1
|
Zhu H, Liang X, Ding J, Wang J, Li P, Zhou W, Wang J, Wu FA, Sheng S. Transcriptome analysis and functional study of phospholipase A 2 in Galleria mellonella larvae lipid metabolism in response to envenomation by an ectoparasitoid, Iseropus kuwanae. INSECT SCIENCE 2024. [PMID: 39219288 DOI: 10.1111/1744-7917.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
There is abundant evidence that parasitoids manipulate their hosts by envenomation to support the development and survival of their progeny before oviposition. However, the specific mechanism underlying host nutritional manipulation remains largely unclear. To gain a more comprehensive insight into the effects induced by the gregarious ectoparasitoid Iseropus kuwanae (Hymenoptera: Ichneumonidae) on the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) larvae, we sequenced the transcriptome of both non-envenomed and envenomed G. mellonella larvae, specifically targeting genes related to lipid metabolism. The present study revealed that 202 differentially expressed genes (DEGs) were identified and 9 DEGs were involved in lipid metabolism. The expression levels of these 9 DEGs relied on envenomation and the duration post-envenomation. Further, envenomation by I. kuwanae induced an increase in triglyceride (TG) level in the hemolymph of G. mellonella larvae. Furthermore, silencing GmPLA2 in G. mellonella larvae 24 h post-envenomation significantly decreased the content of 4 unsaturated fatty acids and TG levels in the hemolymph. The content of linoleic acid and α-linoleic acid were significantly decreased and the content of oleic acid was significantly increased by exogenous supplement of arachidonic acid. Meanwhile, the reduction in host lipid levels impairs the growth and development of wasp offspring. The present study provides valuable knowledge about the molecular mechanism of the nutritional interaction between parasitoids and their hosts and sheds light on the coevolution between parasitoids and host insects.
Collapse
Affiliation(s)
- Hanqi Zhu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xinhao Liang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Jianhao Ding
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Jinzheng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Ping Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Weihong Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Fu-An Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Scheifler M, Wilhelm L, Visser B. Lipid Metabolism in Parasitoids and Parasitized Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38977639 DOI: 10.1007/5584_2024_812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parasitoids have an exceptional lifestyle where juvenile development is spent on or in a single host insect, but the adults are free-living. Unlike parasites, parasitoids kill the host. How parasitoids use such a limiting resource, particularly lipids, can affect chances to survive and reproduce. In part 1, we describe the parasitoid lifestyle, including typical developmental strategies. Lipid metabolism in parasitoids has been of interest to researchers since the 1960s and continues to fascinate ecologists, evolutionists, physiologists, and entomologists alike. One reason of this interest is that the majority of parasitoids do not accumulate triacylglycerols as adults. Early research revealed that some parasitoid larvae mimic the fatty acid composition of the host, which may result from a lack of de novo triacylglycerol synthesis. More recent work has focused on the evolution of lack of adult triacylglycerol accumulation and consequences for life history traits. In part 2 of this chapter, we discuss research efforts on lipid metabolism in parasitoids from the 1960s onwards. Parasitoids are also master manipulators of host physiology, including lipid metabolism, having evolved a range of mechanisms to affect the release, synthesis, transport, and take-up of lipids from the host. We lay out the effects of parasitism on host physiology in part 3 of this chapter.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
3
|
Zhang J, Shan J, Shi W, Feng T, Sheng Y, Xu Z, Dong Z, Huang J, Chen J. Transcriptomic Insights into Host Metabolism and Immunity Changes after Parasitization by Leptopilina myrica. INSECTS 2024; 15:352. [PMID: 38786908 PMCID: PMC11122121 DOI: 10.3390/insects15050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Parasitoids commonly manipulate their host's metabolism and immunity to facilitate their offspring survival, but the mechanisms remain poorly understood. Here, we deconstructed the manipulation strategy of a newly discovered parasitoid wasp, L. myrica, which parasitizes D. melanogaster. Using RNA-seq, we analyzed transcriptomes of L. myrica-parasitized and non-parasitized Drosophila host larvae. A total of 22.29 Gb and 23.85 Gb of clean reads were obtained from the two samples, respectively, and differential expression analysis identified 445 DEGs. Of them, 304 genes were upregulated and 141 genes were downregulated in parasitized hosts compared with non-parasitized larvae. Based on the functional annotations in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, we found that the genes involved in host nutrition metabolism were significantly upregulated, particularly in carbohydrate, amino acid, and lipid metabolism. We also identified 30 other metabolism-related DEGs, including hexokinase, fatty acid synthase, and UDP-glycosyltransferase (Ugt) genes. We observed that five Bomanin genes (Boms) and six antimicrobial peptides (AMPs) were upregulated. Moreover, a qRT-PCR analysis of 12 randomly selected DEGs confirmed the reproducibility and accuracy of the RNA-seq data. Our results provide a comprehensive transcriptomic analysis of how L. myrica manipulates its host, laying a solid foundation for studies on the regulatory mechanisms employed by parasitoid wasps in their hosts.
