditional surgery, radiotherapy, chemotherapy, and new therapeutic methods such as targeted therapy and immunotherapy, which have been developed rapidly in recent years. Recently, the tumor antitumor effects of the active ingredients of natural plants have attracted extensive attention. Ferulic acid (FA), (3-methoxy-4-hydroxyl cinnamic), with the molecular formula is C10H10O4, is a phenolic organic compound found in ferulic, angelica, jujube kernel, and other Chinese medicinal plants but is also, abundant in rice bran, wheat bran, and other food raw materials. FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity, as it can inhibit the occurrence and development of various malignant tumors, such as liver cancer, lung cancer, colon cancer, and breast cancer. FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS). FA can also interfere with the cell cycle of cancer cells, arrest most cancer cells in G0/G1 phase, and exert an antitumor effect by inducing autophagy; inhibiting cell migration, invasion, and angiogenesis; and synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions. FA acts on a series of intracellular and extracellular targets and is involved in the regulation of tumor cell signaling pathways, including the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), and tumor protein 53 (P53) pathways and other signaling pathways. In addition, FA derivatives and nanoliposomes, as platforms for drug delivery, have an important regulatory effect on tumor resistance. This paper reviews the effects and mechanisms of antitumor therapies to provide new theoretical support and insight for clinical antitumor therapy.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Li
- Department of Obstetrics and Gynecology, Linyi Third People's Hospital, Linyi, People's Republic of China
| | - Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
12
|
Stefanizzi V, Minutolo A, Valletta E, Carlini M, Cordero FM, Ranzenigo A, Prete SP, Cicero DO, Pitti E, Petrella G, Matteucci C, Marino-Merlo F, Mastino A, Macchi B. Biological Evaluation of Triorganotin Derivatives as Potential Anticancer Agents. Molecules 2023; 28:molecules28093856. [PMID: 37175265 PMCID: PMC10180515 DOI: 10.3390/molecules28093856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Metal-derived platinum complexes are widely used to treat solid tumors. However, systemic toxicity and tumor resistance to these drugs encourage further research into similarly effective compounds. Among others, organotin compounds have been shown to inhibit cell growth and induce cell death and autophagy. Nevertheless, the impact of the ligand structure and mechanisms involved in the toxicity of organotin compounds have not been clarified. In the present study, the biological activities of commercially available bis(tributyltin) oxide and tributyltin chloride, in comparison to those of specially synthesized tributyltin trifluoroacetate (TBT-OCOCF3) and of cisplatin, were assessed using cells with different levels of tumorigenicity. The results show that tributyltins were more cytotoxic than cisplatin in all the tested cell lines. NMR revealed that this was not related to the interaction with DNA but to the inhibition of glucose uptake into the cells. Moreover, highly tumorigenic cells were less susceptible than nontumorigenic cells to the nonunique pattern of death induced by TBT-OCOCF3. Nevertheless, tumorigenic cells became sensitive when cotreated with wortmannin and TBT-OCOCF3, although no concomitant induction of autophagy by the compound was detected. Thus, TBT-OCOCF3 might be the prototype of a family of potential anticancer agents.
Collapse
Affiliation(s)
- Valeria Stefanizzi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
- Ph.D. Course in Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Elena Valletta
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martina Carlini
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Franca M Cordero
- Department of Chemistry Ugo Schiff, University of Florence, 50019 Florence, Italy
| | - Anna Ranzenigo
- Department of Chemistry Ugo Schiff, University of Florence, 50019 Florence, Italy
| | | | - Daniel Oscar Cicero
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Erica Pitti
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Greta Petrella
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Francesca Marino-Merlo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Mastino
- The Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Beatrice Macchi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
13
|
Zhai Y, Wang T, Fu Y, Yu T, Ding Y, Nie H. Ferulic Acid: A Review of Pharmacology, Toxicology, and Therapeutic Effects on Pulmonary Diseases. Int J Mol Sci 2023; 24:ijms24098011. [PMID: 37175715 PMCID: PMC10178416 DOI: 10.3390/ijms24098011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Ferulic acid (FA), a prevalent dietary phytochemical, has many pharmacological effects, including anti-oxidation and anti-inflammation effects, and has been widely used in the pharmaceutical, food, and cosmetics industries. Many studies have shown that FA can significantly downregulate the expression of reactive oxygen species and activate nuclear factor erythroid-2-related factor-2/heme oxygenase-1 signaling, exerting anti-oxidative effects. The anti-inflammatory effect of FA is mainly related to the p38 mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways. FA has demonstrated potential clinical applications in the treatment of pulmonary diseases. The transforming growth factor-β1/small mothers against decapentaplegic 3 signaling pathway can be blocked by FA, thereby alleviating pulmonary fibrosis. Moreover, in the context of asthma, the T helper cell 1/2 imbalance is restored by FA. Furthermore, FA ameliorates acute lung injury by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase pathways via toll-like receptor 4, consequently decreasing the expression of downstream inflammatory mediators. Additionally, there is a moderate neuraminidase inhibitory activity showing a tendency to reduce the interleukin-8 level in response to influenza virus infections. Although the application of FA has broad prospects, more preclinical mechanism-based research should be carried out to test these applications in clinical settings. This review not only covers the literature on the pharmacological effects and mechanisms of FA, but also discusses the therapeutic role and toxicology of FA in several pulmonary diseases.
