1
|
Keppanan R, Karuppannasamy A, Nagaraja BC, Thiruvengadam V, Kesavan S, Dhawane YA, Ramasamy A. Effectiveness of chitosan nanohydrogel mediated encapsulation of EcR dsRNA against the whitefly, Bemisia tabaci Asia-I (Gennedius) (Hemiptera: Aleyordidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105712. [PMID: 38225070 DOI: 10.1016/j.pestbp.2023.105712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 01/17/2024]
Abstract
Bemisia tabaci is a global invasive pest causing substantial loss on several economically important crops and has developed a very high level of resistance to insecticides making current management practices ineffective. Thus, the novel pest management strategy like RNA interference (RNAi) has emerged as a potential molecular tool in the management of insect pests particularly B. tabaci. The present study investigated RNAi mediated silencing of the Ecdysone Receptor (EcR) gene in B. tabaci Asia-I using biodegradable Chitosan Nanoparticles (CNPs) hydrogel containing EcR dsRNA. The formation of nanohydrogel and dsRNA loading were characterized by gel retardation assay, scanning electron microscopy (SEM); transmission electron microscopy (TEM) and Fourier transform infrared microscopy (FTIR). The stability of CNPs/dsRNA was assessed by exposure to direct sunlight and UV light for different time periods. The CNPs/dsRNA exhibited increased stability over the untreated control and further confirmed by bioassay studies which yielded mortality over 80% and effectively down regulated the expression of the EcR gene as confirmed by qRT-PCR analysis. These investigations provide potential avenues for advancing innovative pest management strategies using biopolymer CNPs hydrogel, which can enhance the efficiency of dsRNA as a safe and targeted solution in the management of whiteflies.
Collapse
Affiliation(s)
- Ravindran Keppanan
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India
| | - Ashok Karuppannasamy
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; Tata Institute for Genetics and Society, Bengaluru 560065, Karnataka, India.
| | - Bhargava Chikmagalur Nagaraja
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India; University of Agricultural Sciences, Bengaluru 560065, Karnataka, India
| | | | - Subaharan Kesavan
- ICAR - National Bureau of Agricultural Insect Resources, Bengaluru 560024, Karnataka, India
| | - Yogi Arun Dhawane
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India
| | - Asokan Ramasamy
- ICAR - Indian Institute of Horticultural Research, Bengaluru 560089, India.
| |
Collapse
|
2
|
Ito-Harashima S, Tsubouchi Y, Takada E, Kawanishi M, Yagi T. Development of a yeast reporter gene assay to detect ligands of freshwater cladoceran Daphnia magna ultraspiracle, a homolog of vertebrate retinoid X receptors. J Appl Toxicol 2023; 43:1447-1461. [PMID: 37078133 DOI: 10.1002/jat.4476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) often affect homeostatic regulation in living organisms by directly acting on nuclear receptors (NRs). Retinoid X receptors (RXRs), the most highly conserved members of the NR superfamily during evolution, function as partners to form heterodimers with other NRs, such as retinoic acid, thyroid hormone, and vitamin D3 receptors. RXRs also homodimerize and induce the expression of target genes upon binding with their natural ligand, 9-cis-retinoic acid (9cRA), and typical EDCs organotin compounds, such as tributyltin and triphenyltin. In the present study, we established a new yeast reporter gene assay (RGA) to detect the ligands of freshwater cladoceran Daphnia magna ultraspiracle (Dapma-USP), a homolog of vertebrate RXRs. D. magna has been used as a representative crustacean species for aquatic EDC assessments in the Organization for Economic Corporation and Development test guidelines. Dapma-USP was expressed along with the Drosophila melanogaster steroid receptor coactivator Taiman in yeast cells carrying the lacZ reporter plasmid. The RGA for detecting agonist activity of organotins and o-butylphenol was improved by use of mutant yeast strains lacking genes encoding cell wall mannoproteins and/or plasma membrane drug efflux pumps as hosts. We also showed that a number of other human RXR ligands, phenol and bisphenol A derivatives, and terpenoid compounds such as 9c-RA exhibited antagonist activity on Dapma-USP. Our newly established yeast-based RGA system is valuable as the first screening tool to detect ligand substances for Dapma-USP and for evaluating the evolutionary divergence of the ligand responses of RXR homologs between humans and D. magna.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yumiko Tsubouchi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan
| |
Collapse
|
3
|
Van Lommel J, Lenaerts C, Delgouffe C, Vanden Broeck J. Knockdown of ecdysone receptor in male desert locusts affects relative weight of accessory glands and mating behavior. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104368. [PMID: 35134451 DOI: 10.1016/j.jinsphys.2022.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Locusts have been known as pests of agricultural crops for thousands of years. Recently (2018-2021) the world has faced the largest swarms of desert locusts, Schistocerca gregaria, in decades and food security in large parts of Africa and Asia was under extreme pressure. There is an urgent need for the development of highly specific bio-rational pesticides to combat these pests. However, to do so, fundamental research is needed to better understand the molecular mechanisms behind key physiological processes underpinning swarm formation, such as development and reproduction. The scope of this study is to investigate the possible role(s) of the ecdysteroid receptor in the reproductive physiology of male S. gregaria. Ecdysteroids and juvenile hormones are two important classes of insect hormones and are key regulators of post-embryonic development. Ecdysteroids are best known for their role in moulting and exert their function via a heterodimer consisting of the nuclear receptors ecdysone receptor (EcR) and retinoid-X receptor (RXR). To gain insight into the role of SgEcR and/or SgRXR in the male reproductive physiology of S. gregaria we performed RNAi-induced knockdown experiments. A knockdown of SgEcR, but not SgRXR, resulted in an increased relative weight of the male accessory glands (MAG). Furthermore, the knockdown of these genes, either in combination or separately, caused a significant delay in the onset of mating behavior. Nevertheless, the MAG appeared to mature normally and the fertility of mated males was not affected. The high transcript levels of SgEcR in the fat body, especially towards the end of sexual maturation in both males and females, represent a remarkable finding since as of yet the exact role of SgEcR in this tissue in S. gregaria is unknown. Finally, our data suggest that in some cases SgEcR and SgRXR might act independently of each other. This is supported by the fact that the spatiotemporal expression profiles of SgEcR and SgRXR do not always coincide and that knockdown of SgEcR, but not SgRXR, significantly affected the relative weight of the MAG.
Collapse
Affiliation(s)
- Joachim Van Lommel
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Cynthia Lenaerts
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Charlotte Delgouffe
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Biology, Molecular Developmental Physiology and Signal Transduction Lab., Division of Animal Physiology and Neurobiology, Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
4
|
Zhang XY, He QH, Zhang TT, Wu HH, Zhang JZ, Ma EB. Characteristics of Halloween genes and RNA interference-mediated functional analysis of LmCYP307a2 in Locusta migratoria. INSECT SCIENCE 2022; 29:51-64. [PMID: 33634599 DOI: 10.1111/1744-7917.12907] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Halloween genes are involved in the biosynthesis of the molting hormone, which plays a key role in insect ecdysis, development, metamorphosis, and reproduction. Our previous work identified five Halloween genes from Locusta migratoria, but their functions are currently unknown. In this study, the sequences of these five Halloween genes were analyzed and characterized. LmCYP307a2, LmCYP306a1, LmCYP302a1, and LmCYP315a1 were primarily expressed in the prothoracic glands, while LmCYP314a1 was universally expressed in peripheral tissues, especially in the ovaries and Malpighian tubules. All five Halloween genes were mainly expressed from the 5th to the 7th d in 5th-instar nymphs. RNA interference (RNAi) silencing of LmCYP307a2 resulted in severe molting delays and molting failure, which could be rescued by supplementary 20-hydroxyecdysone. A hematoxylin and eosin staining analysis suggested that the RNAi of LmCYP307a2 inhibited the ecdysis process by inhibiting the apolysis and degradation of the old cuticle, and by promoting the synthesis of a new cuticle. Quantitative reverse transcription polymerase chain reaction results showed that the expressions of LmE74, LmCht5, and LmCht10 were dramatically down-regulated, while that of LmChsI was substantially up-regulated, after knockdown of LmCYP307a2. The results suggest that LmCYP307a2 is related to the molt process via regulation of chitin synthesis and degradation.
