1
|
Gómez-Alonso I, Baltierra-Uribe S, Sánchez-Torres L, Cancino-Diaz M, Cancino-Diaz J, Rodriguez-Martinez S, Ovruski SM, Hendrichs J, Cancino J. Irradiation and parasitism affect the ability of larval hemocytes of Anastrepha obliqua for phagocytosis and the production of reactive oxygen species. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21953. [PMID: 35927971 DOI: 10.1002/arch.21953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The development of the parasitoid Doryctobracon crawfordi (Viereck) (Hymenoptera: Braconidae) in Anastrepha obliqua (McQuart) (Diptera: Tephritidae) larvae is unviable in nature; however, if the host larva is irradiated at 160 Gy, the parasitoid develops and emerges successfully. This suggests that radiation affects the immune responses of A. obliqua larvae, while the underlying mechanisms remain to be revealed. Using optical and electronic microscopies we determined the number and type of hemocyte populations found inside the A. obliqua larvae, either nonirradiated, irradiated at 160 Gy, parasitized by D. crawfordi, or irradiated and parasitized. Based on flow cytometry, the capacity to produce reactive oxygen species (ROS) was determined by the 123-dihydrorhodamine method in those hemocyte cells. Five cell populations were found in the hemolymph of A. obliqua larvae, two of which (granulocytes and plasmatocytes) can phagocytize and produce ROS. A reduction in the number of cells, mainly of the phagocytic type, was observed, as well as the capacity of these cells to produce ROS, when A. obliqua larvae were irradiated. Both radiation and parasitization decreased the ROS production, and when A. obliqua larvae were irradiated followed by parasitization by D. crawfordi, the reduction of the ROS level was even greater. In contrast, a slight increase in the size of these cells was observed in the hemolymph of the parasitized larvae compared to those in nonparasitized larvae. These results suggest that radiation significantly affects the phagocytic cells of A. obliqua and thus permits the development of the parasitoid D. crawfordi.
Collapse
Affiliation(s)
- Itzia Gómez-Alonso
- Posgrado en Ciencias Químico-Biológicas, Instituto Politécnico Nacional, Prolongación del Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Shantal Baltierra-Uribe
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Luvia Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Mario Cancino-Diaz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Juan Cancino-Diaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Sandra Rodriguez-Martinez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Calle Plan de Ayala s/n, Santo Tomás, Miguel Hidalgo, Mexico City, México
| | - Sergio M Ovruski
- LIEMEN, División Control Biológico de Plagas, PROIMI Biotecnología, CONICET, Ave. Belgrano y Pje. Caseros, San Miguel de Tucumán, Argentina
| | - Jorge Hendrichs
- Division of Nuclear Insect Pest Control Section, Joint FAO/IAEA Techniques in Food and Agriculture, IAEA Wagramerstrasse 5, Vienna, Austria
| | - Jorge Cancino
- Departamento de Control Biológico, Programa Moscafrut SADER-IICA, Camino a Cacahoatales S. N., Metapa de Domínguez, Chiapas, México
| |
Collapse
|
2
|
Bruno D, Montali A, Gariboldi M, Wrońska AK, Kaczmarek A, Mohamed A, Tian L, Casartelli M, Tettamanti G. Morphofunctional characterization of hemocytes in black soldier fly larvae. INSECT SCIENCE 2022. [PMID: 36065570 DOI: 10.1111/1744-7917.13111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In insects, the cell-mediated immune response involves an active role of hemocytes in phagocytosis, nodulation, and encapsulation. Although these processes have been well documented in multiple species belonging to different insect orders, information concerning the immune response, particularly the hemocyte types and their specific function in the black soldier fly Hermetia illucens, is still limited. This is a serious gap in knowledge given the high economic relevance of H. illucens larvae in waste management strategies and considering that the saprophagous feeding habits of this dipteran species have likely shaped its immune system to efficiently respond to infections. The present study represents the first detailed characterization of black soldier fly hemocytes and provides new insights into the cell-mediated immune response of this insect. In particular, in addition to prohemocytes, we identified five hemocyte types that mount the immune response in the larva, and analyzed their behavior, role, and morphofunctional changes in response to bacterial infection and injection of chromatographic beads. Our results demonstrate that the circulating phagocytes in black soldier fly larvae are plasmatocytes. These cells also take part in nodulation and encapsulation with granulocytes and lamellocyte-like cells, developing a starting core for nodule/capsule formation to remove/encapsulate large bacterial aggregates/pathogens from the hemolymph, respectively. These processes are supported by the release of melanin precursors from crystal cells and likely by mobilizing nutrient reserves in newly circulating adipohemocytes, which could thus trophically support other hemocytes during the immune response. Finally, the regulation of the cell-mediated immune response by eicosanoids was investigated.
Collapse
Affiliation(s)
- Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marzia Gariboldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Anna Katarzyna Wrońska
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Morena Casartelli
- Department of Biosciences, University of Milano, Milano, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| |
Collapse
|
3
|
Kaur M, Chadha P, Kaur S, Kaur A. Aspergillus flavus induced oxidative stress and immunosuppressive activity in Spodoptera litura as well as safety for mammals. BMC Microbiol 2021; 21:180. [PMID: 34126929 PMCID: PMC8204525 DOI: 10.1186/s12866-021-02249-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In the last few decades, considerable attention has been paid to entomopathogenic fungi as biocontrol agents, however little is known about their mode of action and safety. This study aimed to investigate the toxicity of Aspergillus flavus in insect Spodoptera litura by analyzing the effect of fungal extract on antioxidant and cellular immune defense. In antioxidant defense, the lipid peroxidation (Malondialdehyde content) and antioxidant enzymes activities (Catalase, Ascorbate peroxidase, Superoxide dismutase) were examined. In cellular immune defense, effect of A. flavus extract was analyzed on haemocytes using Scanning Electron Microscopy (SEM). Furthermore, mammalian toxicity was analyzed with respect to DNA damage induced in treated rat relative to control by comet assay using different tissues of rat (blood, liver, and kidney). RESULTS Ethyl acetate extract of A. flavus was administrated to the larvae of S.litura using artificial diet method having concentration 1340.84 μg/ml (LC50 of fungus). The effect was observed using haemolymph of insect larvae for different time intervals (24, 48, 72 and 96). In particular, Malondialdehyde content and antioxidant enzymes activities were found to be significantly (p ≤ 0.05) increased in treated larvae as compared to control. A. flavus ethyl acetate extract also exhibit negative impact on haemocytes having major role in cellular immune defense. Various deformities were observed in different haemocytes like cytoplasmic leakage and surface abnormalities etc. Genotoxicity on rat was assessed using different tissues of rat (blood, liver, and kidney) by comet assay. Non-significant effect of A. flavus extract was found in all the tissues (blood, liver, and kidney). CONCLUSIONS Overall the study provides important information regarding the oxidative stress causing potential and immunosuppressant nature of A. flavus against S. litura and its non toxicity to mammals (rat), mammals (rat), suggesting it an environment friendly pest management agent.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab India
| | - Amarjeet Kaur
- Departments of Microbiology, Guru Nanak Dev University, Amritsar, Punjab India
| |
Collapse
|
4
|
Prabhuling SH, Makwana P, Pradeep ANR, Vijayan K, Mishra RK. Release of Mediator Enzyme β-Hexosaminidase and Modulated Gene Expression Accompany Hemocyte Degranulation in Response to Parasitism in the Silkworm Bombyx mori. Biochem Genet 2021; 59:997-1017. [PMID: 33616803 DOI: 10.1007/s10528-021-10046-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/02/2021] [Indexed: 01/03/2023]
Abstract
In insects infections trigger hemocyte-mediated immune reactions including degranulation by exocytosis; however, involvement of mediator enzymes in degranulation process is unknown in insects. We report here that in silkworm Bombyx mori, infection by endoparasitoid Exorista bombycis and microsporidian Nosema bombycis activated granulation in granulocytes and promoted degranulation of accumulated structured granules. During degranulation the mediator lysosomal enzyme β-hexosaminidase showed increased activity and expression of β-hexosaminidase gene was enhanced. The events were confirmed in vitro after incubation of uninfected hemocytes with E. bombycis larval tissue protein. On infection, cytotoxicity marker enzyme lactate dehydrogenase (LDH) was released from the hemocytes illustrating cell toxicity. Strong positive correlation (R2 = 0.71) between LDH activity and β-hexosaminidase released after the infection showed parasitic-protein-induced hemocyte damage and accompanied release of the enzymes. Expression of β-hexosaminidase gene was enhanced in early stages after infection followed by down regulation. The expression showed positive correlation (R2 = 0.705) with hexosaminidase activity pattern. B. mori hexosaminidase showed 98% amino acid similarity with that of B. mandarina showing origin from same ancestral gene; however, 45-60% varied from other lepidopterans showing diversity. The observation signifies the less known association of hexosaminidase in degranulation of hemocytes induced by parasitic infection in B. mori and its divergence in different species.