Collapse
Affiliation(s)
- Yiman Zhai
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| |
Collapse
|
14
|
Liu R, Chen Z, Hu G, Yu Z, Li Q, Liu D, Li L, Liu Z. A Novel PDK1/MEK Dual Inhibitor Induces Cytoprotective Autophagy via the PDK1/Akt Signaling Pathway in Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2023; 16:244. [PMID: 37259393 PMCID: PMC9961937 DOI: 10.3390/ph16020244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 10/29/2024] Open
Abstract
In a preliminary study, we synthesized a series of new PDK1/MEK dual inhibitors. Antitumor activity screening showed that Compound YZT exerts a strong inhibitory action in A549 cells. However, the specific mechanism of YZT against non-small cell lung cancer (NSCLC) is largely unknown. This work confirmed the anti-proliferation and pro-apoptosis effects of YZT in NSCLC cells. Furthermore, YZT promotes autophagy and provokes complete autophagic flux in NSCLC cells. Notably, compared with YZT alone, the combination of YZT with the autophagy inhibitor chloroquine (CQ) or 3-methyladenine (3-MA) markedly strengthened the anti-proliferative and pro-apoptotic actions, suggesting that YZT-induced autophagy is cytoprotective. We further found that YZT-induced autophagy may exert a cytoprotective function by preserving the integrity of mitochondria and decreasing mitochondrial apoptosis. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that PDK1 is an upstream protein of the Akt/mTOR axis and western blotting verified that YZT induces autophagy by the PDK1/Akt/mTOR signaling axis. Finally, YZT plus CQ significantly enhanced the anticancer activities compared to YZT alone in an animal study and immunohistochemistry showed that the level of LC3 was increased by YZT, which is in line with the in vitro results. In short, our study provides reliable experimental basis for developing Compound YZT as a new chemotherapeutic drug candidate and suggests that combined administration of YZT with CQ is a potential therapy against NSCLC.
Collapse
Affiliation(s)
- Rangru Liu
- Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Disease, School of Pharmacy, Hainan Medical University, Haikou 570100, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zutao Yu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Danqi Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
15
|
Fuentes AMAM, Barba V, Beltrán HI, Álvarez JAG. Analysis of the stability of chlorodiorganotin (IV) dithiocarbamates in deuterochloric acid by NMR titrations experiments. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Singh Tuli H, Kumar A, Ramniwas S, Coudhary R, Aggarwal D, Kumar M, Sharma U, Chaturvedi Parashar N, Haque S, Sak K. Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling. Molecules 2022; 27:molecules27217653. [PMID: 36364478 PMCID: PMC9654319 DOI: 10.3390/molecules27217653] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the immense therapeutic advances in the field of health sciences, cancer is still to be found among the global leading causes of morbidity and mortality. Ethnomedicinally, natural bioactive compounds isolated from various plant sources have been used for the treatment of several cancer types and have gained notable attention. Ferulic acid, a natural compound derived from various seeds, nuts, leaves, and fruits, exhibits a variety of pharmacological effects in cancer, including its proapoptotic, cell-cycle-arresting, anti-metastatic, and anti-inflammatory activities. This review study presents a thorough overview of the molecular targets and cellular signaling pathways modulated by ferulic acid in diverse malignancies, showing high potential for this phenolic acid to be developed as a candidate agent for novel anticancer therapeutics. In addition, current investigations to develop promising synergistic formulations are also discussed.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali 160071, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Renuka Coudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala 134007, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda 151001, India
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Katrin Sak