Collapse
Affiliation(s)
- Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jieyu Shan
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wenqi Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ting Feng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zixuan Xu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China; (J.Z.); (J.S.); (W.S.); (T.F.); (Y.S.); (Z.X.); (Z.D.); (J.H.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Liu S, Zhang J, Sheng Y, Feng T, Shi W, Lu Y, Guan X, Chen X, Huang J, Chen J. Metabolomics Provides New Insights into Host Manipulation Strategies by Asobara japonica (Hymenoptera: Braconidae), a Fruit Fly Parasitoid. Metabolites 2023; 13:metabo13030336. [PMID: 36984776 PMCID: PMC10053316 DOI: 10.3390/metabo13030336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Asobara japonica (Hymenoptera: Braconidae) is an endoparasitoid wasp that can successfully parasitize a wide range of host species across the Drosophila genus, including the invasive crop pest Drosophila suzukii. Parasitoids are capable of regulating the host metabolism to produce the nutritional metabolites for the survival of their offspring. Here, we intend to investigate the metabolic changes in D. melanogaster hosts after parasitization by A. japonica, using the non-targeted LC-MS (liquid chromatography-mass spectrometry) metabolomics analysis. In total, 3043 metabolites were identified, most of which were not affected by A. japonica parasitization. About 205 metabolites were significantly affected in parasitized hosts in comparison to non-parasitized hosts. The changed metabolites were divided into 10 distinct biochemical groups. Among them, most of the lipid metabolic substances were significantly decreased in parasitized hosts. On the contrary, most of metabolites associated with the metabolism of amino acids and sugars showed a higher abundance of parasitized hosts, and were enriched for a wide range of pathways. In addition, eight neuromodulatory-related substances were upregulated in hosts post A. japonica parasitization. Our results reveal that the metabolites are greatly changed in parasitized hosts, which might help uncover the underlying mechanisms of host manipulation that will advance our understanding of host–parasitoid coevolution.