Collapse
Affiliation(s)
- Shambhavi H Prabhuling
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India
| | - Pooja Makwana
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India.,Central Sericultural Research & Training Institute, Berhampore, West Bengal, India
| | - Appukuttan Nair R Pradeep
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India.
| | | | - Rakesh Kumar Mishra
- Seribiotech Research Laboratory, CSB-Kodathi Campus, Carmelaram. P.O, Bangalore, Karnataka, 560035, India
| |
Collapse
|
5
|
Kaur M, Chadha P, Kaur S, Kaur A, Kaur R. Schizophyllum commune induced oxidative stress and immunosuppressive activity in Spodoptera litura. BMC Microbiol 2020; 20:139. [PMID: 32471364 PMCID: PMC7260734 DOI: 10.1186/s12866-020-01831-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/25/2020] [Indexed: 01/24/2023] Open
Abstract
Background In the last few decades, considerable attention has been paid to fungal endophytes as biocontrol agents, however little is known about their mode of action. This study aimed to investigate the toxic effects of an endophytic fungus Schizophyllum commune by analyzing activities of antioxidant and detoxifying enzymes as well as morphology of haemocytes using Spodoptera litura as a model. Results Ethyl acetate extract of S. commune was fed to the larvae of S. litura using the artificial diet having 276.54 μg/ml (LC50 of fungus) concentration for different time durations. Exposed groups revealed significant (p ≤ 0.05) increase in the activities of various enzymes viz. Catalase, Ascorbate peroxidase, Superoxide dismutase, Glutathione-S-Transferase. Furthermore, haemocytes showed various deformities like breakage in the cell membrane, cytoplasmic leakage and appearance of strumae in the treated larvae. A drastic reduction in the percentage of normal haemocytes was recorded in the treated groups with respect to control. Conclusion The study provides important information regarding the oxidative stress causing and immunosuppressant potential of S. commune against S. litura and its considerable potential for incorporation in pest management programs.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amarjeet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajvir Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
6
|
Lim S, Yun HK, Kang KM, Lee BL, Won R, Lee IH. Interactions between Mycoplasma pulmonis and immune systems in the mealworm beetle, Tenebrio molitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103231. [PMID: 31479697 DOI: 10.1016/j.ibmb.2019.103231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Mycoplasmas, the smallest self-replicating organisms, are unique in that they lack cell walls but possess distinctive plasma membranes containing sterol acquired from their growth environment. Although mycoplasmas are known to be successful pathogens in a wide range of animal hosts, including humans, the molecular basis for their virulence and interaction with the host immune systems remains largely unknown. This study was conducted to elucidate the biochemical relationship between mycoplasma and the insect immune system. We investigated defense reactions of Tenebrio molitor that were activated in response to infection with Mycoplasma pulmonis. The results revealed that T. molitor larvae were more resistant to mycoplasma infection than normal bacteria equipped with cell walls. Intruding M. pulmonis cells were effectively killed by toxins generated from activation of the proPO cascade in hemolymph, but not by cellular reactions or antimicrobial peptides. It was determined that these different anti-mycoplasma effects of T. molitor immune components were primarily attributable to surface molecules of M. pulmonis such as phospholipids occurring in the outer leaflet of the membrane lipid bilayer. While phosphatidylcholine, a phospholipid derived from the growth environment, contributed to the resistance of M. pulmonis against antimicrobial peptides produced by T. molitor, phosphatidylglycerol was responsible for triggering activation of the proPO cascade.
Collapse
Affiliation(s)
- Sooa Lim
- Department of Food & Pharmaceutical Engineering, Hoseo University, Asan, Chungnam, 336-795, South Korea
| | - Hwa-Kyung Yun
- Department of Biofood & Medical Sciences, Hanseo University, 360 Daegok-ri, Haemi-myen, Seosan, Chungnam, 356-706, South Korea
| | - Ki Mo Kang
- Department of Biotechnology, Hoseo University, Asan, Chungnam, 336-795, South Korea
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Busan, 609-735, South Korea
| | - Ran Won
- Department of Biomedical Laboratory Science, Division of Health Sciences, Dongseo University, Busan, 47011, South Korea
| | - In Hee Lee
- Department of Biotechnology, Hoseo University, Asan, Chungnam, 336-795, South Korea.