Collapse
Affiliation(s)
- Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Qi-Hui He
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Ting-Ting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Hai-Hua Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - En-Bo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
5
|
Liu X, Zhang Z, Zhang M, Zhao X, Zhang T, Liu W, Zhang J. A ras-related nuclear protein Ran participates in the 20E signaling pathway and is essential for the growth and development of Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104945. [PMID: 34446211 DOI: 10.1016/j.pestbp.2021.104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The small GTPase Ran is a member of the Ras superfamily of small GTP-binding proteins, which plays a key role in the translocation of RNA and proteins through the nuclear pore complex. In this study, the full-length cDNA sequence of LmRan gene was obtained, which consists of 648-nucleotides open reading frame (ORF) and encodes 215 amino acids. RT-qPCR results revealed that LmRan was expressed in all developmental days and tissues investigated. Injection of dsLmRan into 4th and 5th instar nymphs, resulted in a significant down-regulation of LmRan transcripts, respectively. All dsLmRan-injected nymphs died before molting. Further hematoxylin and eosin staining of the integument showed that there was no apolysis occurred after silencing LmRan. In addition, the weight of dsLmRan-injected nymphs was significantly lower than that of the control group, and the gastric caecum and midgut was severely smaller. Especiallly, the mRNA level of LmCYP302a1, LmCYP315a1 and LmCYP314a1 responsible for 20E synthesis, LmE75 and LmE74 genes involved in the 20E signaling pathway, LmGfat, LmUAP1 and LmCHT10 genes involved in chitin metabolism pathway were dramatically decreased in the dsLmRan-injected nymphs. Together, the results indicated that LmRan participate in the 20E signaling pathway, which is essential for the growth and development of locusts.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zheng Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
6
|
Chai C, Xu X, Sun W, Zhang F, Ye C, Ding G, Li J, Zhong G, Xiao W, Liu B, von Lintig J, Lu C. Characterization of the novel role of NinaB orthologs from Bombyx mori and Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:106-115. [PMID: 30871993 DOI: 10.1016/j.ibmb.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/29/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Carotenoids can be enzymatically converted to apocarotenoids by carotenoid cleavage dioxygenases. Insect genomes encode only one member of this ancestral enzyme family. We cloned and characterized the ninaB genes from the silk worm (Bombyx mori) and the flour beetle (Tribolium castaneum). We expressed BmNinaB and TcNinaB in E. coli and analyzed their biochemical properties. Both enzymes catalyzed a conversion of carotenoids into cis-retinoids. The enzymes catalyzed a combined trans to cis isomerization at the C11, C12 double bond and oxidative cleavage reaction at the C15, C15' bond of the carotenoid carbon backbone. Analyses of the spatial and temporal expression patterns revealed that ninaB genes were differentially expressed during the beetle and moth life cycles with high expression in reproductive organs. In Bombyx mori, ninaB was almost exclusively expressed in female reproductive organs of the pupa and adult. In Tribolium castaneum, low expression was found in reproductive organs of females but high expressions in male reproductive organs of the pupa and imagoes. We performed RNAi experiments to characterize the role of NinaB in insect reproduction. We observed that RNAi treatment significantly decreased the expression levels of BmninaB and TcninaB and reduced the egg laying capacity of both insects. Together, our study revealed that NinaB's unique enzymatic properties are well conserved among insects and implicate NinaB function in insect reproduction.
Collapse
Affiliation(s)
- Chunli Chai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xin Xu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Fang Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Chuan Ye
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Guangshu Ding
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jiantao Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoxuan Zhong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China; Life Sciences Institute and the Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Wei Xiao
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Binbin Liu
- Sericulture Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
The Function and Evolution of Nuclear Receptors in Insect Embryonic Development. Curr Top Dev Biol 2017; 125:39-70. [DOI: 10.1016/bs.ctdb.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Yan T, Chen H, Sun Y, Yu X, Xia L. RNA Interference of the Ecdysone Receptor Genes EcR and USP in Grain Aphid (Sitobion avenae F.) Affects Its Survival and Fecundity upon Feeding on Wheat Plants. Int J Mol Sci 2016; 17:E2098. [PMID: 27983619 PMCID: PMC5187898 DOI: 10.3390/ijms17122098] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA interference (RNAi) has been widely used in functional genomics of insects and received intensive attention in the development of RNAi-based plants for insect control. Ecdysone receptor (EcR) and ultraspiracle protein (USP) play important roles in molting, metamorphosis, and reproduction of insects. EcR and USP orthologs and their function in grain aphid (Sitobion avenae F.) have not been documented yet. Here, RT-PCR, qRT-PCR, dsRNA feeding assay and aphid bioassay were employed to isolate EcR and USP orthologs in grain aphid, investigate their expression patterns, and evaluate the effect of RNAi on aphid survival and fecundity, and its persistence. The results indicated that SaEcR and SaUSP exhibited similar expression profiles at different developmental stages. Oral administration of dsRNAs of SaEcR and dsSaUSP significantly decreased the survival of aphids due to the down-regulation of these two genes, respectively. The silencing effect was persistent and transgenerational, as demonstrated by the reduced survival and fecundity due to knock-down of SaEcR and SaUSP in both the surviving aphids and their offspring, even after switching to aphid-susceptible wheat plants. Taken together, our results demonstrate that SaEcR and SaUSP are essential genes in aphid growth and development, and could be used as RNAi targets for wheat aphid control.