Collapse
Affiliation(s)
- Shengmei Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ting Feng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wenqi Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982133
| |
Collapse
|
5
|
Song Y, Gu F, Zhou W, Li P, Wu F, Sheng S. Parasitoid Wasps Can Manipulate Host Trehalase to the Benefit of Their Offspring. INSECTS 2022; 13:833. [PMID: 36135534 PMCID: PMC9500599 DOI: 10.3390/insects13090833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Trehalase is an essential hydrolase of trehalose in insects. However, whether and how trehalase performs in the association of parasitoid wasps and their hosts still remains unknown. Here, the exact function of trehalase of the general cutworm Spodoptera litura after it was parasitized by its predominant endoparasitoid Meterous pulchricornis was elucidated. Two trehalase genes (SlTre1, SlTre2) were identified, and they were highly expressed five days after parasitization by M. pulchricornis. Then, we successfully silenced SlTre1 and SlTre2 in parasitized third instar S. litura larvae. The content of glucose, which is the hydrolysate of trehalose, was significantly decreased after silencing SlTres in parasitized S. litura larvae, and the activities of trehalase were also notably reduced. In addition, the cocoon weight, the emergence rate, proportion of normal adults, and the body size of parasitoid offsprings were significantly decreased in SlTre1- or SlTre2-silenced groups compared to the controls. These results implied that parasitization by parasitoids regulated the trehalase of host larvae to create a suitable nutritional environment for the parasitoid offspring. The present study broadens the knowledge of trehalase in the interaction between parasitoids and their hosts and is of benefit to biological control of S. litura acting by parasitoid wasps.
Collapse
Affiliation(s)
- Yan Song
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Fengming Gu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Weihong Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ping Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Fuan Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| |
Collapse
|
6
|
Zhang S, Huang J, Wang Q, You M, Xia X. Changes in the Host Gut Microbiota during Parasitization by Parasitic Wasp Cotesia vestalis. INSECTS 2022; 13:760. [PMID: 36135461 PMCID: PMC9506224 DOI: 10.3390/insects13090760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Parasites attack the host insects and possibly impact the host-gut microbiota, which leads to provision of a suitable host environment for parasites' development. However, little is known about whether and how the parasitic wasp Cotesia vestalis alters the gut microbiota of the host Plutella xylostella. In this study, 16S rDNA microbial profiling, combined with a traditional isolation and culture method, were used to assess changes in the bacterial microbiome of parasitized and non-parasitized hosts at different developmental stages of C. vestalis larvae. Parasitization affected both the diversity and structure of the host-gut microbiota, with a significant reduction in richness on the sixth day post parasitization (6 DPP) and significant differences in bacterial structure between parasitized and non-parasitized hosts on the third day. The bacterial abundance of host-gut microbiota changed significantly as the parasitization progressed, resulting in alteration of potential functional contribution. Notably, the relative abundance of the predominant family Enterobacteriaceae was significantly decreased on the third day post-parasitization. In addition, the results of traditional isolation and culture of bacteria indicated differences in the bacterial composition between the three DPP and CK3 groups, as with 16S microbial profiling. These findings shed light on the interaction between a parasitic wasp and gut bacteria in the host insect during parasitization.
Collapse
Affiliation(s)
- Shuaiqi Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Jieling Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Qiuping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
7
|
Magaña AJ, Dáder B, Sancho G, Adán Á, Morales I, Viñuela E. Comparison of the Parasitization of Chelonus inanitus L. (Hymenoptera: Braconidae) in Two Spodoptera Pests and Evaluation of the Procedure for Its Production. INSECTS 2022; 13:99. [PMID: 35055942 PMCID: PMC8779801 DOI: 10.3390/insects13010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022]
Abstract
Chelonus inanitus (L.) is an egg-larval parasitoid of noctuids Spodoptera exigua (Hübner) and S. littoralis (Boisduval), whose mass rearing or real potential has not been targeted yet. To improve the rearing in the factitious host Ephestia kuehniella Zeller, we investigated the influence of host age and number of females parasitizing simultaneously on the overall rearing success, the influence of host age on the life cycle, and the influence of host species on the parasitoid body size. The proportion of emerging C. inanitus was higher from young host eggs, but more females emerged from mature eggs. Under high parasitoid competition, we observed a reduction in non-parasitized hosts without reducing parasitoid emergence. The parasitoid life cycle was longer in females, but the mismatch between sexes was smaller in mature eggs. The parasitoid size was smaller in the factitious host than in the natural hosts. Under semi-field conditions, we investigated the competition among parasitoid females on the overall parasitism success. The reproductive parasitism was more successful in S. exigua than in S. littoralis, and the maximum emergence was reached with three and four females, respectively. The control of S. littoralis may be attributed to the high developmental mortality, a non-reproductive parasitism that is often underestimated.