| |
Collapse
|
7
|
Lv Z, Qiu L, Liu Z, Wang W, Chen H, Jia Y, Jia Z, Jiang S, Wang L, Song L. Molecular characterization of a cathepsin L1 highly expressed in phagocytes of pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:152-162. [PMID: 30144489 DOI: 10.1016/j.dci.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Cathepsin L1 (CTSL1) is a lysosomal cysteine protease with a papain-like structure. It is known to be implicated in multiple processes of immune response against pathogen infection based on the proteolytic activity. In the present study, a CTSL1 homologue (designated as CgCTSL1) was identified from Crassostrea gigas. It contained a typically single Pept_C1 domain with three conserved catalytically essential residues (Gln25, His135 and Asn178). The mRNA of CgCTSL1 was ubiquitously expressed in oyster tissues with the highest expression level in important immune tissues such as gill and hemocytes. CgCTSL1 proteins were mainly detected in gill and hepatopancreas by immunohistochemistry. Recombinant CgCTSL1 (rCgCTSL1) exhibited proteolytic activity to cleave the substrate Ac-FR-amino-4-trifluoromethyl coumarin (AFC) in a dose-dependent manner, and the inhibitor could reduce its proteolytic activity. After the interference of CgCTSL1 mRNA, the proteolytic activity of oyster hemocytes was significantly down-regulated with the released AFC fluorescence value decreasing from 375.84 to 179.21 (p < 0.05). Flow cytometry analysis revealed that the expression of CgCTSL1 protein was higher in phagocytes with the mean fluorescence intensity (MFI) value of 21,187 (4.13-fold, p < 0.01) compared to the MFI value of 5,130 in non-phagocytic hemocytes. The further confocal analysis demonstrated that the actively phagocytic hemocytes with green bead signals were co-localized with stronger CgCTSL1 positive signals. The mRNA expression levels of CgCTSL1 in phagocyte-like sub-populations of granulocytes and semi-granulocytes were 298.12-fold (p < 0.01) and 2.75-fold (p < 0.01) of that in agranulocytes, respectively. Western blotting analysis of the hemocyte proteins revealed that CgCTSL1 was relatively abundant in granulocytes and semi-granulocytes compared to that in agranulocytes. These results collectively suggested that CgCTSL1, a CTSL1 homologue highly expressed in phagocyte-like hemocytes, was possibly involved in cellular immune response dependent on its conserved proteolytic activity, which might provide clues for the divergence between phagocytes and non-phagocytic hemocytes as well as the identification of promising molecular markers for phagocytes in oyster C. gigas.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoqun Liu
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunke Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
8
|
Unbiased classification of mosquito blood cells by single-cell genomics and high-content imaging. Proc Natl Acad Sci U S A 2018; 115:E7568-E7577. [PMID: 30038005 PMCID: PMC6094101 DOI: 10.1073/pnas.1803062115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mosquito blood cells are immune cells that help control infection by vector-borne pathogens. Despite their importance, little is known about mosquito blood cell biology beyond morphological and functional criteria used for their classification. Here, we combined the power of single-cell RNA sequencing, high-content imaging flow cytometry, and single-molecule RNA hybridization to analyze a subset of blood cells of the malaria mosquito Anopheles gambiae By demonstrating that blood cells express nearly half of the mosquito transcriptome, our dataset represents an unprecedented view into their transcriptional program. Analyses of differentially expressed genes identified transcriptional signatures of two cell types and provide insights into the current classification of these cells. We further demonstrate the active transfer of a cellular marker between blood cells that may confound their identification. We propose that cell-to-cell exchange may contribute to cellular diversity and functional plasticity seen across biological systems.
Collapse
|
9
|
Urbański A, Adamski Z, Rosiński G. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L. Micron 2017; 104:8-20. [PMID: 29049928 DOI: 10.1016/j.micron.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/04/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023]
Abstract
The evolutionary success of insects is undoubtedly related to a well-functioning immune system. This is especially apparent during insect development by the adaptation of individuals to the changing risk of infection. In addition, current studies show that the insect immune system is characterized by some specificity in response to natural pathogens (for example, bacteria, viruses or fungi) and artificial challengers (for example, latex beads or nylon filaments). However, developmental changes and the specificity of immune system reactions simultaneously have not been analysed. Thus, the aim of the present research was to determine changes in haemocyte morphology in response to attenuated Staphylococcus aureus and latex beads across each developmental stage of the beetle Tenebrio molitor. The results of the present research clearly showed differences in the morphology of T. molitor haemocytes during development. The haemocytes of larvae and 4-day-old adult males were characterized by the highest adhesion ability, which was expressed as the largest average surface area, filopodia length and number of filopodia. In contrast, the haemocytes of pupae and 30-day-old adult males had a significantly lower value for these morphological parameters, which was probably related to metamorphosis (pupae) and immunosenescence (30-day-old adults). The haemocytes of the tested individuals reacted differently to the presence of S. aureus and latex beads. The presence of S. aureus led to a significant decrease in all previously mentioned morphological parameters in larvae and in both groups of adult individuals. In these groups, incubation of haemocytes with latex beads caused only a slight decrease in surface area and filopodia length and number. This morphological response of haemocytes to biotic and artificial challengers might be related to an increase in the migration abilities of haemocytes during infection. However, the differences in haemocyte reactivity towards S. aureus and latex beads might be explained by differences in pathogen recognition. Conversely, increased adhesive abilities of pupal haemocytes were also observed, which might be related to the specificity of metamorphosis and the hormonal titre during this developmental stage.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland.
| | - Zbigniew Adamski
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland; Electron and Confocal Microscope Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| |
Collapse
|
10
|
Wu G, Liu Y, Ding Y, Yi Y. Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity. Tissue Cell 2016; 48:297-304. [DOI: 10.1016/j.tice.2016.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/22/2016] [Accepted: 06/14/2016] [Indexed: 01/01/2023]
|
11
|
Wu G, Li M, Liu Y, Ding Y, Yi Y. The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells. JOURNAL OF INSECT PHYSIOLOGY 2015; 81:60-68. [PMID: 26159492 DOI: 10.1016/j.jinsphys.2015.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/02/2015] [Accepted: 07/05/2015] [Indexed: 06/04/2023]
Abstract
In the past decade, the phenomenon of immune priming was documented in many invertebrates in a large number of studies; however, in most of these studies, behavioral evidence was used to identify the immune priming. The underlying mechanism and the degree of specificity of the priming response remain unclear. We studied the mechanism of immune priming in the larvae of the silkworm, Bombyx mori, and analyzed the specificity of the priming response using two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) and one Gram-positive pathogenic bacterium (Bacillus thuringiensis HD-1). Primed with heat-killed bacteria, the B. mori larvae were more likely to survive subsequent homologous exposure (the identical bacteria used in the priming and in the subsequent challenge) than heterologous (different bacteria used in the priming and subsequent exposure) exposure to live bacteria. This result indicated that the B. mori larvae possessed a strong immune priming response and revealed a degree of specificity to TT01, H06 and HD-1 bacteria. The degree of enhanced immune protection was positively correlated with the level of phagocytic ability of the granular cells and the antibacterial activity of the cell-free hemolymph. Moreover, the granular cells of the immune-primed larvae increased the phagocytosis of a previously encountered bacterial strain compared with other bacteria. Thus, the enhanced immune protection of the B. mori larvae after priming was mediated by the phagocytic ability of the granular cells and the antibacterial activity of the hemolymph; the specificity of the priming response was primarily attributed to the phagocytosis of bacteria by the granular cells.
Collapse
Affiliation(s)
- Gongqing Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Mei Li
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Ying Ding
- The First Affiliated Hospital of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Yunhong Yi
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
12
|
Qian C, Liu Y, Fang Q, Min-Li Y, Liu SS, Ye GY, Li YM. Venom of the ectoparasitoid, Nasonia vitripennis, influences gene expression in Musca domestica hemocytes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:211-231. [PMID: 23818091 DOI: 10.1002/arch.21107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Insect hosts have evolved potent innate immunity against invasion by parasitoid wasps. Host/parasitoids live in co-evolutionary relationships. Nasonia vitripennis females inject venom into their dipteran hosts just prior to laying eggs on the host's outer integument. The parasitoid larvae are ectoparasitoids because they feed on their hosts within the puparium, but do not enter the host body. We investigated the influence of N. vitripennis venom on the gene expression profile of hemocytes of their hosts, pupae of the housefly, Musca domestica. We prepared venom by isolating venom glands and treated experimental host pupae with venom. We used suppression subtractive hybridization (SSH) to determine the influence of venom on hemocyte gene expression. At 1 h post treatment, we recorded decreases in transcript levels of 133 EST clones derived from forward a subtractive library of host hemocytes and upregulation in transcript levels of 111 EST clones from the reverse library. These genes are related to immune and stress response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, and transcription/translation regulation. We verified the reliability of our data with reverse transcription quantitative real-time PCR analysis of randomly selected genes, and with assays of enzyme activities. These analyses showed that the expression level of all selected genes were downregulated after venom treatment. Outcomes of our experiments support the hypothesis that N. vitripennis venom influences the gene expression in host hemocytes. We conclude that the actions of venom on host gene expression influence host biology in ways that benefit the development and emergence of the next generation of parasitoids.