- NGO Praeventio, 50407 Tartu, Estonia
- Correspondence:
| |
Collapse
|
17
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Celesia A, Notaro A, Franzò M, Lauricella M, D’Anneo A, Carlisi D, Giuliano M, Emanuele S. The Histone Deacetylase Inhibitor ITF2357 (Givinostat) Targets Oncogenic BRAF in Melanoma Cells and Promotes a Switch from Pro-Survival Autophagy to Apoptosis. Biomedicines 2022; 10:biomedicines10081994. [PMID: 36009541 PMCID: PMC9405675 DOI: 10.3390/biomedicines10081994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylase inhibitors (HDACI) are epigenetic compounds that have been widely considered very promising antitumor agents. Here, we focus on the effects of the pan-HDAC inhibitor ITF2357 (Givinostat) in comparison with SAHA (Vorinostat) in melanoma cells bearing BRAF V600E oncogenic mutation. Our results indicate both ITF2357 and SAHA dose-dependently reduce the viability of BRAF-mutated SK-MEL-28 and A375 melanoma cells. The comparison of IC50 values revealed that ITF2357 was much more effective than SAHA. Interestingly, both inhibitors markedly decreased oncogenic BRAF protein expression levels, ITF2357 being the most effective compound. Moreover, the BRAF decrease induced by ITF2357 was accompanied by a decrease in the level of phospho-ERK1/2. The inhibitor of upstream MEK activity, U0126, reduced ERK1/2 phosphorylation and dramatically potentiated the antitumor effect of ITF2357, exacerbating the reduction in the BRAF level. ITF2357 stimulated an early pro-survival autophagic response, which was followed by apoptosis, as indicated by apoptotic markers evaluation and the protective effects exerted by the pan-caspase inhibitor z-VADfmk. Overall, our data indicate for the first time that ITF2357 targets oncogenic BRAF in melanoma cells and induces a switch from autophagy to classic apoptosis, thus representing a possible candidate in melanoma targeted therapy.
Collapse
Affiliation(s)
- Adriana Celesia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Antonietta Notaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Marzia Franzò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, 90127 Palermo, Italy
- Correspondence: (M.G.); (S.E.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, 90127 Palermo, Italy
- Correspondence: (M.G.); (S.E.)
| |
Collapse
|
19
|
Pellerito C, Emanuele S, Giuliano M, Fiore T. Organotin(IV) complexes with epigenetic modulator ligands: New promising candidates in cancer therapy. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Bortezomib potentiates the antitumor effect of tributyltin(IV) ferulate in colon cancer cells exacerbating ER stress and promoting apoptosis. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties. Biomedicines 2022; 10:biomedicines10020514. [PMID: 35203723 PMCID: PMC8962426 DOI: 10.3390/biomedicines10020514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/23/2022] Open
Abstract
Due to its chemical properties and multiple molecular effects on different tumor cell types, the sesquiterpene lactone parthenolide (PN) can be considered an effective drug with significant potential in cancer therapy. PN has been shown to induce either classic apoptosis or alternative caspase-independent forms of cell death in many tumor models. The therapeutical potential of PN has been increased by chemical design and synthesis of more soluble analogues including dimethylaminoparthenolide (DMAPT). This review focuses on the molecular mechanisms of both PN and analogues action in tumor models, highlighting their effects on gene expression, signal transduction and execution of different types of cell death. Recent findings indicate that these compounds not only inhibit prosurvival transcriptional factors such as NF-κB and STATs but can also determine the activation of specific death pathways, increasing intracellular reactive oxygen species (ROS) production and modifications of Bcl-2 family members. An intriguing property of these compounds is its specific targeting of cancer stem cells. The unusual actions of PN and its analogues make these agents good candidates for molecular targeted cancer therapy.