Collapse
Affiliation(s)
- Ting Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Hongmei Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Yongwei Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Xiudao Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Lanqin Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
9
|
Lenaerts C, Van Wielendaele P, Peeters P, Vanden Broeck J, Marchal E. Ecdysteroid signalling components in metamorphosis and development of the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:10-23. [PMID: 27180725 DOI: 10.1016/j.ibmb.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
The arthropod-specific hormone family of ecdysteroids plays an important role in regulating diverse physiological processes, such as moulting and metamorphosis, reproduction, diapause and innate immunity. Ecdysteroids mediate their response by binding to a heterodimeric complex of two nuclear receptors, the ecdysone receptor (EcR) and the retinoid-X-receptor/ultraspiracle (RXR/USP). In this study we investigated the role of EcR and RXR in metamorphosis and development of the desert locust, Schistocerca gregaria. The desert locust is a voracious, phytophagous, swarming pest that can ruin crops and harvests in some of the world's poorest countries. A profound knowledge of the ecdysteroid signalling pathway can be used in the development of more target-specific insecticides to combat this harmful plague insect. Here we report an in-depth profiling study of the transcript levels of EcR and RXR, as well as its downstream response genes, in different tissues isolated throughout the last larval stage of a hemimetabolous insect, showing a clear correlation with circulating ecdysteroid titres. Using RNA interference (RNAi), the role of SgEcR/SgRXR in moulting and development was investigated. We have proven the importance of the receptor components for successful moulting of locust nymphs into the adult stage. Some SgEcR/SgRXR knockdown females were arrested in the last larval stage, and 65 % of them initiated vitellogenesis and oocyte maturation, which normally only occurs in adults. Furthermore, our results clearly indicate that at the peak of ecdysteroid synthesis, on day six of the last larval stage, knockdown of SgEcR/SgRXR is affecting the transcript levels of the Halloween genes, Spook, Shadow and Shade.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Paulien Peeters
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
10
|
Cao J, Liu Y, Yang Y, Zhang H, Li Z, Yang Q, Zhang S, Zhang Q, Liu X. Molecular characterization and functional analysis of the ultraspiracle (USP) in the oriental fruit moth Grapholita molesta (Lepidoptera: Olethreutidae). Comp Biochem Physiol B Biochem Mol Biol 2015; 190:54-62. [DOI: 10.1016/j.cbpb.2015.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/13/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022]
|
11
|
Hult EF, Huang J, Marchal E, Lam J, Tobe SS. RXR/USP and EcR are critical for the regulation of reproduction and the control of JH biosynthesis in Diploptera punctata. JOURNAL OF INSECT PHYSIOLOGY 2015; 80:48-60. [PMID: 25917982 DOI: 10.1016/j.jinsphys.2015.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 05/24/2023]
Abstract
During development and reproduction the response to ecdysteroids is mediated by a heterodimeric receptor complex comprising the retinoid X receptor/ultraspiracle (RXR/USP) and the ecdysone receptor (EcR). Here, the role of these receptors in the endocrine control of reproduction is examined in the cockroach Diploptera punctata. We report the sequence of four DpRXR and three DpEcR splice variants, including the first description of a Drosophila EcRB2-like isoform in a hemimetabolous insect. DpRXR and DpEcR are broadly expressed in the tissues of adult females, with relatively high transcript levels in the corpora allata (CA), nervous tissue and ovary. Developmental profiling revealed an inverse correlation between DpRXR and DpEcR expression and the activity of the CA. RNAi-mediated depletion of DpRXR and DpEcR did not affect oocyte growth, but inhibited oviposition and impaired chorion formation. Retained oocytes exhibited a degenerating follicular epithelium and were slowly resorbed. Treated animals showed significantly higher rates of JH biosynthesis and a decrease in ecdysteroid titers at the end of vitellogenesis. Reduction of DpRXR and DpEcR expression resulted in an upregulation of genes involved in JH production and a downregulation of allatostatin receptor mRNA in the CA. Treatment with dsRNA also affected the expression of genes downstream of JH in target tissues including vitellogenin and Krüppel-homolog 1 as well as Broad-Complex, an early ecdysone response gene. Overall, results suggest that DpRXR and DpEcR are not required early in the reproductive cycle when events are JH-dependent, but do mediate critical ecdysteroid feedback to the CA late in the gonadotropic cycle.
Collapse
Affiliation(s)
- Ekaterina F Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Elisabeth Marchal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada; Department of Biology, Zoological Institute, KU Leuven, B-3000 Leuven, Belgium
| | - Jennifer Lam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Bui-Göbbels K, Quintela RM, Bräunig P, Mey J. Is retinoic acid a signal for nerve regeneration in insects? Neural Regen Res 2015; 10:901-3. [PMID: 26199605 PMCID: PMC4498350 DOI: 10.4103/1673-5374.158349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2015] [Indexed: 12/02/2022] Open
Affiliation(s)
| | | | - Peter Bräunig
- Institut für Biologie II, RWTH Aachen University, Germany
| | - Jörg Mey
- Hospital Nacional de Parapléjicos, Toledo, Spain
- Euron Graduate School of Neuroscience, Maastricht, Netherlands
| |
Collapse
|
13
|
Sukiban J, Bräunig P, Mey J, Bui-Göbbels K. Retinoic acid as a survival factor in neuronal development of the grasshopper, Locusta migratoria. Cell Tissue Res 2014; 358:303-12. [PMID: 25107605 DOI: 10.1007/s00441-014-1957-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 07/03/2014] [Indexed: 12/23/2022]
Abstract
Based on experience with cell cultures of adult insect neurons, we develop a serum-free culture system for embryonic locust neurons. Influences of trophic substances on survival and neurite outgrowth of developing neurons are investigated. For the first time, a positive trophic effect of 9-cis retinoic acid (9-cis RA) was shown in vitro on embryonic neurons of an insect. We observed longer cell survival of 50 % developmental stage neurons in cultures supplemented with 0.3 nM 9-cis RA. Furthermore, an influence on neuron morphology was revealed, as the addition of 9-cis RA to cell culture medium led to an increase in the number of neurites per cell. Although an RA receptor gene, LmRXR (Locusta migratoria retinoid X receptor), was expressed in the central nervous system throughout development, the influence of 9-cis RA on neuronal survival and outgrowth was restricted to 50 % stage embryonic cells.
Collapse
Affiliation(s)
- Jeyathevy Sukiban
- Institut für Biologie II (Zoologie), RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | | | | | | |
Collapse
|
14
|
Lv J, Feng L, Bao Z, Guo H, Zhang Y, Jiao W, Zhang L, Wang S, He Y, Hu X. Molecular characterization of RXR (Retinoid X Receptor) gene isoforms from the bivalve species Chlamys farreri. PLoS One 2013; 8:e74290. [PMID: 24066133 PMCID: PMC3774650 DOI: 10.1371/journal.pone.0074290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022] Open
Abstract
Background Bivalves are among the oldest classes of invertebrates, and they exhibit diverse types of sexual patterning. However, our current understanding of the mechanisms of sex determination and differentiation in bivalves remains very limited. The retinoid X receptors (RXRs), which are members of the nuclear receptor family, are involved in sex differentiation in many organisms. Results In the present study, four full-length RXR-encoding cDNAs (CfRXRs) named CfRXRa, CfRXRb, CfRXRc and CfRXRd were retrieved from Zhikong scallop (Chlamys farreri). The four RXRs exhibited the conserved five-domain structure of nuclear receptor superfamily members and differed from each other only in the T-box of the C domain. The three variants, designated T (+4), T (+20) and T (+24), contained insertions of 4, 20 and 24 amino acids, respectively. The entire CfRXR gene is composed of eight exons and seven introns, and the four isoforms are generated via alternative mRNA splicing. Expression analysis showed that all four isoforms were expressed in both the testis and the ovary during the differentiation stage, whereas no expression was detected in the growth, mature or resting stages. This result suggests that CfRXRs are involved in germ cell differentiation in both sexes. The expression of the four isoforms was also detected in other tissues examined, including mantle, gill, digestive gland, and adductor muscle of sexually mature male and female Zhikong scallops, implying the multiple biological functions of CfRXRs. Conclusion Our study presents the first report of RXR isoforms in bivalves. Further investigation of the functional roles of different RXR isoforms may provide deep insights into the regulatory mechanism of sex differentiation in C. farreri.