Collapse
Affiliation(s)
- Cen Qian
- State Key Laboratory of Rice Biology & Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
d'Alençon E, Bierne N, Girard PA, Magdelenat G, Gimenez S, Seninet I, Escoubas JM. Evolutionary history of x-tox genes in three lepidopteran species: origin, evolution of primary and secondary structure and alternative splicing, generating a repertoire of immune-related proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:54-64. [PMID: 23142192 DOI: 10.1016/j.ibmb.2012.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/24/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
The proteins of the X-tox family have imperfectly conserved tandem repeats of several defensin-like motifs known as cysteine-stabilized αβ (CS-αβ) motifs. These immune-related proteins are inducible and expressed principally in hemocytes, but they have lost the antimicrobial properties of the ancestral defensins from which they evolved. We compared x-tox gene structure and expression in three lepidopteran species (Spodoptera frugiperda, Helicoverpa armigera and Bombyx mori). Synteny and phylogenetic analyses showed that the x-tox exons encoding CS-αβ motifs were phylogenetically closely related to defensin genes mapping to chromosomal positions close to the x-tox genes. We were able to define two groups of paralogous x-tox exons (three in Noctuids) that each followed the expected species tree. These results suggest that the ancestor of the three species already possessed an x-tox gene with at least two proto-domains, and an additional duplication/fusion should have occurred in the ancestor of the two noctuid species. An expansion of the number of exons subsequently occurred in each lineage. Alternatively, the proto x-tox gene possessed more copy and each group of x-tox domains might undergo concerted evolution through gene conversion. Accelerated protein evolution was detected in x-tox domains when compared to related defensins, concomitantly to multiplication of exons and/or the possible activation of concerted evolution. The x-tox genes of the three species have similar structural organizations, with repeat motifs composed of CS-αβ-encoding exons flanked by introns in phase 1. Diverse mechanisms underlie this organization: (i) the acquisition of new repeat motifs, (ii) the duplication of preexisting repeat motifs and (iii) the duplication of modules. A comparison of gDNA and cDNA structures showed that alternative splicing results in the production of multiple X-tox protein isoforms from the x-tox genes. Differences in the number and sequence of CS-αβ motifs in these isoforms were found between species, but also between individuals of the same species. Thus, our analysis of the genetic organization and expression of x-tox genes in three lepidopteran species suggests a rapid evolution of the organization of these genes.
Collapse
Affiliation(s)
- Emmanuelle d'Alençon
- INRA, UMR 1333 Laboratoire Diversité, Génomes & Interactions Microorganismes - Insectes (DGIMI), CC54, 2 place E. Bataillon, 34095 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhai X, Zhao XF. Participation of haemocytes in fat body degradation via cathepsin L expression. INSECT MOLECULAR BIOLOGY 2012; 21:521-534. [PMID: 22882178 DOI: 10.1111/j.1365-2583.2012.01157.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Insect haemocytes are known to participate in innate immunity via the phagocytosis of pathogens. However, the function of haemocytes in tissue remodelling is less understood. We report here that haemocytes play roles in fat body degradation by expressing a cysteine proteinase cathepsin L in the lepidopteran Helicoverpa armigera. During metamorphosis, haemocytes undergo morphological changes by increasing their cell size and transforming their granulocytes into macrogranulocytes. The population of haemocytes also changes with increased number of granulocytes and decreased plasmatocytes. The expression level of cathepsin L in haemocytes, mainly in granulocytes and plasmatocytes, increases. The steroid hormone 20-hydroxyecdysone is able to promote the transformation of granulocytes into macrogranulocytes, and up-regulate the expression level of cathepsin L. The knock-down of the cathepsin L gene by RNA interference in haemocytes in vitro results in deficient granulocytes transforming into macrogranulocytes. Haemocytes are able to enter the decomposed fat body during metamorphosis. The over-expression of the proteinase domain C1A of cathepsin L results in cell apoptosis. Haemocytes, especially macrogranulocytes, undergo apoptosis and cathepsin L is released into haemolymph and the fat body during metamorphosis for fat body decomposition and degradation. These results suggest that cathepsin L is related to the transformation of granulocytes to macrogranulocytes to enter the fat body, and induce haemocyte apoptosis for further tissue degradation.
Collapse
Affiliation(s)
- X Zhai
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China
| | | |
Collapse
|
15
|
Duvic B, Jouan V, Essa N, Girard PA, Pagès S, Abi Khattar Z, Volkoff NA, Givaudan A, Destoumieux-Garzon D, Escoubas JM. Cecropins as a marker of Spodoptera frugiperda immunosuppression during entomopathogenic bacterial challenge. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:881-888. [PMID: 22487443 DOI: 10.1016/j.jinsphys.2012.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 05/31/2023]
Abstract
An antimicrobial peptide (AMP) of the cecropin family was isolated by HPLC from plasma of the insect pest, Spodoptera frugiperda. Its molecular mass is 3910.9 Da as determined by mass spectrometry. Thanks to the EST database Spodobase, we were able to describe 13 cDNAs encoding six different cecropins which belong to the sub-families CecA, CecB, CecC and CecD. The purified peptide identified as CecB1 was chemically synthesized (syCecB1). It was shown to be active against Gram-positive and Gram-negative bacteria as well as fungi. Two closely related entomopathogenic bacteria, Xenorhabdus nematophila F1 and Xenorhabdus mauleonii VC01(T) showed different susceptibility to syCecB1. Indeed, X. nematophila was sensitive to syCecB1 whereas X. mauleonii had a minimal inhibitory concentration (MIC) eight times higher. Interestingly, injection of live X. nematophila into insects did not induce the expression of AMPs in hemolymph. This effect was not observed when this bacterium was heat-killed before injection. On the opposite, both live and heat-killed X. mauleonii induced the expression of AMPs in the hemolymph of S. frugiperda. The same phenomenon was observed for another immune-related protein lacking antimicrobial activity. Altogether, our data suggest that Xenorhabdus strains have developed different strategies to supplant the humoral defense mechanisms of S. frugiperda, either by increasing their resistance to AMPs or by preventing their expression during such host-pathogen interaction.