Collapse
Affiliation(s)
| | - Beatriz Dáder
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Avda. Puerta de Hierro 2, 28040 Madrid, Spain; (A.J.M.); (G.S.); (Á.A.); (I.M.); (E.V.)
| | | | | | | | | |
Collapse
|
8
|
Comparative transcriptome analysis reveals a potential mechanism for host nutritional manipulation after parasitization by Leptopilina boulardi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100862. [PMID: 34120097 DOI: 10.1016/j.cbd.2021.100862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/13/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023]
Abstract
Parasitoids have been extensively found to manipulate nutrient amounts of their hosts to benefit their own development and survival, but the underlying mechanisms are largely unknown. Leptopilina boulardi (Hymenoptera: Figitidae) is a larval-pupal endoparasitoid wasp of Drosophila melanogaster whose survival relies on the nutrients provided by its Drosophila host. Here, we used RNA-seq to compare the gene expression levels of the host midgut at 24 h and 48 h post L. boulardi parasitization. We obtained 95 and 191 differentially expressed genes (DEGs) in the parasitized host midgut at 24 h and 48 h post L. boulardi parasitization, respectively. A KEGG analysis revealed that several metabolic pathways were significantly enriched in the upregulated DEGs, and these pathways included "starch and sucrose metabolism" and "galactose metabolism". A functional annotation analysis showed that four classes of genes involved in carbohydrate digestion process had increased expression levels in the midgut post L.boulardi parasitization than nonparasitized groups: glucosidase, mannosidase, chitinase and amylase. Genes involved in protein digestion process were also found among the DEGs, and most of these genes, which belonged to the metallopeptidase and serine-type endopeptidase families, were found at higher expression levels in the parasitized host midgut comparing with nonparasitized hosts. Moreover, some immune genes, particularly those involved in the Toll and Imd pathways, also exhibited high expression levels after L.boulardi parasitization. Our study provides large-scale transcriptome data and identifies sets of DEGs between parasitized and nonparasitized host midgut tissues at 24 h and 48 h post L. boulardi parasitization. These resources help improve our understanding of how parasitoid infection affects the nutrient components in the hosts.
Collapse
|
9
|
Wang Y, Wu X, Wang Z, Chen T, Zhou S, Chen J, Pang L, Ye X, Shi M, Huang J, Chen X. Symbiotic bracovirus of a parasite manipulates host lipid metabolism via tachykinin signaling. PLoS Pathog 2021; 17:e1009365. [PMID: 33647060 PMCID: PMC7951984 DOI: 10.1371/journal.ppat.1009365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
Parasites alter host energy homeostasis for their own development, but the mechanisms underlying this phenomenon remain largely unknown. Here, we show that Cotesia vestalis, an endoparasitic wasp of Plutella xylostella larvae, stimulates a reduction of host lipid levels. This process requires excess secretion of P. xylostella tachykinin (PxTK) peptides from enteroendocrine cells (EEs) in the midgut of the parasitized host larvae. We found that parasitization upregulates PxTK signaling to suppress lipogenesis in midgut enterocytes (ECs) in a non-cell-autonomous manner, and the reduced host lipid level benefits the development of wasp offspring and their subsequent parasitic ability. We further found that a C. vestalis bracovirus (CvBV) gene, CvBV 9–2, is responsible for PxTK induction, which in turn reduces the systemic lipid level of the host. Taken together, these findings illustrate a novel mechanism for parasite manipulation of host energy homeostasis by a symbiotic bracovirus gene to promote the development and increase the parasitic efficiency of an agriculturally important wasp species. Parasitic wasps are ubiquitous on earth and diverse. They lay eggs in or on the bodies of their hosts, and they have evolved adaptive strategies to regulate the energy metabolism of their hosts to match their own specific nutrition requirements. Here, we found that Cotesia vestalis, a solitary endoparasitoid of Plutella xylostella, uses symbiotic bracovirus as a weapon to manipulate host systemic lipid levels. Specifically, a C. vestalis bracovirus (CvBV) gene, CvBV 9–2, is responsible for the induction of PxTK, which in turn suppresses lipogenesis in the midgut of the parasitized host, leading to a nutritional lipid level suitable for the development and subsequent parasitic efficiency of C. vestalis wasps. Our study provides innovative insights into the mechanisms by which parasitic wasps manipulate host lipid homeostasis and may help to expand our knowledge of other parasitic systems.