Collapse
Affiliation(s)
- Jia Lv
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Liying Feng
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huihui Guo
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yueyue Zhang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wenqian Jiao
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail: (YH); (XH)
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail: (YH); (XH)
| |
Collapse
|
15
|
Molecular Cloning, Characterization, and Expression Pattern of the Ultraspiracle Gene Homolog (RXR/USP) from the Hemimetabolous Insect Periplaneta americana (Dictyoptera, Blattidae) During Vitellogenesis. Mol Biotechnol 2013; 56:126-35. [DOI: 10.1007/s12033-013-9688-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Raingeard D, Bilbao E, Cancio I, Cajaraville MP. Retinoid X receptor (RXR), estrogen receptor (ER) and other nuclear receptors in tissues of the mussel Mytilus galloprovincialis: Cloning and transcription pattern. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:178-90. [DOI: 10.1016/j.cbpa.2013.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/25/2013] [Accepted: 03/02/2013] [Indexed: 01/11/2023]
|
17
|
Foulk MS, Waggener JM, Johnson JM, Yamamoto Y, Liew GM, Urnov FD, Young Y, Lee G, Smith HS, Gerbi SA. Isolation and characterization of the ecdysone receptor and its heterodimeric partner ultraspiracle through development in Sciara coprophila. Chromosoma 2013; 122:103-19. [PMID: 23321980 DOI: 10.1007/s00412-012-0395-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/09/2012] [Accepted: 12/18/2012] [Indexed: 01/08/2023]
Abstract
Regulation of DNA replication is critical, and loss of control can lead to DNA amplification. Naturally occurring, developmentally regulated DNA amplification occurs in the DNA puffs of the late larval salivary gland giant polytene chromosomes in the fungus fly, Sciara coprophila. The steroid hormone ecdysone induces DNA amplification in Sciara, and the amplification origin of DNA puff II/9A contains a putative binding site for the ecdysone receptor (EcR). We report here the isolation, cloning, and characterizing of two ecdysone receptor isoforms in Sciara (ScEcR-A and ScEcR-B) and the heterodimeric partner, ultraspiracle (ScUSP). ScEcR-A is the predominant isoform in larval tissues and ScEcR-B in adult tissues, contrary to the pattern in Drosophila. Moreover, ScEcR-A is produced at amplification but is absent just prior. We discuss these results in relation to the model of ecdysone regulation of DNA amplification.
Collapse
Affiliation(s)
- Michael S Foulk
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tang B, Dong W, Liang P, Zhou X, Gao X. Cloning, ligand-binding, and temporal expression of ecdysteroid receptors in the diamondback moth, Plutella xylostella. BMC Mol Biol 2012; 13:32. [PMID: 23078528 PMCID: PMC3568735 DOI: 10.1186/1471-2199-13-32] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/11/2012] [Indexed: 01/17/2023] Open
Abstract
Background The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a devastating pest of cruciferous crops worldwide, and has developed resistance to a wide range of insecticides, including diacylhydrazine-based ecdysone agonists, a highly selective group of molt-accelerating biopesticides targeting the ecdysone receptors. Result In this study, we cloned and characterized the ecdysone receptors from P. xylostella, including the two isoforms of EcR and a USP. Sequence comparison and phylogenetic analysis showed striking conservations among insect ecdysone receptors, especially between P. xylostella and other lepidopterans. The binding affinity of ecdysteroids to in vitro-translated receptor proteins indicated that PxEcRB isoform bound specifically to ponasterone A, and the binding affinity was enhanced by co-incubation with PxUSP (Kd =3.0±1.7 nM). In contrast, PxEcRA did not bind to ponasterone A, even in the presence of PxUSP. The expression of PxEcRB were consistently higher than that of PxEcRA across each and every developmental stage, while the pattern of PxUSP expression is more or less ubiquitous. Conclusions Target site insensitivity, in which the altered binding of insecticides (ecdysone agonists) to their targets (ecdysone receptors) leads to an adaptive response (resistance), is one of the underlying mechanisms of diacylhydrazine resistance. Given the distinct differences at expression level and the ligand-binding capacity, we hypothesis that PxEcRB is the ecdysone receptor that controls the remodeling events during metamorphosis. More importantly, PxEcRB is the potential target site which is modified in the ecdysone agonist-resistant P. xylostella.
Collapse
Affiliation(s)
- Baozhen Tang
- Department of Entomology, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
19
|
Tiu SHK, Hult EF, Yagi KJ, Tobe SS. Farnesoic acid and methyl farnesoate production during lobster reproduction: possible functional correlation with retinoid X receptor expression. Gen Comp Endocrinol 2012; 175:259-69. [PMID: 22137909 DOI: 10.1016/j.ygcen.2011.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/02/2011] [Accepted: 11/11/2011] [Indexed: 11/24/2022]
Abstract
Farnesoic acid (FA) and methyl farnesoate (MF) are juvenile hormone-related compounds secreted by the mandibular organ (MO) of crustaceans and play an important role in stimulation of ovarian maturation. To better understand how the MO activity influences female reproduction by secretion of FA and MF, the biosynthesis and release of these two compounds were measured in vitro by the incorporation of l-[(3)H-methyl]methionine into MF and [2-(14)C]acetate into FA by the MO of Homarus americanus. The production of FA is 7.5 times that of MF, and most FA and MF synthesized remained within the gland, and was not released into the surrounding medium. Most FA and MF were synthesized in the anterior fan-fold region of the MO. The rates of biosynthesis of FA and MF were stage-related, with maximal production occurring during secondary vitellogenesis (i.e. stages 4 and 5). A potential juvenoid receptor, retinoid X receptor (RXR), HaRXR, was characterized using PCR cloning techniques. HaRXR belongs to the nuclear hormone receptor superfamily and its deduced amino acid sequence shares a high homology to other RXRs of crustaceans, insects, and vertebrates. Transcripts of HaRXR can be detected in many tissues, and significant high expression level was detected in the MO, especially in the anterior fan-fold region. Expression of HaRXR was also related to reproductive stage, and maximal level of expression was observed at stage 4, in which secondary vitellogenesis is occurring. Changes in transcript level of HaRXR and the rates of FA/MF biosynthesis in the female reproductive cycle indicate that HaRXR and FA/MF may play important roles in crustacean reproduction.
Collapse
Affiliation(s)
- Shirley Hiu-Kwan Tiu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | | | | | | |
Collapse
|
20
|
Tohidi-Esfahani D, Lawrence MC, Graham LD, Hannan GN, Simpson AM, Hill RJ. Isoforms of the heteropteran Nezara viridula ecdysone receptor: protein characterisation, RH5992 insecticide binding and homology modelling. PEST MANAGEMENT SCIENCE 2011; 67:1457-1467. [PMID: 21594962 DOI: 10.1002/ps.2200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/04/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND Certain bisacylhydrazine compounds such as tebufenozide (RH5992) have been shown to act as order-specific insecticides. Their compatibility with predatory Heteroptera, which are used as biological control agents, has also been demonstrated. However, the molecular mode of action of these ecdysone agonists has not been explored in a heteropteran, much less one that is a significant agricultural pest, such as Nezara viridula. RESULTS Alternatively spliced ligand-binding regions of the N. viridula ecdysone receptor were expressed, purified and characterised by 2D gel analysis, mass spectrometry, homology modelling and competitive binding of a bisacylhydrazine insecticidal compound (RH5992) and various ecdysteroids. Ligand binding by the two splice isoforms was indistinguishable, and relative affinities were found to occur in the order muristerone A > ponasterone A > 20-hydroxyecdysone > inokosterone > RH5992 > α-ecdysone. CONCLUSION The predicted difference in amino acid sequence between the ligand-binding domains of the N. viridula ecdysone receptor splice variants was verified by mass spectrometry. Both splice variant isoforms exhibit a greater affinity for the bisacylhydrazine insecticide RH5992 than do the other hemipteran ecdysone receptors characterised to date. Their affinities for a range of ecdysteroids also distinguish them from the ecdysone receptors of other Hemiptera characterised thus far. Homology models of both N. viridula receptor isoforms provide further insight into the bisacylhydrazine- and ecdysteroid-binding properties of these receptors, including their similar affinity for 20-hydroxyecdysone and the postulated pentatomomorphan moulting hormone makisterone A.