Collapse
Affiliation(s)
- B Duvic
- INRA, UMR1333, Laboratoire Diversité, Génomes et Interactions Microorganismes Insectes, Montpellier, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lapointe JF, Dunphy GB, Mandato CA. Hemocyte-hemocyte adhesion and nodulation reactions of the greater wax moth, Galleria mellonella are influenced by cholera toxin and its B-subunit. RESULTS IN IMMUNOLOGY 2012; 2:54-65. [PMID: 24371567 DOI: 10.1016/j.rinim.2012.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
Nodulation, the lepidopteran insect immune response to large numbers of microbes in the blood (hemolymph) consists of the coordination of the blood cell (hemocyte) types the granular cells and plasmatocytes in terms of granular cell-bacteria adhesion and hemocyte-hemocyte adhesion (microaggregation). Hemocyte-microbe adhesion is influenced by the secondary messenger, cAMP, and cAMP-dependent protein kinase A. In the present study, cholera toxin, an AB5 protein known to indirectly stimulate adenylate cyclase, is used to examine the hemocyte responses to glass, bacteria and hemocyte-hemocyte microaggregates. In vitro, this toxin induces a bimodal hemocyte adhesion response that varies with the holotoxin concentration in terms of the individual and aggregated hemocyte adhesion responses: the lower CTX concentration (1.2 nM) increases microaggregate adhesion and decreases individual hemocyte binding to glass, as does higher concentrations (6-120 nM), however microaggregates induced by lower concentrations do not adhere to glass. Cholera toxin-induced microaggregation is inhibited by RGDS, suggestive of integrin involvement. In vivo, cholera toxin (1.2-120 nM) injected into larvae induces also a bimodal hemocytic response: low levels (1.2-6 nM) cause reduced hemocyte adhesion, while high levels (12-120 nM) increase hemocyte release or mobilization of adhesive hemocyte counts in the hemolymph. Increasing levels of cholera toxin concomitantly injected with the non-pathogenic bacterium, Bacillus subtilis produces a bimodal pattern in bacterial removal from the hemolymph which correlates with nodule frequency in larvae injected with cholera toxin only. The effects of higher concentrations of cholera toxin in vitro (6-120 nM) and in vivo (12-120 nM) are mediated by the B-subunit, whereas the isolated A-subunit has no effect on hemocyte activity. Cholera toxin and its individual subunits did not detectably alter levels of intracellular cAMP in the hemocytes, suggesting a cAMP-independent mechanism stimulating the nodulation response.
Collapse
Affiliation(s)
- Jason F Lapointe
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| | - Gary B Dunphy
- Department of Natural Resource Sciences, Macdonald Campus of McGill University, 21, 111 Lakeshore Road, Ste. Anne de Bellevue, Québec, Canada H9X 3V9
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, Canada H3A 2B2
| |
Collapse
|
17
|
Lapointe JF, Dunphy GB, Giannoulis P, Mandato CA, Nardi JB, Gharib OH, Niven DF. Cell lines, Md108 and Md66, from the hemocytes of Malacosoma disstria (Lepidoptera) display aspects of plasma-free innate non-self activities. J Invertebr Pathol 2011; 108:180-93. [PMID: 21907208 DOI: 10.1016/j.jip.2011.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/15/2011] [Accepted: 08/25/2011] [Indexed: 02/03/2023]
|
18
|
Manachini B, Arizza V, Parrinello D, Parrinello N. Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. J Invertebr Pathol 2010; 106:360-5. [PMID: 21147119 DOI: 10.1016/j.jip.2010.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/23/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
Abstract
Originally from tropical Asia, the Red Palm Weevil (RPW Rhynchophorus ferrugineus (Olivier)) is the most dangerous and deadly pest of many palm trees, and there have been reports of its recent detection in France, Greece and Italy. At present, emphasis is on the development of integrated pest management based on biological control rather than on chemical insecticides, however the success of both systems is often insufficient. In this regard, RPW appears to be one pest that is very difficult to control. Thus investigations into the natural defences of this curculionid are advisable. RPW hemocytes, the main immunocompetent cells in the insect, are described for the first time. We identified five hemocyte cell types from the hemolymph of R. ferrugineus: plasmatocytes (~50%), granulocytes (~35%), prohemocytes (~8%), oenocytes (~4%) and spherulocytes (~3%). SEM observations were also carried out. Some aspects of RPW interaction with non-self organisms, such as Saccharomyces cerevisiae and the entomopathogen bacterium, Bacillus thuringiensis (Bt), are discussed. Plasmatocytes and granulocytes were involved in nodules and capsule formation as well as in the phagocytosis of yeast. The hemocyte response of RPW larvae to sub-lethal doses of commercial products containing Bt was examined. In vivo assays were carried out and Bt in vegetative form was found in the hemolymph. After a diet containing Bt, the number of total hemocytes, mainly plasmatocytes, in the RPW larva hemolymph declined sharply (~12%) and then remained at a low level, while the number of other circulating cells was almost unchanged.
Collapse
Affiliation(s)
- Barbara Manachini
- Dipartimento di Biologia Animale G. Reverberi, Università di Palermo, Palermo, Italy.
| | | | | | | |
Collapse
|
19
|
Fang Q, Wang L, Zhu J, Li Y, Song Q, Stanley DW, Akhtar ZR, Ye G. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum. BMC Genomics 2010; 11:484. [PMID: 20813030 PMCID: PMC2996980 DOI: 10.1186/1471-2164-11-484] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 09/02/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae) inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae), comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. RESULTS At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs) derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs) from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH) data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. CONCLUSIONS Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically, the venom treatments led to reductions in expression of a large number of genes. Many of the down-regulated genes act in immunity, although others act in non-immune areas of host biology. We conclude that the actions of venom on host gene expression influence immunity as well as other aspects of host biology in ways that benefit the development and emergence of the next generation of parasitoids.
Collapse
Affiliation(s)
- Qi Fang
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Lei Wang
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Jiaying Zhu
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Yanmin Li
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - David W Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA
| | - Zunnu-raen Akhtar
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
20
|
Kim CH, Shin YP, Noh MY, Jo YH, Han YS, Seong YS, Lee IH. An insect multiligand recognition protein functions as an opsonin for the phagocytosis of microorganisms. J Biol Chem 2010; 285:25243-50. [PMID: 20519517 PMCID: PMC2919087 DOI: 10.1074/jbc.m110.134940] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/26/2010] [Indexed: 11/06/2022] Open
Abstract
We characterize a novel pathogen recognition protein obtained from the lepidopteran Galleria mellonella. This protein recognizes Escherichia coli, Micrococcus luteus, and Candida albicans via specific binding to lipopolysaccharides, lipoteichoic acid, and beta-1,3-glucan, respectively. As a multiligand receptor capable of coping with a broad variety of invading pathogens, it is constitutively produced in the fat body, midgut, and integument but not in the hemocytes and is secreted into the hemolymph. The protein was confirmed to be relevant to cellular immune response and to further function as an opsonin that promotes the uptake of invading microorganisms into hemocytes. Our data reveal that the mechanism by which a multiligand receptor recognizes microorganisms contributes substantially to their phagocytosis by hemocytes. A better understanding of an opsonin with the required repertoire for detecting diverse invaders might provide us with critical insights into the mechanisms underlying insect phagocytosis.
Collapse
Affiliation(s)
- Chong Han Kim
- From the Department of Biotechnology, Hoseo University, Asan City, Chungnam 336-795, South Korea
| | - Yong Pyo Shin
- From the Department of Biotechnology, Hoseo University, Asan City, Chungnam 336-795, South Korea
| | - Mi Young Noh
- the Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju 500-257, South Korea, and
| | - Yong Hun Jo
- the Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju 500-257, South Korea, and
| | - Yeon Soo Han
- the Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju 500-257, South Korea, and
| | - Yeon Sun Seong
- the Department of Biochemistry, College of Medicine, Dankook University, Cheonan, Chungnam 330-714, South Korea
| | - In Hee Lee
- From the Department of Biotechnology, Hoseo University, Asan City, Chungnam 336-795, South Korea
| |
Collapse
|
21
|
Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens. Mol Immunol 2010; 47:2342-8. [PMID: 20627393 DOI: 10.1016/j.molimm.2010.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/15/2010] [Accepted: 05/08/2010] [Indexed: 01/25/2023]
Abstract
Xenorhabdus nematophila/Steinernema carpocapsae and Photorhabdus luminescens/Heterorhabditis bacteriophora are nemato-bacterial complexes highly pathogenic for insects. Using a syringe as artificial vector, we have analyzed the effects of the two bacteria, X. nematophila and P. luminescens on the genetic tool insect, Drosophila melanogaster. Both bacteria were found to kill adult flies in a dose dependent manner with X. nematophila being the fastest. On the other hand, when an injection of non-pathogenic bacteria, Escherichia coli, is performed 1 day before challenge with the entomopathogenic bacteria, then the survival of Drosophila flies was prolonged by at least 20h. After injection of entomopathogenic bacteria, Drosophila mutant Dif(1), affected on the Toll pathway, showed a similar phenotype than wild-type flies whereas Drosophila mutant Dredd(D55), affected on the imd pathway, was not protected by a prior injection of E. coli. This suggested that members of the imd pathway might be targets of these entomopathogenic bacteria albeit synthesis of antimicrobial peptides through this signaling pathway was induced by X. nematophila as well as P. luminescens. Finally, P. luminescens phoP mutant, an avirulent mutant in the Lepidopteran insect, Spodoptera littoralis, was found poorly virulent for D. melanogaster. phoP mutant partially protected D. melanogaster flies if injected 1 day before the injection of P. luminescens wild-type TT01 to the same extent than the E. coli-induced protection. However, phoP recovered a level of pathogenicity comparable to P. luminescens wild-type TT01 when injected to Drosophila flies affected on the imd pathway.