Collapse
|
22
|
Kaur R, Sood A, Lang DK, Arora R, Kumar N, Diwan V, Saini B. Natural Products as Sources of Multitarget Compounds: Advances in the Development of Ferulic Acid as Multitarget Therapeutic. Curr Top Med Chem 2022; 22:347-365. [PMID: 35040403 DOI: 10.2174/1568026622666220117105740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Nature has provided therapeutic substances for millennia, with many valuable medications derived from plant sources. Multitarget drugs become essential in the management of various disorders including hepatic disorders, neurological disorders, diabetes, and carcinomas. Ferulic acid is a significant potential therapeutic agent, which is easily available at low cost, possesses a low toxicity profile, and has minimum side effects. Ferulic acid exhibits various therapeutic actions by modulation of various signal transduction pathways such as Nrf2, p38, and mTOR. The actions exhibited by ferulic acid include anti-apoptosis, antioxidant, anti-inflammatory, antidiabetic, anticarcinogenic, hepatoprotection, cardioprotection, activation of transcriptional factors, expression of genes, regulation of enzyme activity, and neuroprotection, which further help in treating various pathophysiological conditions such as cancer, skin diseases, brain disorders, diabetes, Parkinson's disease, Alzheimer's disease, hypoxia, hepatic disorders, H1N1 flu, and viral infections. The current review focuses on the significance of natural products as sources of multitarget compounds and a primary focus has been made on ferulic acid and its mechanism, role, and protective action in various ailments.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neeraj Kumar
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Vishal Diwan
- Centre for Chronic Disease, The University of Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
23
|
Zhang Q, Wang Z, Zhu J, Peng Z, Tang C. Ferulic acid regulates miR-17/PTEN axis to inhibit LPS-induced pulmonary microvascular endothelial cells apoptosis through activation of PI3K/Akt pathway. J Toxicol Sci 2022; 47:61-69. [PMID: 35110471 DOI: 10.2131/jts.47.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Qinqin Zhang
- Department of Critical Care Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Zhilan Wang
- Department of Critical Care Medicine, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Jinfei Zhu
- Department of pneumology, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Zhili Peng
- Department of Critical Care Medicine, Rugao Hospital of Traditional Chinese Medicine, China
| | - Cheng Tang
- Department of Critical Care Medicine, The Affiliated Suqian First People's Hospital of Nanjing Medical University, China
| |
Collapse
|
24
|
Xiong Y, Liu YH, Li JS, Zhang YY, Zhang J, Gong T, Jiang XH. Establishment of an HPLC Method for Determination of Coumarin-3-Carboxylic Acid Analogues in Rat Plasma and a Preliminary Study on Their Pharmacokinetics. J Chromatogr Sci 2021; 60:642-647. [PMID: 34491317 DOI: 10.1093/chromsci/bmab103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022]
Abstract
A simple high performance liquid chromatography (HPLC) method was developed and validated for the determination of coumarin-3-carboxylic acid analogues (C3AA) in rat plasma and a preliminary study on pharmacokinetics. Ferulic acid (FA) was used as the internal standard substance, and coumarin-3-carboxylic acid (C3A) was used as a substitute for quantitative C3AA. After protein precipitation with methanol, the satisfactory separation was achieved on an ODS2 column when the temperature was maintained at 30 ± 2°C. The correlation coefficient r in the C3A linear equation is equal to 0.9990. Pharmacokinetic parameters for t1/2, Tmax, Cmax, area under the curve (AUC)0-t, average residence time (MRT), apparent volume of distribution (V z/F) and clearance (Cl/F) were 1.89 ± 0.03 h, 0.39 ± 0.14 h, 1.81 ± 0.10 g· mL-1 ·h, 7.88 ± 0.24 g·mL-1·h, 3.23 ± 0.14 h, 0.43 ± 0.03 (mg·kg-1)·(g·mL-1)-1·h-1, respectively. The high performance liquid chromatography-photo diode array detector (HPLC-PDA) method established in this study can be used to separate and determine the content of C3AA in plasma of rats after 60% ethanol extraction by gavage. The plasma concentration-time curve and pharmacokinetic parameters reflect the absorption of C3AA in rat blood after oral administration to some extent.