Collapse
Affiliation(s)
- Donya Tohidi-Esfahani
- CSIRO Materials Science and Engineering and CSIRO Food and Nutritional Sciences, Sydney Laboratory, North Ryde, NSW, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Dawson MI, Xia Z. The retinoid X receptors and their ligands. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:21-56. [PMID: 22020178 DOI: 10.1016/j.bbalip.2011.09.014] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/23/2011] [Accepted: 09/23/2011] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1-3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand-bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Sanford-Burn Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 93207, USA.
| | | |
Collapse
|
22
|
Bortolin F, Piulachs MD, Congiu L, Fusco G. Cloning and expression pattern of the ecdysone receptor and retinoid X receptor from the centipede Lithobius peregrinus (Chilopoda, Lithobiomorpha). Gen Comp Endocrinol 2011; 174:60-9. [PMID: 21871895 DOI: 10.1016/j.ygcen.2011.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 01/10/2023]
Abstract
In arthropods, molting events are mediated by the binding of the ecdysone hormone to a heterodimer of two nuclear receptors: the ecdysone receptor (EcR) and the retinoid X receptor (RXR), a homolog of ultraspiracle (USP). We have cloned partial sequences of several isoforms for EcR and RXR genes from the centipede Lithobius peregrinus, and studied their expression profile during the second post-embryonic stage. LpEcR and LpRXR inferred amino acid sequences are very similar to other arthropod orthologs, especially to those of chelicerates and hemimetabolous insects, and their expression levels are significantly higher during the 48 h that precede the molt. Results obtained in this study represent the first data on the genetic basis of the ecdysone signal pathway for a myriapod, and in particular for an animal that, through a stereotyped developmental schedule paced by the molt cycle, completes trunk segmentation during post-embryonic life.
Collapse
Affiliation(s)
- Francesca Bortolin
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padova, Italy.
| | | | | | | |
Collapse
|
23
|
Hult EF, Tobe SS, Chang BSW. Molecular evolution of ultraspiracle protein (USP/RXR) in insects. PLoS One 2011; 6:e23416. [PMID: 21901121 PMCID: PMC3162005 DOI: 10.1371/journal.pone.0023416] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/16/2011] [Indexed: 12/20/2022] Open
Abstract
Ultraspiracle protein/retinoid X receptor (USP/RXR) is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR). In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidoptera and Diptera, USP/RXR is thought to have experienced several important shifts in function. These include the acquisition of novel ligand-binding properties and an expanded dimerization interface with EcR. In light of these recent hypotheses, we implemented codon-based likelihood methods to investigate if the proposed shifts in function are reflected in changes in site-specific evolutionary rates across functional and structural motifs in insect USP/RXR sequences, and if there is any evidence for positive selection at functionally important sites. Our results reveal evidence of positive selection acting on sites within the loop connecting helices H1 and H3, the ligand-binding pocket, and the dimer interface in the holometabolous lineage leading to the Lepidoptera/Diptera/Trichoptera. Similar analyses conducted using EcR sequences did not indicate positive selection. However, analyses allowing for variation across sites demonstrated elevated non-synonymous/synonymous rate ratios (d(N)/d(S)), suggesting relaxed constraint, within the dimerization interface of both USP/RXR and EcR as well as within the coactivator binding groove and helix H12 of USP/RXR. Since the above methods are based on the assumption that d(S) is constant among sites, we also used more recent models which relax this assumption and obtained results consistent with traditional random-sites models. Overall our findings support the evolution of novel function in USP/RXR of more derived holometabolous insects, and are consistent with shifts in structure and function which may have increased USP/RXR reliance on EcR for cofactor recruitment. Moreover, these findings raise important questions regarding hypotheses which suggest the independent activation of USP/RXR by its own ligand.
Collapse
Affiliation(s)
- Ekaterina F. Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Belinda S. W. Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Verhaegen Y, Parmentier K, Swevers L, Rougé P, Soin T, De Coen W, Cooreman K, Smagghe G. The brown shrimp (Crangon crangon L.) ecdysteroid receptor complex: cloning, structural modeling of the ligand-binding domain and functional expression in an EcR-deficient Drosophila cell line. Gen Comp Endocrinol 2010; 168:415-23. [PMID: 20515691 DOI: 10.1016/j.ygcen.2010.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/23/2010] [Accepted: 05/24/2010] [Indexed: 01/10/2023]
Abstract
cDNAs encoding ecdysteroid receptor (EcR) and retinoid X receptor (RXR) were cloned and sequenced from brown shrimp Crangon crangon (Crustacea: Decapoda), a common faunal species and commercially important in the North-West European coastal waters. A 3D model of the ligand-binding domain (LBD) of EcR was created and docking of ponasterone A (PonA) was simulated in silico. Finally, we report the transfection of expression plasmids for these receptors in the mutant Drosophila L57-3-11 cell line. Through an ecdysteroid responsive reporter assay we clearly prove the functionality of shrimp ecdysteroid receptor in the transfected L57-3-11 cell line. Our results indicate that the Drosophila L57-3-11 cell line and in silico LBD modeling can be used to study the function of crustacean ecdysteroid receptors and be applied to assess endocrine disrupting effects on non-target crustacean species.
Collapse
Affiliation(s)
- Yves Verhaegen
- Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The molting process in arthropods is regulated by steroid hormones acting via nuclear receptor proteins. The most common molting hormone is the ecdysteroid, 20-hydroxyecdysone. The receptors of 20-hydroxyecdysone have also been identified in many arthropod species, and the amino acid sequences determined. The functional molting hormone receptors consist of two members of the nuclear receptor superfamily, namely the ecdysone receptor and the ultraspiracle, although the ecdysone receptor may be functional, in some instances, without the ultraspiracle. Generally, the ecdysone receptor/ultraspiracle heterodimer binds to a number of ecdysone response elements, sequence motifs that reside in the promoter of various ecdysteroid-responsive genes. In the ensuing transcriptional induction, the ecdysone receptor/ultraspiracle complex binds to 20-hydroxyecdysone or to a cognate ligand that, in turn, leads to the release of a corepressor and the recruitment of coactivators. 3D structures of the ligand-binding domains of the ecdysone receptor and the ultraspiracle have been solved for a few insect species. Ecdysone agonists bind to ecdysone receptors specifically, and ligand-ecdysone receptor binding is enhanced in the presence of the ultraspiracle in insects. The basic mode of ecdysteroid receptor action is highly conserved, but substantial functional differences exist among the receptors of individual species. Even though the transcriptional effects are apparently similar for ecdysteroids and nonsteroidal compounds such as diacylhydrazines, the binding shapes are different between them. The compounds having the strongest binding affinity to receptors ordinarily have strong molting hormone activity. The ability of the ecdysone receptor/ultraspiracle complex to manifest the effects of small lipophilic agonists has led to their use as gene switches for medical and agricultural applications.
Collapse
Affiliation(s)
- Yoshiaki Nakagawa
- Division of Applied Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
26
|
Iwema T, Chaumot A, Studer RA, Robinson-Rechavi M, Billas IML, Moras D, Laudet V, Bonneton F. Structural and evolutionary innovation of the heterodimerization interface between USP and the ecdysone receptor ECR in insects. Mol Biol Evol 2009; 26:753-68. [PMID: 19126866 DOI: 10.1093/molbev/msn302] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Understanding how the variability of protein structure arises during evolution and leads to new structure-function relationships ultimately promoting evolutionary novelties is a major goal of molecular evolution and is critical for interpreting genome sequences. We addressed this issue using the ecdysone receptor (ECR), a major developmental factor that controls development and reproduction of arthropods. The functional ECR is a heterodimer of two nuclear receptors: ECR, which binds ecdysteroids, and its obligatory partner ultraspirade (USP), which is orthologous to the retinoid X receptor of vertebrates. Both genes underwent a dramatic increase of evolutionary rate in Mecopterida, the major insect terminal group containing Dipteras and Lepidopteras. We therefore questioned the implication of this event in terms of coevolution of their dimerization interface. A structural comparison revealed a 30% larger ligand-binding domain (LBD) heterodimerization surface in the Lepidoptera Heliothis when compared with basal insects, associated with a symmetrization of the interface, which is exceptional for nuclear receptors. Reconstruction of ancestral sequences and homology modeling of the ancestral Mecopterida ECR-USP reveal that this enlarged dimerization surface is a synapomorphy for Mecopterida. Furthermore, we show that the residues implicated in the new dimerization surface underwent specific evolutionary constraints in Mecopterida indicative of their new and conserved role in the dimerization interface. Most of all, the novel surface originates from a 15 degrees torsion of a subdomain of USP LBD toward its partner ECR, which is a long-range consequence of the peculiar position of a Mecopterida-specific insertion in loop L1-3, located outside of the interaction surface, in a less crucial domain of the partner protein. These results indicate that the coevolution between ECR and USP occurred through a novel mechanism of intramolecular epistasis that will undoubtedly be generalized for other molecules because it uses flexibility of a less-constrained region of a protein to modify the structure of another, critical part of the molecule.