Collapse
|
22
|
Gulii V, Dunphy GB, Mandato CA. Innate hemocyte responses of Malacosoma disstria larvae (C. Insecta) to antigens are modulated by intracellular cyclic AMP. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:890-900. [PMID: 19454331 DOI: 10.1016/j.dci.2009.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 02/13/2009] [Accepted: 02/19/2009] [Indexed: 05/27/2023]
Abstract
Invertebrate intracellular hemocyte signaling pathways affecting cellular-antigen responses, although defined for molluscs and some arthropods including dipteran insects, is less known for lepidopterans. Hemocytic-antigen responses of the arboreal pest lepidopteran Malacosoma disstria are linked to cAMP-dependent protein kinase A implicating cAMP in cellular hemocyte immune responses. The purpose in the present study was to determine intracellular cAMP effects on larval M. disstria hemocytes adhering to slides and bacteria. Altering adenylate cyclase and phosphodiesterase activities as well as cAMP levels in vitro and in vivo changed hemocyte responses to antigens. Quiescent hemocytes had high cAMP levels due to adenylate cyclase activity and possibly low phosphodiesterase (type 4) activity. Antigen contact diminished hemocytic cAMP levels. Inhibiting adenylate cyclase increased hemocyte-antigen and hemocyte-hemocyte adhesion, the latter producing nodules in vivo without bacterial antigens. Inhibiting phosphodiesterase type 4 produced the reverse effects. Pharmacologically increasing intracellular cAMP in attached hemocytes caused many of the cells to detach. Diminished intracellular cAMP changed hemograms in vivo in bacteria-free larvae comparable to changes induced by the bacterium, Bacillus subtilis, by producing nodules. Lowering cAMP enhanced also the removal of Xenorhabdus nematophila and B. subtilisin vivo.
Collapse
Affiliation(s)
- Vladislav Gulii
- Department of Natural Resource Sciences, McGill University, Montreal, Canada
| | | | | |
Collapse
|
23
|
The emerging human pathogen Photorhabdus asymbiotica is a facultative intracellular bacterium and induces apoptosis of macrophage-like cells. Infect Immun 2008; 77:1022-30. [PMID: 19075024 DOI: 10.1128/iai.01064-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Photorhabdus species are gram-negative entomopathogenic bacteria of the family Enterobacteriaceae. Among the different members of the genus, one species, Photorhabdus asymbiotica, is a pathogen of both insects and humans. The pathogenicity mechanisms of this bacterium are unknown. Here we show that P. asymbiotica is a facultative intracellular pathogen that is able to replicate inside human macrophage-like cells. Furthermore, P. asymbiotica was shown for the first time in an intracellular location after insect infection. We also demonstrated that among Australian and American clinical isolates, only the Australian strains were able to invade nonphagocytic human cells. In cell culture infection experiments, Australian clinical isolates as well as cell-free bacterial culture supernatant induced strong apoptosis of a macrophage cell line at 6 h postinfection. American isolates also induced cellular death, but much later than that induced by Australian ones. Mammalian cultured cells analyzed for key features of apoptosis displayed apoptotic nuclear morphology, activation of the initiator caspases 8 and 9 and the executioner caspases 3 and 7, and poly(ADP-ribose) polymerase proteolysis, suggesting activation of both the intrinsic and extrinsic apoptotic pathways.
Collapse
|
24
|
Shinohara Y, Ishii N, Takahashi S, Okazaki T. Appearance of apoptotic cells and granular cells in the silkworm midgut lumen during larval-pupal ecdysis. Zoolog Sci 2008; 25:139-45. [PMID: 18533744 DOI: 10.2108/zsj.25.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 09/25/2007] [Indexed: 11/17/2022]
Abstract
To study midgut degradation and programmed cell death, we performed methyl green-pyronin staining and Giemsa staining of the midgut of silkworms during metamorphosis. Midgut epithelial cells underwent pyknosis and cytoplasmic shrinkage on the second day of spinning. In the prepupal stage, all midgut epithelial cells desquamated into the midgut lumen, rapidly forming apoptotic bodies. The number of apoptotic bodies in the midgut decreased rapidly from the prepupal stage to the third day of the pupal stage. DNA fragmentation at the time of apoptotic body formation was confirmed by the comet assay. In the midgut lumen from the prepupal stage to the first through third days of the pupal stage in which apoptotic bodies were observed, granular cells were present. Their morphology was similar to that in the body fluid and, during the pupal stage, intracellular granules increased in size and number with time, giving the appearance of a foamy cell. In this stage, numerous granular cells were observed under the basement membrane of the midgut, and phagocytosed apoptotic bodies were seen within granular cells in the midgut lumen. Granular cells may be actively involved in the clearance of apoptotic bodies from the midgut during larval-pupal ecdysis.
Collapse
Affiliation(s)
- Yoshiyasu Shinohara
- Department of Hematological Informatics, Kitasato University, School of Allied Health Science, 1-15-1 Kitasato, Sagamihara 228-8555, Japan
| | | | | | | |
Collapse
|
25
|
Borges AR, Santos PN, Furtado AF, Figueiredo RCBQ. Phagocytosis of latex beads and bacteria by hemocytes of the triatomine bug Rhodnius prolixus (Hemiptera: Reduvidae). Micron 2008; 39:486-94. [PMID: 17368036 DOI: 10.1016/j.micron.2007.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 11/28/2022]
Abstract
Insect circulating hemocytes are primarily responsible for the immune defense against parasites and pathogens. Here, we have analyzed phagocytosis of both biotic (bacteria) and abiotic (latex) particles by circulating hemocytes of 5th-instar nymphs of the triatomine bug Rhodnius prolixus. The following hemocyte types were identified: prohemocytes, plasmatocytes, granulocytes, oenocytoids and adipohemocytes. There was a considerable change in the relative percentage of plasmatocytes and prohemocytes in the hemolymph after challenge with both latex beads and bacteria. Granulocytes and oenocytoids also change their relative percentage in response to latex bead and Staphylococcus aureus, respectively. No significant change was observed in adipohemocytes at any time or treatment. Our data demonstrated that plasmatocytes were the only cell type involved in phagocytosis of foreign particles. As in mammal cells, phagocytosis by both zipper and trigger mechanisms were observed for the uptake of latex beads and bacteria. Neither melanization nor micro-aggregation was observed towards latex particles or Escherichia coli. On the other hand, R. prolixus produced a strong melanization reaction against S. aureus, thus showing that differences exist in the responses to E. coli and to S. aureus. Ultrastructural changes observed in plasmatocytes, adipohemocytes and oenocytoids suggest that these hemocyte types are directly involved in the immune defense of R. prolixus against foreign particles.