Collapse
Affiliation(s)
- Yan Xiong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yong-Hong Liu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jian-Sha Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu-Ying Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Gong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xin-Hui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
25
|
Giuliano M, Pellerito C, Celesia A, Fiore T, Emanuele S. Tributyltin(IV) Butyrate: A Novel Epigenetic Modifier with ER Stress- and Apoptosis-Inducing Properties in Colon Cancer Cells. Molecules 2021; 26:5010. [PMID: 34443600 PMCID: PMC8412103 DOI: 10.3390/molecules26165010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Organotin(IV) compounds are a class of non-platinum metallo-conjugates exhibiting antitumor activity. The effects of different organotin types has been related to several mechanisms, including their ability to modify acetylation protein status and to promote apoptosis. Here, we focus on triorganotin(IV) complexes of butyric acid, a well-known HDAC inhibitor with antitumor properties. The conjugated compounds were synthesized and characterised by FTIR spectroscopy, multi-nuclear (1H, 13C and 119Sn) NMR, and mass spectrometry (ESI-MS). In the triorganotin(IV) complexes, an anionic monodentate butyrate ligand was observed, which coordinated the tin atom on a tetra-coordinated, monomeric environment similar to ester. FTIR and NMR findings confirm this structure both in solid state and solution. The antitumor efficacy of the triorganotin(IV) butyrates was tested in colon cancer cells and, among them, tributyltin(IV) butyrate (BT2) was selected as the most efficacious. BT2 induced G2/M cell cycle arrest, ER stress, and apoptotic cell death. These effects were obtained using low concentrations of BT2 up to 1 μM, whereas butyric acid alone was completely inefficacious, and the parent compound TBT was poorly effective at the same treatment conditions. To assess whether butyrate in the coordinated form maintains its epigenetic effects, histone acetylation was evaluated and a dramatic decrease in acetyl-H3 and -H4 histones was found. In contrast, butyrate alone stimulated histone acetylation at a higher concentration (5 mM). BT2 was also capable of preventing histone acetylation induced by SAHA, another potent HDAC inhibitor, thus suggesting that it may activate HDACs. These results support a potential use of BT2, a novel epigenetic modulator, in colon cancer treatment.
Collapse
Affiliation(s)
- Michela Giuliano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Plesso di Biochimica, Via del Vespro 129, 90127 Palermo, Italy
| | - Claudia Pellerito
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy;
- CIRCMSB−Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Via Celso Ulpiani, 27, 70125 Bari, Italy
| | - Adriana Celesia
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (BIND), Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (S.E.)
| | - Tiziana Fiore
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy;
- CIRCMSB−Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Via Celso Ulpiani, 27, 70125 Bari, Italy
| | - Sonia Emanuele
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata (BIND), Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (S.E.)
| |
Collapse
|
26
|
Yu L, Wang Y, Wen H, Jiang M, Wu F, Tian J. Synthesis and evaluation of acetylferulic paeonol ester and ferulic paeonol ester as potential antioxidants to inhibit fish oil oxidation. Food Chem 2021; 365:130384. [PMID: 34237572 DOI: 10.1016/j.foodchem.2021.130384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
Acetylferulic paeonol ester (APE) and ferulic paeonol ester (FPE) were synthesized, and their structures were confirmed by NMR, mass spectra, IR and UV-vis data. The antioxidant properties of the synthesized compounds were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and [(2-azino-bis (3-ethylbenzthiazoline)-6 -sulfonic acid] (ABTS) assay as well as the production of oxidation products (peroxides, conjugated dienes, thiobarbituric acid-reactive substances, free fatty acids and total aldehydes) in an elevated temperature (60 °C) storage trial of fish oil extracted from anchovy. Furthermore, the changes in fatty acid composition were monitored by gas chromatography-mass spectrometry. The results showed that APE was more effective in restraining fish oil oxidation compared to FPE, ferulic acid, paeonol and the commercial antioxidant-butylated hydroxytoluene (BHT). This study demonstrated molecular combinations obtained by covalent bonding two antioxidant active molecules can result in novel compounds with enhanced antioxidant activities.