Collapse
Affiliation(s)
- Yanping Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zehua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Ting Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Min Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- * E-mail:
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Liu K, Yin D, Shu Y, Dai P, Yang Y, Wu H. Transcriptome and metabolome analyses of Coilia nasus in response to Anisakidae parasite infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:235-242. [PMID: 30611778 DOI: 10.1016/j.fsi.2018.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Parasites from the family Anisakidae are capable of infecting a range of marine fish species worldwide. Coilia nasus, which usually feeds and overwinters in coastal waters and spawns in freshwater, is highly susceptible to infection by Anisakidae. In this study, we used scanning electron microscopes to show that C. nasus infected by Anisakidae exhibited damage and fibrosis of the liver tissue. To better understand host immune reaction and metabolic changes to Anisakidae infection, we used a combination of transcriptomic and metabolomic method to characterize the key genes and metabolites, and the signaling pathway regulation of C. nasus infected by Anisakidae. We generated 62,604 unigenes from liver tissue and identified 391 compounds from serum. Of these, Anisakidae infection resulted in significant up-regulation of 545 genes and 28 metabolites, and significant down-regulation of 416 genes and 37 metabolites. Seventy-four of the 961 differentially expressed genes were linked to immune response, and 1, 2-Diacylglycerol, an important immune-related metabolite, was significantly up-regulated after infection. Our results show activation of antigen processing and presentation, initiation of the T cell receptor signaling pathway, disruption of the TCA cycle, and changes to the amino acid and Glycerolipid metabolisms, which indicate perturbations to the host immune system and metabolism following infection. This is the first study describing the immune responses and metabolic changes in C. nasus to Anisakidae infection, and thus improves our understanding of the interaction mechanisms between C. nasus and Anisakidae. Our findings will be useful for future research on the population ecology of C. nasus.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Denghua Yin
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Yilin Shu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Pei Dai
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Yanping Yang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Hailong Wu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
11
|
Kim E, Kim Y. Translational Control of Host Gene Expression by a Cys-Motif Protein Encoded in a Bracovirus. PLoS One 2016; 11:e0161661. [PMID: 27598941 PMCID: PMC5012692 DOI: 10.1371/journal.pone.0161661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
Translational control is a strategy that various viruses use to manipulate their hosts to suppress acute antiviral response. Polydnaviruses, a group of insect double-stranded DNA viruses symbiotic to some endoparasitoid wasps, are divided into two genera: ichnovirus (IV) and bracovirus (BV). In IV, some Cys-motif genes are known as host translation-inhibitory factors (HTIF). The genome of endoparasitoid wasp Cotesia plutellae contains a Cys-motif gene (Cp-TSP13) homologous to an HTIF known as teratocyte-secretory protein 14 (TSP14) of Microplitis croceipes. Cp-TSP13 consists of 129 amino acid residues with a predicted molecular weight of 13.987 kDa and pI value of 7.928. Genomic DNA region encoding its open reading frame has three introns. Cp-TSP13 possesses six conserved cysteine residues as other Cys-motif genes functioning as HTIF. Cp-TSP13 was expressed in Plutella xylostella larvae parasitized by C. plutellae. C. plutellae bracovirus (CpBV) was purified and injected into non-parasitized P. xylostella that expressed Cp-TSP13. Cp-TSP13 was cloned into a eukaryotic expression vector and used to infect Sf9 cells to transiently express Cp-TSP13. The synthesized Cp-TSP13 protein was detected in culture broth. An overlaying experiment showed that the purified Cp-TSP13 entered hemocytes. It was localized in the cytosol. Recombinant Cp-TSP13 significantly inhibited protein synthesis of secretory proteins when it was added to in vitro cultured fat body. In addition, the recombinant Cp-TSP13 directly inhibited the translation of fat body mRNAs in in vitro translation assay using rabbit reticulocyte lysate. Moreover, the recombinant Cp-TSP13 significantly suppressed cellular immune responses by inhibiting hemocyte-spreading behavior. It also exhibited significant insecticidal activities by both injection and feeding routes. These results indicate that Cp-TSP13 is a viral HTIF.