Collapse
Affiliation(s)
- A R Borges
- Departamento de Biologia Celular e Ultraestrutura, Centro de Pesquisas Aggeu Magalhães, FIOCRUZ, Av. Moraes Rego s/n, Campus da UFPE, 50670-420 Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
26
|
Effect of a toxicant on phagocytosis pathways in the freshwater snail Lymnaea stagnalis. Cell Tissue Res 2008; 333:147-58. [DOI: 10.1007/s00441-008-0578-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
|
27
|
Figueiredo MB, Garcia ES, Azambuja P. Blockades of phospholipase A(2) and platelet-activating factor receptors reduce the hemocyte phagocytosis in Rhodnius prolixus: in vitro experiments. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:344-350. [PMID: 18036540 DOI: 10.1016/j.jinsphys.2007.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/09/2007] [Accepted: 10/12/2007] [Indexed: 05/25/2023]
Abstract
The hemocytes phagocytosis in response to microorganisms may play an important role in the cellular immune responses of insects. Here, we have evaluated the effects of the platelet-activating factor (PAF) and eicosanoids in the phagocytosis of hemocyte monolayers of Rhodnius prolixus to the yeast Saccharomyces cerevisiae. Experiments showed that the phagocytosis of yeast cells by Rhodnius hemocytes is very efficient in both controls and cells treated with PAF and arachidonic acid. Phagocytosis of yeast particles is significantly blocked when the specific phopholipase A(2) inhibitor, dexamethasone, is applied on the hemocytes. By contrast, dexamethasone-pretreated hemocyte monolayers exhibit a drastic increase in the quantity of yeast cell-hemocyte internalization when the cells are treated by arachidonic acid. In addition, phagocytosis presents significant reduction in hemocyte monolayers treated with a specific PAF receptor antagonist, WEB 2086. Nevertheless, inhibition of phagocytosis with WEB 2086 is counteracted by the treatment of the hemocyte monolayers with PAF. In conclusion, phagocytosis of yeast cells by hemocytes is related to the activation of PAF receptors and eicosanoid pathways in the bloodsucking bug, R. prolixus.
Collapse
Affiliation(s)
- Marcela B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
28
|
de Winter P, Rayne RC, Coast GM. The effects of intracellular signalling pathway inhibitors on phagocytosis by haemocytes of Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:975-82. [PMID: 17597143 DOI: 10.1016/j.jinsphys.2007.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 05/16/2023]
Abstract
The intracellular signalling pathways activated during phagocytosis by larval haemocytes of a lepidopteran, Manduca sexta, were investigated. Using fluorescein-labelled Escherichia coli as bioparticles, a fluorescence-based assay was used to quantify phagocytosis by haemocytes in monolayers in vitro, and the intracellular signalling pathways involved in phagocytosis were examined using inhibitors. Pathways known to be involved in phagocytosis by mammalian cells were selected for the study in haemocytes, and the amino acid sequences of human isoforms of the selected protein targets were used to conduct searches of two completed databases of insect proteins, those of Drosophila melanogaster and Anopheles gambiae and EST databases of moths Bombyx mori and M. sexta. Decreases in phagocytosis produced by pathway inhibitors indicated that tyrosine phosphorlylation phosphatidylinositol 3-kinase (PI3-kinase) and mitogen-activated protein kinase/extracellular-regulated kinase (ERK/MAPK) were required for internalisation of bacteria. Inhibition of Syk, a mammalian kinase, also decreased phagocytosis. JNK/SAPK did not seem to be involved in phagocytosis. The presence of protein phosphatases probably regulates phagocytosis at the intracellular level by dephosphorlyation of serine/threonine residues.
Collapse
Affiliation(s)
- Patricia de Winter
- School of Biological and Chemical Sciences, Birkbeck, University of London, London, UK.
| | | | | |
Collapse
|
29
|
Giglio A, Battistella S, Talarico FF, Brandmayr TZ, Giulianini PG. Circulating hemocytes from larvae and adults of Carabus (Chaetocarabus) lefebvrei Dejean 1826 (Coleoptera, Carabidae): cell types and their role in phagocytosis after in vivo artificial non-self-challenge. Micron 2007; 39:552-8. [PMID: 17825571 DOI: 10.1016/j.micron.2007.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022]
Abstract
Carabus lefebvrei Dejean 1826 is an helicophagous Italian endemic ground beetle that lives in central and south Apennines mountain forests, from lower altitudes to about 1500 m. In ground beetles, no morphofunctional data about immune system is available, even though they are well known both taxonomically and ecologically and they have been often used as indicators of the habitat quality due to their specificity to certain habitat types. In the current investigation the cellular population in the hemolymph of adult and third instar larvae of C. lefebvrei has been characterized by means of light and electron microscopy analysis and phagocytosis assays were performed in vivo by injection of 0.9 microm carboxylate-modified polystyrene latex beads in order to identify the hemocyte types involved in phagocytosis. Four morphotypes of circulating hemocytes were found both in larvae and in adults: prohemocytes, granulocytes, oenocytoids and plasmatocytes. After in vivo artificial non-self-challenge treatments, C. lefebvrei showed a non-specific immune response involving phagocytosis performed by plasmatocytes, both in adults and in larvae and by oenocitoids in larvae. In untreated animals, the hemocyte type presenting a firm phagocytic activity, the plasmatocytes, presented a percentage significantly higher in larvae than in adults, and after latex beads injections in larvae there was a tendency of significant difference in plasmatocyte percentage compared to controls injected with phosphate saline buffer. We think that these differences could be correlated with the peculiar morphology (less chitinization) and ecology of larval stages that are more sensitive to pathogens than adults.
Collapse
Affiliation(s)
- Anita Giglio
- Department of Ecology, University of Calabria, Rende (CS), Italy
| | | | | | | | | |
Collapse
|
30
|
Figueiredo MB, Castro DP, S Nogueira NF, Garcia ES, Azambuja P. Cellular immune response in Rhodnius prolixus: role of ecdysone in hemocyte phagocytosis. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:711-6. [PMID: 16759667 DOI: 10.1016/j.jinsphys.2006.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/23/2006] [Accepted: 03/27/2006] [Indexed: 05/10/2023]
Abstract
In this paper we investigate in vivo and in vitro effects of orally administered azadirachtin and ecdysone on the phagocytic responses of Rhodnius prolixus 5th-instar larval hemocytes to the yeast Saccharomyces cerevisiae. Groups of insects fed non-treated blood (control) and insects that received azadirachtin plus ecdysone in the blood meal were inoculated with yeast cells in the hemocele. The injected yeast cells disappeared rapidly from the hemolymph, being removed completely by 90min after inoculation. In the insects treated only with azadirachtin the clearance of free yeast circulating particles was significantly delayed compared to the two previously mentioned groups. It was demonstrated that the binding of yeast cells to hemocytes was reduced in the insects treated only with azadirachtin in comparison to both non-treated control and azadirachtin plus ecdysone-treated groups. Phagocytosis occurred when yeast cells were added to hemocyte monolayers prepared with hemolymph from blood fed insects, treated or not with azadirachtin plus ecdysone, so that yeast cells were rapidly bound to hemocytes and internalized in high numbers. By contrast, insects treated with azadirachtin exhibited a drastic reduction in the quantity of yeast cell-hemocyte binding and subsequent internalization. In all groups, the hemocytes attached to the glass slides were predominantly plasmatocytes. The magnitude and speed of the cellular response suggests that hemocyte phagocytosis is one of the main driving forces for the clearance of free circulating yeast cells from the hemolymph. We propose that ecdysone modulates phagocytosis in R. prolixus larvae, and that this effect is antagonized by azadirachtin.