Collapse
Affiliation(s)
- Lijuan Yu
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yang Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Wen
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Ming Jiang
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Wu
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Juan Tian
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
27
|
Zhao C, Wei M, Zheng Y, Tao W, Lv Q, Wang Q, Wang S, Chen Y. The Analyses of Chemical Components From Oldenlandia hedyotidea (DC.) Hand.-Mazz and Anticancer Effects in vitro. Front Pharmacol 2021; 12:624296. [PMID: 34040516 PMCID: PMC8141642 DOI: 10.3389/fphar.2021.624296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023] Open
Abstract
Oldenlandia hedyotidea (DC.) Hand.-Mazz (OH), also known as sweet tea, is a valuable functional food with medicinal properties and is used for the treatment of cold, cough, gastroenteritis, heatstroke, herpes zoster, and rheumatoid arthritis. The phytochemicals in plant-based foods are responsible for the occurrence of these diseases to some extent. However, there is a scarcity of information on the chemical components of OH. We, therefore, aimed to investigate the phytochemical components of OH using ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) and UHPLC triple time-of-flight mass spectrometry (UHPLC-Triple-TOF-MS). The main component of the OH extract, asperulosidic acid, was additionally quantified using UHPLC with ultraviolet detection (UHPLC-UV). The anticancer activity of the OH extract was assessed by a cell proliferation assay and a scratch assay using an esophageal cancer cell line. Ten compounds were tentatively identified in the aqueous extract of OH, including five iridoids, two anthraquinones, and one phenolic acid. The content of asperulosidic acid in the aqueous extract of OH was approximately 42 μg ml-1, and the extract exerted definite in vitro anticancer effects. The results can be used for quality control and assessment of the OH extract, which can serve as a promising source of functional ingredients for potential use in the food and drug industries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yicun Chen
- *Correspondence: Yicun Chen, ; Shuyun Wang,
| |
Collapse
|
28
|
Román T, Ramirez D, Fierro-Medina R, Santillan R, Farfán N. Ferrocene and Organotin (IV) Conjugates Containing Amino Acids and Peptides: A Promising Strategy for Searching New Therapeutic and Diagnostic Tools. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201001154259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Organometallic complexes are an important class of synthetic reagents and are of
great interest due to their versatility and wide biological application. The cationic nature of the
coordination nucleus facilitates its interaction with biological molecules such as amino acids,
proteins, and nucleic acids. The functionalization of peptides or amino acids with organometallic
motifs is a novel strategy for the design and development of molecules with greater biological
activity, stability in biological environments, and selectivity for specific targets, which
make them valuable tools for designing and obtaining molecules with therapeutic applications.
The physicochemical properties of ferrocene make it ideal for drug development, due to its
structure, stability in aqueous solutions, redox properties, and low toxicity. In the same way,
organotin (IV) derivatives have great potential for drug development because of their multiple
biological activities, wide structural versatility, high degree of stability, and low toxicity.
However, the synthesis of these drugs based on organometallic molecules containing ferrocene or organotin (IV) is
quite complex and represents a challenge nowadays; for this reason, it is necessary to design and implement procedures
to obtain molecules with a high degree of purity, in sufficient quantities, and at low cost. This review describes
the strategies of synthesis used up to now for the preparation of organometallic amino acids and peptides
containing ferrocene or organotin (IV) derivates, as well as their impact on the development of therapeutic agents.
Collapse
Affiliation(s)
- Tatiana Román
- Departamento de Farmacia, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - David Ramirez
- Departamento de Quimica. Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - Ricardo Fierro-Medina
- Departamento de Quimica. Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - Rosa Santillan
- Departamento de Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, Av Instituto Politecnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de Mexico, CDMX, Mexico
| | - Norberto Farfán
- Facultad de Quimica, Departamento de Quimica Organica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Circuito Exterior S/N Delegacion Coyoacan, C.P. 04510 Ciudad Universitaria, Ciudad de Mexico, CDMX, Mexico
| |
Collapse
|
29
|
Celesia A, Morana O, Fiore T, Pellerito C, D’Anneo A, Lauricella M, Carlisi D, De Blasio A, Calvaruso G, Giuliano M, Emanuele S. ROS-Dependent ER Stress and Autophagy Mediate the Anti-Tumor Effects of Tributyltin (IV) Ferulate in Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21218135. [PMID: 33143349 PMCID: PMC7663760 DOI: 10.3390/ijms21218135] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Organotin compounds represent potential cancer therapeutics due to their pro-apoptotic action. We recently synthesized the novel organotin ferulic acid derivative tributyltin (IV) ferulate (TBT-F) and demonstrated that it displays anti-tumor properties in colon cancer cells related with autophagic cell death. The purpose of the present study was to elucidate the mechanism of TBT-F action in colon cancer cells. We specifically show that TBT-F-dependent autophagy is determined by a rapid generation of reactive oxygen species (ROS) and correlated with endoplasmic reticulum (ER) stress. TBT-F evoked nuclear factor erythroid-2 related factor 2 (Nrf2)-mediated antioxidant response and Nrf2 silencing by RNA interference markedly increased the anti-tumor efficacy of the compound. Moreover, as a consequence of ROS production, TBT-F increased the levels of glucose regulated protein 78 (Grp78) and C/EBP homologous protein (CHOP), two ER stress markers. Interestingly, Grp78 silencing produced significant decreasing effects on the levels of the autophagic proteins p62 and LC3-II, while only p62 decreased in CHOP-silenced cells. Taken together, these results indicate that ROS-dependent ER stress and autophagy play a major role in the TBT-F action mechanism in colon cancer cells and open a new perspective to consider the compound as a potential candidate for colon cancer treatment.