Collapse
Affiliation(s)
- Thomas Iwema
- Département de Biologie et de Génomique Structurales, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Locust retinoid X receptors: 9-Cis-retinoic acid in embryos from a primitive insect. Proc Natl Acad Sci U S A 2008; 105:9540-5. [PMID: 18606996 DOI: 10.1073/pnas.0712132105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The retinoid X receptor (RXR) is activated by its often elusive cognate ligand, 9-cis-retinoic acid (9-cis-RA). In flies and moths, molting is mediated by a heterodimer ecdysone receptor consisting of the ecdysone monomer (EcR) and an RXR homolog, ultraspiracle (USP); the latter is believed to have diverged from its RXR origin. In the more primitive insect, Locusta migratoria (Lm), RXR is more similar to human RXRs than to USPs. LmRXR was detected in early embryos when EcR transcripts were absent, suggesting another role apart from ecdysone signaling. Recombinant LmRXRs bound 9-cis-RA and all-trans-RA with high affinity (IC(50) = 61.2-107.7 nM; K(d) = 3 nM), similar to human RXR. To determine whether specific binding had functional significance, the presence of endogenous retinoids was assessed. Embryos were extracted by using modified Bligh and Dyer and solid-phase protocols to avoid the oily precipitate that makes this material unsuitable for assay. These extracts contained retinoids (5.4 nM) as assessed by RA-inducible Cyp26A1-promoter luciferase reporter cell lines. Furthermore, the use of HPLC and MS confirmed the presence of retinoids and identified in any embryo, 9-cis-RA, in addition to all-trans-RA. We estimate that whole embryos contain 3 nM RA, including 9-cis-RA at a concentration of 1.6 nM. These findings strongly argue for a functional role for retinoids in primitive insects and favor a model where signaling through the binding of 9-cis-RA to its RXR is established relatively early in evolution and embryonic development.
Collapse
|
28
|
Horigane M, Ogihara K, Nakajima Y, Taylor D. Isolation and expression of the retinoid X receptor from last instar nymphs and adult females of the soft tick Ornithodoros moubata (Acari: Argasidae). Gen Comp Endocrinol 2008; 156:298-311. [PMID: 18342313 DOI: 10.1016/j.ygcen.2008.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/20/2007] [Accepted: 01/29/2008] [Indexed: 11/30/2022]
Abstract
Retinoid X receptors (RXR) exist broadly from invertebrates to vertebrates, and play essential roles in physiological processes of these organisms. In arthropods, RXRs form a complex with the ecdysteroid receptor (EcR) and ecdysteroids to mediate the regulation of ecdysis and reproduction. Compared to EcR, RXR and its homologue ultraspiracle (USP) are much less well understood. Therefore, we identified RXR of the soft tick Ornithodoros moubata (OmRXR) and used real-time PCR to examine the expression of OmRXR. This is the first report of RXR from a soft tick. OmRXR showed higher homology to hard tick, crustacean and vertebrate RXRs than insect RXRs and USPs. OmRXR expression was observed during molting in the last instar nymphs coinciding with EcR expression and increases in ecdysteroid titers. Tick vitellogenesis normally occurs soon after engorgement and OmRXR expression coinciding with EcR expression and ecdysteroid titers in engorged females occurred before vitellogenin (Vg) synthesis and egg maturation. The ecdysteroid/EcR/RXR complex appears to be important in the regulation of molting and vitellogenesis of soft ticks.
Collapse
Affiliation(s)
- Mari Horigane
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
29
|
Nakagawa Y, Sakai A, Magata F, Ogura T, Miyashita M, Miyagawa H. Molecular cloning of the ecdysone receptor and the retinoid X receptor from the scorpion Liocheles australasiae. FEBS J 2008; 274:6191-203. [PMID: 18028192 DOI: 10.1111/j.1742-4658.2007.06139.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
cDNAs of the ecdysone receptor and the retinoid X receptor were cloned from the Japanese scorpion Liocheles australasiae, and the amino acid sequences were deduced. The full-length cDNA sequences of the L. australasiae ecdysone receptor and the L. australasiae retinoid X receptor were 2881 and 1977 bp in length, respectively, and the open reading frames encoded proteins of 560 and 414 amino acids. The amino acid sequence of the L. australasiae ecdysone receptor was similar to that of the ecdysone receptor-A of the soft tick, Ornithodoros moubata (68%) and to that of the ecdysone receptor-A1 of the lone star tick, Amblyomma americanum (66%), but showed lower similarity to the ecdysone receptors of Orthoptera and Coleoptera (53-57%). The primary sequence of the ligand-binding region of the L. australasiae ecdysone receptor was highly homologous to that of ticks (85-86%). The amino acid sequence of the L. australasiae retinoid X receptor was also homologous to the amino acid sequence of ultraspiracles of ticks (63%) and insects belonging to the orders Orthoptera and Coleoptera (60-64%). The identity of both the L. australasiae ecdysone receptor and the L. australasiae retinoid X receptor to their lepidopteran and dipteran orthologs was less than 50%. The cDNAs of both the L. australasiae ecdysone receptor (L. australasiae ecdysone receptor-A) and the L. australasiae retinoid X receptor were successfully translated in vitro using a rabbit reticulocyte lysate system. An ecdysone analog, ponasterone A, bound to L. australasiae ecdysone receptor-A (K(D) = 4.2 nM), but not to L. australasiae retinoid X receptor. The L. australasiae retinoid X receptor did not enhance the binding of ponasterone A to L. australasiae ecdysone receptor-A, although L. australasiae retinoid X receptor was necessary for the binding of L. australasiae ecdysone receptor-A to ecdysone response elements.
Collapse
Affiliation(s)
- Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Iwema T, Billas IML, Beck Y, Bonneton F, Nierengarten H, Chaumot A, Richards G, Laudet V, Moras D. Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. EMBO J 2007; 26:3770-82. [PMID: 17673910 PMCID: PMC1952225 DOI: 10.1038/sj.emboj.7601810] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 07/02/2007] [Indexed: 11/08/2022] Open
Abstract
Retinoid X receptor (RXR) and Ultraspiracle (USP) play a central role as ubiquitous heterodimerization partners of many nuclear receptors. While it has long been accepted that a wide range of ligands can activate vertebrate/mollusc RXRs, the existence and necessity of specific endogenous ligands activating RXR-USP in vivo is still matter of intense debate. Here we report the existence of a novel type of RXR-USP with a ligand-independent functional conformation. Our studies involved Tribolium USP (TcUSP) as representative of most arthropod RXR-USPs, with high sequence homology to vertebrate/mollusc RXRs. The crystal structure of the ligand-binding domain of TcUSP was solved in the context of the functional heterodimer with the ecdysone receptor (EcR). While EcR exhibits a canonical ligand-bound conformation, USP adopts an original apo structure. Our functional data demonstrate that TcUSP is a constitutively silent partner of EcR, and that none of the RXR ligands can bind and activate TcUSP. These findings together with a phylogenetic analysis suggest that RXR-USPs have undergone remarkable functional shifts during evolution and give insight into receptor-ligand binding evolution and dynamics.