Collapse
Affiliation(s)
- Marcela B Figueiredo
- Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, CEP 21040-900 Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
31
|
Barat-Houari M, Hilliou F, Jousset FX, Sofer L, Deleury E, Rocher J, Ravallec M, Galibert L, Delobel P, Feyereisen R, Fournier P, Volkoff AN. Gene expression profiling of Spodoptera frugiperda hemocytes and fat body using cDNA microarray reveals polydnavirus-associated variations in lepidopteran host genes transcript levels. BMC Genomics 2006; 7:160. [PMID: 16790040 PMCID: PMC1559612 DOI: 10.1186/1471-2164-7-160] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 06/21/2006] [Indexed: 01/12/2023] Open
Abstract
Background Genomic approaches provide unique opportunities to study interactions of insects with their pathogens. We developed a cDNA microarray to analyze the gene transcription profile of the lepidopteran pest Spodoptera frugiperda in response to injection of the polydnavirus HdIV associated with the ichneumonid wasp Hyposoter didymator. Polydnaviruses are associated with parasitic ichneumonoid wasps and are required for their development within the lepidopteran host, in which they act as potent immunosuppressive pathogens. In this study, we analyzed transcriptional variations in the two main effectors of the insect immune response, the hemocytes and the fat body, after injection of filter-purified HdIV. Results Results show that 24 hours post-injection, about 4% of the 1750 arrayed host genes display changes in their transcript levels with a large proportion (76%) showing a decrease. As a comparison, in S. frugiperda fat body, after injection of the pathogenic JcDNV densovirus, 8 genes display significant changes in their transcript level. They differ from the 7 affected by HdIV and, as opposed to HdIV injection, are all up-regulated. Interestingly, several of the genes that are modulated by HdIV injection have been shown to be involved in lepidopteran innate immunity. Levels of transcripts related to calreticulin, prophenoloxidase-activating enzyme, immulectin-2 and a novel lepidopteran scavenger receptor are decreased in hemocytes of HdIV-injected caterpillars. This was confirmed by quantitative RT-PCR analysis but not observed after injection of heat-inactivated HdIV. Conversely, an increased level of transcripts was found for a galactose-binding lectin and, surprisingly, for the prophenoloxidase subunits. The results obtained suggest that HdIV injection affects transcript levels of genes encoding different components of the host immune response (non-self recognition, humoral and cellular responses). Conclusion This analysis of the host-polydnavirus interactions by a microarray approach indicates that the presence of HdIV induces, directly or indirectly, variations in transcript levels of specific host genes, changes that could be responsible in part for the alterations observed in the parasitized host physiology. Development of such global approaches will allow a better understanding of the strategies employed by parasites to manipulate their host physiology, and will permit the identification of potential targets of the immunosuppressive polydnaviruses.
Collapse
Affiliation(s)
- M Barat-Houari
- UMR 1231 Biologie Intégrative et Virologie des Insectes. INRA – Université de Montpellier II. Place Eugène Bataillon, Case Courrier 101, 34 095 Montpellier Cedex, France
| | - F Hilliou
- UMR 1112 R.O.S.E. INRA – Université de Nice-Sophia Antipolis, Laboratoire de Génomique Fonctionnelle des Insectes, 400 route des Chappes, BP 167, 06 903 Sophia Antipolis Cedex, France
| | - F-X Jousset
- UMR 1231 Biologie Intégrative et Virologie des Insectes. INRA – Université de Montpellier II. Place Eugène Bataillon, Case Courrier 101, 34 095 Montpellier Cedex, France
| | - L Sofer
- UMR 1112 R.O.S.E. INRA – Université de Nice-Sophia Antipolis, Laboratoire de Génomique Fonctionnelle des Insectes, 400 route des Chappes, BP 167, 06 903 Sophia Antipolis Cedex, France
| | - E Deleury
- UMR 1112 R.O.S.E. INRA – Université de Nice-Sophia Antipolis, Laboratoire de Génomique Fonctionnelle des Insectes, 400 route des Chappes, BP 167, 06 903 Sophia Antipolis Cedex, France
| | - J Rocher
- UMR 1231 Biologie Intégrative et Virologie des Insectes. INRA – Université de Montpellier II. Place Eugène Bataillon, Case Courrier 101, 34 095 Montpellier Cedex, France
| | - M Ravallec
- UMR 1231 Biologie Intégrative et Virologie des Insectes. INRA – Université de Montpellier II. Place Eugène Bataillon, Case Courrier 101, 34 095 Montpellier Cedex, France
| | - L Galibert
- UMR 1231 Biologie Intégrative et Virologie des Insectes. INRA – Université de Montpellier II. Place Eugène Bataillon, Case Courrier 101, 34 095 Montpellier Cedex, France
| | - P Delobel
- INRA U.M.R. Sciences pour l'Oenologie, Equipe Microbiologie – Bât 28, 2, place Viala, 34 060 Montpellier Cedex 01, France
| | - R Feyereisen
- UMR 1112 R.O.S.E. INRA – Université de Nice-Sophia Antipolis, Laboratoire de Génomique Fonctionnelle des Insectes, 400 route des Chappes, BP 167, 06 903 Sophia Antipolis Cedex, France
| | - P Fournier
- UMR 1231 Biologie Intégrative et Virologie des Insectes. INRA – Université de Montpellier II. Place Eugène Bataillon, Case Courrier 101, 34 095 Montpellier Cedex, France
| | - A-N Volkoff
- UMR 1231 Biologie Intégrative et Virologie des Insectes. INRA – Université de Montpellier II. Place Eugène Bataillon, Case Courrier 101, 34 095 Montpellier Cedex, France
| |
Collapse
|
32
|
Ribeiro C, Brehélin M. Insect haemocytes: what type of cell is that? JOURNAL OF INSECT PHYSIOLOGY 2006; 52:417-29. [PMID: 16527302 DOI: 10.1016/j.jinsphys.2006.01.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 01/17/2006] [Accepted: 01/17/2006] [Indexed: 05/07/2023]
Abstract
Classification of insect larvae circulating haemocytes is the subject of controversy, and the terminology used to designate each cellular type is often different from one species to another. However, a survey of the literature on insect haemocytes suggests that there are resemblances for most of the cell types and functions, in different insect species. In this review paper, we compare the structure and functions of circulating haemocytes in those insect species that are, by far, the most often used species for insect physiology studies, i.e. lepidopteran species and Drosophila. We show that there is high degree of homology of haemocyte types and suggest possible synonymies in terminology among species from these taxa.
Collapse
Affiliation(s)
- Carlos Ribeiro
- Ecologie Microbienne des Insectes et Relations Hôte-Pathogène (UMR 1133 INRA-UMII), Pl. E. Bataillon 34095 Montpellier, France
| | | |
Collapse
|