Collapse
Affiliation(s)
- Adriana Celesia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Ornella Morana
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (O.M.); (A.D.); (A.D.B.); (G.C.)
| | - Tiziana Fiore
- Department of Physics and Chemistry “Emilio Segrè” (DiFC), University of Palermo, Viale delle Scienze, Building 17, 90128 Palermo, Italy; (T.F.); (C.P.)
- Inter-University Consortium for Research on the Chemistry of Metal Ions in Biological Systems (C.I.R.C.M.S.B.), Piazza Umberto I, 1-70121 Bari, Italy
| | - Claudia Pellerito
- Department of Physics and Chemistry “Emilio Segrè” (DiFC), University of Palermo, Viale delle Scienze, Building 17, 90128 Palermo, Italy; (T.F.); (C.P.)
- Inter-University Consortium for Research on the Chemistry of Metal Ions in Biological Systems (C.I.R.C.M.S.B.), Piazza Umberto I, 1-70121 Bari, Italy
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (O.M.); (A.D.); (A.D.B.); (G.C.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (O.M.); (A.D.); (A.D.B.); (G.C.)
| | - Giuseppe Calvaruso
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (O.M.); (A.D.); (A.D.B.); (G.C.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (O.M.); (A.D.); (A.D.B.); (G.C.)
- Correspondence: (M.G.); (S.E.)
| | - Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
- Correspondence: (M.G.); (S.E.)
| |
Collapse
|
30
|
Leonard W, Zhang P, Ying D, Fang Z. Hydroxycinnamic acids on gut microbiota and health. Compr Rev Food Sci Food Saf 2020; 20:710-737. [DOI: 10.1111/1541-4337.12663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Affiliation(s)
- William Leonard
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Pangzhen Zhang
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Danyang Ying
- CSIRO Agriculture & Food Werribee Victoria Australia
| | - Zhongxiang Fang
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
31
|
Brtko J, Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie 2020; 179:157-168. [PMID: 33011201 DOI: 10.1016/j.biochi.2020.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Important key players in the regulatory machinery within the cells are nuclear retinoid X receptors (RXRs), which compose heterodimers in company with several diverse nuclear receptors, playing a role as ligand inducible transcription factors. In general, nuclear receptors are ligand-activated, transcription-modulating proteins affecting transcriptional responses in target genes. RXR molecules forming permissive heterodimers with disparate nuclear receptors comprise peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptor (FXR), pregnane X receptor (PXR) and constitutive androstan receptor (CAR). Retinoid receptors (RARs) and thyroid hormone receptors (TRs) may form conditional heterodimers, and dihydroxyvitamin D3 receptor (VDR) is believed to form nonpermissive heterodimer. Thus, RXRs are the important molecules that are involved in control of many cellular functions in biological processes and diseases, including cancer or diabetes. This article summarizes both naturally occurring and synthetic ligands for nuclear retinoid X receptors and describes, predominantly in mammals, their role in molecular mechanisms within the cells. A focus is also on triorganotin compounds, which are high affinity RXR ligands, and finally, we present an outlook on human microbiota as a potential source of RXR activators. Nevertheless, new synthetic rexinoids with better retinoid X receptor activity and lesser side effects are highly required.