Collapse
Affiliation(s)
- Eunseong Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Laurino S, Grossi G, Pucci P, Flagiello A, Bufo SA, Bianco G, Salvia R, Vinson SB, Vogel H, Falabella P. Identification of major Toxoneuron nigriceps venom proteins using an integrated transcriptomic/proteomic approach. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:49-61. [PMID: 27388778 DOI: 10.1016/j.ibmb.2016.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/28/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Endoparasitoids in the order Hymenoptera are natural enemies of several herbivorous insect pest species. During oviposition they inject a mixture of factors, which include venom, into the host, ensuring the successful parasitism and the development of their progeny. Although these parasitoid factors are known to be responsible for host manipulation, such as immune system suppression, little is known about both identity and function of the majority of their venom components. To identify the major proteins of Toxoneuron nigriceps (Hymenoptera: Braconidae) venom, we used an integrated transcriptomic and proteomic approach. The tandem-mass spectrometric (LC-MS/MS) data combined with T. nigriceps venom gland transcriptome used as a reference database resulted in the identification of a total of thirty one different proteins. While some of the identified proteins have been described in venom from several parasitoids, others were identified for the first time. Among the identified proteins, hydrolases constituted the most abundant family followed by transferases, oxidoreductases, ligases, lyases and isomerases. The hydrolases identified in the T. nigriceps venom glands included proteases, peptidases and glycosidases, reported as common components of venom from several parasitoid species. Taken together, the identified proteins included factors that could potentially inhibit the host immune system, manipulate host physiological processes and host development, as well as provide nutrients to the parasitoid progeny, degrading host tissues by specific hydrolytic enzymes. The venom decoding provides us with information about the identity of candidate venom factors which could contribute to the success of parasitism, together with other maternal and embryonic factors.
Collapse
Affiliation(s)
- Simona Laurino
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Gerarda Grossi
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Pietro Pucci
- Dipartimento di Scienze Chimiche e Ceinge Biotecnologie Avanzate, Università di Napoli Federico II, Via Cintia 6, 80126, Napoli, Italy
| | - Angela Flagiello
- Ceinge Biotecnologie Avanzate, Via Gaetano Salvatore 482, 80131, Napoli, Italy
| | - Sabino Aurelio Bufo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Rosanna Salvia
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - S Bradleigh Vinson
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Patrizia Falabella
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
13
|
Wang Y, Xiao D, Wang R, Li F, Zhang F, Wang S. Deep Sequencing-Based Transcriptome Analysis Reveals the Regulatory Mechanism of Bemisia tabaci (Hemiptera: Aleyrodidae) Nymph Parasitized by Encarsia sophia (Hymenoptera: Aphelinidae). PLoS One 2016; 11:e0157684. [PMID: 27332546 PMCID: PMC4917224 DOI: 10.1371/journal.pone.0157684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
The whitefly Bemisia tabaci is a genetically diverse complex with multiple cryptic species, and some are the most destructive invasive pests of many ornamentals and crops worldwide. Encarsia sophia is an autoparasitoid wasp that demonstrated high efficiency as bio-control agent of whiteflies. However, the immune mechanism of B. tabaci parasitization by E. sophia is unknown. In order to investigate immune response of B. tabaci to E. Sophia parasitization, the transcriptome of E. sophia parasitized B. tabaci nymph was sequenced by Illumina sequencing. De novo assembly generated 393,063 unigenes with average length of 616 bp, in which 46,406 unigenes (15.8% of all unigenes) were successfully mapped. Parasitization by E. sophia had significant effects on the transcriptome profile of B. tabaci nymph. A total of 1482 genes were significantly differentially expressed, of which 852 genes were up-regulated and 630 genes were down-regulated. These genes were mainly involved in immune response, development, metabolism and host signaling pathways. At least 52 genes were found to be involved in the host immune response, 33 genes were involved in the development process, and 29 genes were involved in host metabolism. Taken together, the assembled and annotated transcriptome sequences provided a valuable genomic resource for further understanding the molecular mechanism of immune response of B. tabaci parasitization by E. sophia.