Collapse
Affiliation(s)
- Thomas Iwema
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - Isabelle ML Billas
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - Yannick Beck
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - François Bonneton
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, IGFL, CNRS UMR5242, INRA UMR1237, IFR128, Lyon, France
| | - Hélène Nierengarten
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| | - Arnaud Chaumot
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, IGFL, CNRS UMR5242, INRA UMR1237, IFR128, Lyon, France
- CEMAGREF, Laboratoire d'Ecotoxicologie, Lyon Cedex, France
| | - Geoff Richards
- HFSP (Human Frontier Science Program), Strasbourg, France
| | - Vincent Laudet
- Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, IGFL, CNRS UMR5242, INRA UMR1237, IFR128, Lyon, France
| | - Dino Moras
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), (UMR7104 CNRS, U596 INSERM, ULP), Département de Biologie et de Génomique Structurales, Illkirch, France
| |
Collapse
|
31
|
Qu H, Cui L, Rickers-Haunerland J, Haunerland NH. Fatty acid-dependent expression of the muscle FABP gene - comparative analysis of gene control in functionally related, but evolutionary distant animal systems. Mol Cell Biochem 2007; 299:45-53. [PMID: 17001452 DOI: 10.1007/s11010-005-9036-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The heart is the most fatty acid-dependent muscle in mammals, but flight muscles of birds and insects encounter even higher rates of fatty acid oxidation. The amount of the muscle fatty acid binding protein (H-FABP) found in these muscle reflects their metabolic activities, and increased fatty acid metabolism in endurance exercise increases FABP expression further. We have studied the mechanism of fatty acid-dependent expression of the H-FABP gene, taking advantage of the comparative analysis of gene control in functionally related, but evolutionary distant animal systems, i.e., rat heart and locust flight muscle. Luciferase reporter genes with a full-length promoter ( approximately 1 kb) from either the locust or the rat were strongly expressed in L6 myoblasts, and the expression of both constructs was markedly increased by fatty acid treatment. Because of its stronger induction by fatty acids and the absence of other vertebrate transcription factor binding sites, the locust promoter was advantageous for the identification of a fatty acid response element (FARE), an inverted repeat of a hexanucleotide half site reminiscent of steroid hormone receptor binding sites (IR-3). All mammalian H-FABP promoters contain similar sequences, however in reverse orientation (everted repeats, ER-3). Deletion of the FARE eliminated the fatty acid inducibility completely for the locust promoter, but only partly for its mammalian analogue, perhaps because of additional factors or more complex interactions. In gel shift studies, the element binds nuclear proteins from both rat cells and locust flight muscle, further attesting to the far-reaching conservation of this mechanism. Two individual proteins bind to the element, with full binding requiring the presence of free fatty acid. Antibodies to PPARs failed to induce a supershift of the protein-DNA complex, indicating that other transcription factors are responsible for the fatty acid-mediated induction of gene expression of H-FABP.
Collapse
Affiliation(s)
- H Qu
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
32
|
Jones G, Jones D, Teal P, Sapa A, Wozniak M. The retinoid-X receptor ortholog, ultraspiracle, binds with nanomolar affinity to an endogenous morphogenetic ligand. FEBS J 2007; 273:4983-96. [PMID: 17064257 DOI: 10.1111/j.1742-4658.2006.05498.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The in vivo ligand-binding function and ligand-binding activity of the Drosophila melanogaster retinoid-X receptor (RXR) ortholog, ultraspiracle, toward natural farnesoid products of the ring gland were assessed. Using an equilibrium fluorescence-binding assay, farnesoid products in the juvenile hormone (JH) biosynthesis pathway, and their epoxy derivatives, were measured for their affinity constant for ultraspiracle (USP). Farnesol, farnesal, farnesoic acid and juvenile hormone III exhibited high nanomolar to low micromolar affinity, which in each case decreased upon addition of an epoxide across a double bond of the basic farnesyl structure. Similar analysis of the substitution on C1 of methyl ether, alcohol, aldehyde, and carboxylic acid showed that each conferred weaker affinity than that provided by the methyl ester. Attention was thus focused for a ring-gland farnesoid product that possesses the features of methyl ester and lack of an epoxide. A secreted product of the ring gland, methyl farnesoate, was identified possessing these features and exhibited an affinity for ultraspiracle (K(d) = 40 nm) of similar strength to that of RXR for 9-cis retinoic acid. Mutational analysis of amino acid residues with side chains extending into the ligand-binding pocket cavity (and not interacting with secondary receptor structures or extending to the receptor surface to interact with coactivators, corepressors or receptor dimer partners) showed that the mutation C472A/H475L strongly reduced USP binding to this ring gland product and to JH III, with less effect on other ring-gland farnesoids and little effect on binding by (the unnatural to Drosophila) JH I. Along with the ecdysone receptor, USP is now the second arthropod nuclear hormone receptor for which a secreted product of an endocrine gland that binds the receptor with nanomolar affinity has been identified.
Collapse
Affiliation(s)
- Grace Jones
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | |
Collapse
|
33
|
Martín D, Maestro O, Cruz J, Mané-Padrós D, Bellés X. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:410-6. [PMID: 16427073 DOI: 10.1016/j.jinsphys.2005.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 11/28/2005] [Accepted: 12/05/2005] [Indexed: 05/06/2023]
Abstract
Ecdysteroids play a major role during developmental growth in insects. The more active form of these hormones, 20-hydroxyecdysone (20E), acts upon binding to its heterodimeric receptor, formed by the two nuclear receptors, EcR and RXR/USP. Functional characterization of USP has been exclusively conducted on the holometabolous insect Drosophila melanogaster. However, it has been impossible to extend such analysis to primitive-hemimetabolous insects since species of this group are not amenable to genetic analysis. The development of methodologies based on gene silencing using RNA interference (RNAi) after treatment with double-stranded RNA (dsRNA) in vivo has resolved such limitations. In this paper, we show that injection of dsRNA into the haemocoel of nymphs and adults of the cockroach Blattella germanica can be used to silence gene function in vivo. In our initial attempt to test RNAi techniques, we halted the expression of the adult-specific vitellogenin gene. We then used the same technique to silence the expression of the B. germanica RXR/USP (BgRXR) gene in vivo during the last nymphal instar. BgRXR knockdown nymphs progressed through the instar correctly but they arrested development at the end of the stage and were unable to molt into adults. The results described herein suggest that RXR/USP function, in relation to molting, is conserved across the insect Class.