Collapse
Affiliation(s)
- Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71, Olomouc, Czech Republic
| |
Collapse
|
32
|
Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, De Maio F, Tresoldi I, Manzari V, Modesti A, Masuelli L, Bei R. Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E6635. [PMID: 32927836 PMCID: PMC7555128 DOI: 10.3390/ijms21186635] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| |
Collapse
|
33
|
Ruwizhi N, Aderibigbe BA. Cinnamic Acid Derivatives and Their Biological Efficacy. Int J Mol Sci 2020; 21:ijms21165712. [PMID: 32784935 PMCID: PMC7460980 DOI: 10.3390/ijms21165712] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
The role played by cinnamic acid derivatives in treating cancer, bacterial infections, diabetes and neurological disorders, among many, has been reported. Cinnamic acid is obtained from cinnamon bark. Its structure is composed of a benzene ring, an alkene double bond and an acrylic acid functional group making it possible to modify the aforementioned functionalities with a variety of compounds resulting in bioactive agents with enhanced efficacy. The nature of the substituents incorporated into cinnamic acid has been found to play a huge role in either enhancing or decreasing the biological efficacy of the synthesized cinnamic acid derivatives. Some of the derivatives have been reported to be more effective when compared to the standard drugs used to treat chronic or infectious diseases in vitro, thus making them very promising therapeutic agents. Compound 20 displayed potent anti-TB activity, compound 27 exhibited significant antibacterial activity on S. aureus strain of bacteria and compounds with potent antimalarial activity are 35a, 35g, 35i, 36i, and 36b. Furthermore, compounds 43d, 44o, 55g–55p, 59e, 59g displayed potent anticancer activity and compounds 86f–h were active against both hAChE and hBuChE. This review will expound on the recent advances on cinnamic acid derivatives and their biological efficacy.
Collapse
|
34
|
Emanuele S, Lauricella M, D’Anneo A, Carlisi D, De Blasio A, Di Liberto D, Giuliano M. p62: Friend or Foe? Evidences for OncoJanus and NeuroJanus Roles. Int J Mol Sci 2020; 21:ijms21145029. [PMID: 32708719 PMCID: PMC7404084 DOI: 10.3390/ijms21145029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
p62 is a versatile protein involved in the delicate balance between cell death and survival, which is fundamental for cell fate decision in the context of both cancer and neurodegenerative diseases. As an autophagy adaptor, p62 recognizes polyubiquitin chains and interacts with LC3, thereby targeting the selected cargo to the autophagosome with consequent autophagic degradation. Beside this function, p62 behaves as an interactive hub in multiple signalling including those mediated by Nrf2, NF-κB, caspase-8, and mTORC1. The protein is thus crucial for the control of oxidative stress, inflammation and cell survival, apoptosis, and metabolic reprogramming, respectively. As a multifunctional protein, p62 falls into the category of those factors that can exert opposite roles in the cells. Chronic p62 accumulation was found in many types of tumors as well as in stress granules present in different forms of neurodegenerative diseases. However, the protein seems to have a Janus behaviour since it may also serve protective functions against tumorigenesis or neurodegeneration. This review describes the diversified roles of p62 through its multiple domains and interactors and specifically focuses on its oncoJanus and neuroJanus roles.
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
- Correspondence:
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
| | - Anna De Blasio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (M.L.); (D.C.); (D.D.L.)
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| |
Collapse
|
35
|
Liu T, Zhang J, Li K, Deng L, Wang H. Combination of an Autophagy Inducer and an Autophagy Inhibitor: A Smarter Strategy Emerging in Cancer Therapy. Front Pharmacol 2020; 11:408. [PMID: 32322202 PMCID: PMC7156970 DOI: 10.3389/fphar.2020.00408] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Autophagy is considered a cytoprotective function in cancer therapy under certain conditions and is a drug resistance mechanism that represents a clinical obstacle to successful cancer treatment and leads to poor prognosis in cancer patients. Because certain clinical drugs and agents in development have cytoprotective autophagy effects, targeting autophagic pathways has emerged as a potential smarter strategy for cancer therapy. Multiple preclinical and clinical studies have demonstrated that autophagy inhibition augments the efficacy of anticancer agents in various cancers. Autophagy inhibitors, such as chloroquine and hydroxychloroquine, have already been clinically approved, promoting drug combination treatment by targeting autophagic pathways as a means of discovering and developing more novel and more effective cancer therapeutic approaches. We summarize current studies that focus on the antitumor efficiency of agents that induce cytoprotective autophagy combined with autophagy inhibitors. Furthermore, we discuss the challenge and development of targeting cytoprotective autophagy as a cancer therapeutic approach in clinical application. Thus, we need to facilitate the exploitation of appropriate autophagy inhibitors and coadministration delivery system to cooperate with anticancer drugs. This review aims to note optimal combination strategies by modulating autophagy for therapeutic advantage to overcome drug resistance and enhance the effect of antitumor therapies on cancer patients.
Collapse
Affiliation(s)
- Ting Liu
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangdi Li
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingnan Deng
- Department of Digestion, The Second Affiliated Hospital of Jiangxi University TCM, Nanchang, China
| | - Hongxiang Wang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|