Collapse
Affiliation(s)
- Yingying Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Da Xiao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Fan Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
14
|
Zhang S, Luo JY, Lv LM, Wang CY, Li CH, Zhu XZ, Cui JJ. Effects of Lysiphlebia japonica (Ashmead) on cotton-melon aphid Aphis gossypii Glover lipid synthesis. INSECT MOLECULAR BIOLOGY 2015; 24:348-357. [PMID: 25702953 DOI: 10.1111/imb.12162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cotton-melon aphid, Aphis gossypii Glover, is a major insect pest worldwide. The wasp Lysiphlebia japonica (Ashmead) is the predominant parasitoid of cotton-melon aphids in north China. Parasitization has been reported to affect host lipids in several systems, but the lipid synthesis-related genes and transcription changes in the cotton-melon aphid-parasitoid interaction are not clear. In this study, 36 lipid synthesis-related genes were cloned and their transcription changes in parasitized aphids were studied by quantitative real-time PCR. In parasitized cotton-melon aphids, almost all key genes in the glycerolipid synthesis pathway were up-regulated, the rate-limiting enzyme diacylglycerol o-acyltransferase by 3.24-fold. The rate-limiting enzyme of the glycolytic pathway, pyruvate kinase, and the pace-making enzyme in citrate synthesis were 1.69-fold and 1.75-fold less in parasitized aphids than in unparasitized aphids, respectively. These results suggest increased glycerolipid synthesis in parasitized aphids but that citrate production from sucrose was decreased. Aconitate hydratase (aco), in the pathway that converts amino acids into citrate, was up-regulated. The number of fragments per kilobase per million mapped reads of the mitochondrial aco2 gene was only 4.6, whereas that of the cytoplasmic aco1 was 41.5, indicating that the citrate comes from amino acids in the cytoplasm of parasitized cotton-melon aphids.
Collapse
Affiliation(s)
- S Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In nature, larvae of the fruit fly Drosophila melanogaster are commonly infected by parasitoid wasps. Following infection, flies mount an immune response termed cellular encapsulation in which fly immune cells form a multilayered capsule that covers and kills the wasp egg. Parasitoids have thus evolved virulence factors to suppress cellular encapsulation. To uncover the molecular mechanisms underlying the antiwasp response, we and others have begun identifying and functionally characterizing these virulence factors. Our recent work on the Drosophila parasitoid Ganaspis sp.1 has demonstrated that a virulence factor encoding a SERCA-type calcium pump plays an important role in Ganaspis sp.1 virulence. This venom SERCA antagonizes fly immune cell calcium signaling and thereby prevents the activation of the encapsulation response. In this way, the study of wasp virulence factors has revealed a novel aspect of fly immunity, namely a role for calcium signaling in fly immune cell activation, which is conserved with human immunity, again illustrating the marked conservation between fly and mammalian immune responses. Our findings demonstrate that the cellular encapsulation response can serve as a model of immune cell function and can also provide valuable insight into basic cell biological processes.