Collapse
Affiliation(s)
- David Martín
- Departament de Fisiologia i Biodiversitat Molecular, Institut de Biologia Molecular de Barcelona (CID, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
34
|
Kim HW, Lee SG, Mykles DL. Ecdysteroid-responsive genes, RXR and E75, in the tropical land crab, Gecarcinus lateralis: differential tissue expression of multiple RXR isoforms generated at three alternative splicing sites in the hinge and ligand-binding domains. Mol Cell Endocrinol 2005; 242:80-95. [PMID: 16150535 DOI: 10.1016/j.mce.2005.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 07/26/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
In order to study the potential role of the steroid molting hormone (20-hydroxyecdysone) in regulating molt-induced claw muscle atrophy, full-length cDNAs encoding retinoid-X receptor (Gl-RXR) and E75 early ecdysone inducible gene (Gl-E75) were obtained from land crab (Gecarcinus lateralis) skeletal muscle mRNA using RT-PCR and 3' and 5' RACE. Gl-E75A (3528bp), which encoded a protein of 828 amino acids, had highest sequence identity to Me-E75A from a shrimp (Metapenaeus ensis). It was expressed in skeletal muscle and gonads. The deduced amino acid sequence of Gl-RXR was highly similar to that of the fiddler crab RXR (Up-RXR) and insect ultraspiracle (USP). Nine variant sequences occurred in Gl-RXR mRNAs at three alternative splicing sites, one in the "T box" in the linker D domain and two in the ligand-binding domain (LBD). The three T-box variants, termed T(+8), T(+7), and T(+12), contained insertions of 8, 7, or 12 amino acids, respectively. Four variants were generated at the first site in the LBD. Two of the LBD site 1 variants differed in the presence (+33) or absence (-33) of a 33-amino acid sequence; the other two were LBD truncations with or without the 33 amino acid sequence (+33DeltaE/F and -33DeltaE/F, respectively). Two variants differing in the presence (+35) or absence (-35) of a 35-amino acid sequence were generated at the second site in the LBD. The Gl-RXRa isoform (1516 bp) with the longest open reading frame (+12/+33/+35) encoded a protein of 436 amino acids. Thoracic muscle expressed only isoforms with the T(+12) sequence. In contrast, claw muscle expressed isoforms with T(+7) or T(+12) and fewer isoforms with T(+8). Ovary and testis expressed a greater number of RXR isoforms than skeletal muscle. All tissues expressed full-length and truncated RXR isoforms. These data suggest that differences in response of claw and thoracic muscles to elevated ecdysteroid are due in part to differences in the expression of RXR isoforms.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
35
|
Greb-Markiewicz B, Fauth T, Spindler-Barth M. Ligand binding is without effect on complex formation of the ligand binding domain of the ecdysone receptor (EcR). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 59:1-11. [PMID: 15822096 DOI: 10.1002/arch.20054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ligand-binding domain (LBD) encompassing the C-terminal parts of the D- and the complete E-domains of the ecdysteroid receptor (EcR) fused to Gal4(AD) is present in two high molecular weight complexes (600 and 150 kDa) in yeast extracts according to size exclusion chromatography (Superdex 200 HR 10/30). Hormone binding is mainly associated with 150-kDa complexes. Complex formation is not influenced by hormone, but the ligand stabilizes the complexes at elevated salt concentrations. Mutational analysis of Gal4(AD)-EcR(LBD) revealed that formation of 600-kDa, but not 150-kDa, complexes depends on dimerization mediated by the EcR(LBD). Deletion of helix 12 is without effect. Mutation of K497 in helix 4, known to be essential for comodulator binding, abolishes 600-KDa complexes, but does not interfere with the formation of 150-kDa complexes. In contrast, the DE-domains of USP fused to Gal4(DBD) elute as monomer after elimination of the dimerization capacity of the ligand-binding domains by mutation of P463 in helix 10. The data presented here reveal that the complex formation of ligand-binding domains EcR and USP ligand is different.
Collapse
Affiliation(s)
- B Greb-Markiewicz
- Department of General Zoology and Endocrinology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | |
Collapse
|
36
|
Vafopoulou X, Steel CGH, Terry KL. Edysteroid receptor (EcR) shows marked differences in temporal patterns between tissues during larval-adult development in Rhodnius prolixus: correlations with haemolymph ecdysteroid titres. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:27-38. [PMID: 15686643 DOI: 10.1016/j.jinsphys.2004.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 11/01/2004] [Indexed: 05/24/2023]
Abstract
The presence of ecdysteroid receptor (EcR) in various tissues was studied throughout larval-adult development of the blood-sucking bug, Rhodnius prolixus, using an antibody to EcR that recognizes all isoforms. On Western blots, the antibody recognizes three peptides of approximate molecular masses of 70, 68 and 64 kDa, from epidermis and fat body of developing larvae, which contain high levels of haemolymph ecdysteroids. These peptides are absent from both unfed larvae and adults, which are devoid of ecdysteroids. In vitro treatment of epidermis and fat body from unfed larvae with 20E induces the appearance of all three EcR immunoreactive peptides. The stage-specific appearance and 20E inducibility of the peptides implies that they represent the native EcR(s) of Rhodnius. Confocal fluorescence analysis using this antibody revealed a great diversity of temporal profiles of EcR in various tissues during development. Developmental profiles of EcR were examined in abdominal epidermis, fat body, spermatocytes, brain (including the medial neurosecretory cells), prothoracic glands (PGs), rectal epithelium and Malpighian tubules. EcR fluorescence was confined to the nuclei in close association with chromatin. EcR was absent from tissues of unfed larvae or adults, supporting the results from Western blots. Different tissues develop EcR at different developmental times and in the presence of radically different concentrations of haemolymph ecdysteroids, retain EcR for different lengths of time and lose EcR at different concentrations of ecdysteroids. These results suggest that each tissue possesses a distinctive response mechanism to ecdysteroids. An exception to this, are the PGs, which exhibited no EcR fluorescence at any time during development.
Collapse
Affiliation(s)
- Xanthe Vafopoulou
- Biology Department, York University, 4700 Keele St., Toronto, Ontario, Canada, M3J 1P3.
| | | | | |
Collapse
|
37
|
Abstract
Nonsteroidal ecdysone agonists are novel compounds that have become attractive candidates not only as pest control agents in agriculture but also as tools for research. Their narrow spectrum of activity makes them relatively safe as pesticides, and their mode of action as ligands for gene expression has found application in gene therapy and inducing transgenic gene expression in plants. These diacylhydrazines (DAHs) are potent nonsteroidal ecdysone agonists, and four of them, tebufenozide, methoxyfenozide, chromafenozide, and halofenozide, have been developed as insecticides. Although these compounds are very toxic to insects, they are safe for mammals and are environmentally benign. Their action on insects is also selective, the first three are effective against Lepidoptera but weakly active or inactive on Diptera and Coleoptera. On the other hand, halofenozide is effective on Coleoptera but mildly active on Lepidoptera. Previous reviews on ecdysone agonists have concentrated on the biological response of some DAHs and their effects on pests. In this review, the chemistry, biological effects and their modes of action at the molecular level will be covered. In addition, a few studies on other nonsteroidal ecdysone agonists, such as 3,5-di-tert-butyl-4-hydroxy-N-iso-butylbenzamide, acylaminoketones, and benzoyl-1,2,3,4-tetrahydroquinolines, will be briefly reviewed.
Collapse
Affiliation(s)
- Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
38
|
Barchuk AR, Maleszka R, Simões ZLP. Apis mellifera ultraspiracle: cDNA sequence and rapid up-regulation by juvenile hormone. INSECT MOLECULAR BIOLOGY 2004; 13:459-467. [PMID: 15373804 DOI: 10.1111/j.0962-1075.2004.00506.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development including the differentiation of the alternative caste phenotypes of social insects. In addition, JH plays a different role in adult honey bees, acting as a 'behavioural pacemaker'. The functional receptor for 20E is a heterodimer consisting of the ecdysone receptor and ultraspiracle (USP) whereas the identity of the JH receptor remains unknown. We have cloned and sequenced a cDNA encoding Apis mellifera ultraspiracle (AMUSP) and examined its responses to JH. A rapid, but transient up-regulation of the AMUSP messenger is observed in the fat bodies of both queens and workers. AMusp appears to be a single copy gene that produces two transcripts ( approximately 4 and approximately 5 kb) that are differentially expressed in the animal's body. The predicted AMUSP protein shows greater sequence similarity to its orthologues from the vertebrate-crab-tick-locust group than to the dipteran-lepidopteran group. These characteristics and the rapid up-regulation by JH suggest that some of the USP functions in the honey bee may depend on ligand binding.
Collapse
Affiliation(s)
- A R Barchuk
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil.
| | | | | |
Collapse
|