Collapse
Affiliation(s)
- Nathan T Mortimer
- School of Life Sciences; Gibbet Hill Campus; University of Warwick; Coventry, UK
| |
Collapse
|
16
|
Le Ralec A, Ribulé A, Barragan A, Outreman Y. Host range limitation caused by incomplete host regulation in an aphid parasitoid. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:363-371. [PMID: 21182844 DOI: 10.1016/j.jinsphys.2010.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 12/03/2010] [Accepted: 12/08/2010] [Indexed: 05/30/2023]
Abstract
Defining host ranges in parasitoid insects is important both from a theoretical and an applied point of view. Based on the literature, some species seem able to use a wide range of hosts, while field studies indicate possible local host specialization. In koinobiont endoparasitoid species, such specialization could involve physiological processes. We tested the ability of two strains of the cosmopolitan and polyphagous parasitoid Diaeretiella rapae, to develop in three of its recorded aphid host species. Both strains produced high parasitism rates on the cabbage aphid Brevicoryne brassicae and the green peach aphid Myzus persicae but almost no progeny on the cherry-oat aphid Rhopalosiphum padi. This last species was less attacked by female parasitoids. Moreover, parasitoid eggs and larvae were smaller than in the two other host aphid species and their development was delayed. This abnormal development appeared to be due to an incomplete host regulation process, probably related to the low number and the size of teratocytes produced by D. rapae in R. padi individuals. Such a failure as far as gaining control of the host's metabolism is concerned could play an important role in shaping the host range of parasitoid insects, leading to local variation of the host spectrum in populations from various geographical areas.
Collapse
Affiliation(s)
- A Le Ralec
- UMR 1099 INRA-Agrocampus Ouest-Université Rennes 1 Biologie des Organismes et des Populations appliquée à la Protection des Plantes [BIO3P], Laboratoire Ecologie et Sciences Phytosanitaires, 65 rue de Saint-Brieuc, Rennes Cedex, France.
| | | | | | | |
Collapse
|
17
|
Vincent B, Kaeslin M, Roth T, Heller M, Poulain J, Cousserans F, Schaller J, Poirié M, Lanzrein B, Drezen JM, Moreau SJM. The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach. BMC Genomics 2010; 11:693. [PMID: 21138570 PMCID: PMC3091792 DOI: 10.1186/1471-2164-11-693] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/07/2010] [Indexed: 11/12/2022] Open
Abstract
Background Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp Chelonus inanitus (Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences. Results About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein. An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the Chelonus lineage. Venom components specific to C. inanitus included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins. Conclusions The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of C. inanitus appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.
Collapse
Affiliation(s)
- Bruno Vincent
- UMR 6035 CNRS, Institut de Recherche sur la Biologie de l'Insecte, Faculté des Sciences et Techniques, Université François-Rabelais, Parc Grandmont, 37200 Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaeslin M, Reinhard M, Bühler D, Roth T, Pfister-Wilhelm R, Lanzrein B. Venom of the egg-larval parasitoid Chelonus inanitus is a complex mixture and has multiple biological effects. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:686-694. [PMID: 20006617 DOI: 10.1016/j.jinsphys.2009.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/04/2009] [Accepted: 12/07/2009] [Indexed: 05/28/2023]
Abstract
The egg-larval parasitoid Chelonus inanitus injects bracoviruses (BVs) and venom along with the egg into the host egg; both components are essential for successful parasitoid development. All stages of eggs of its natural host, Spodoptera littoralis, can be successfully parasitized, i.e. from mainly a yolk sphere to a fully developed embryo. Here, we show that the venom contains at least 25 proteins with masses from 14kDa to over 300kDa ranging from acidic to basic. The majority is glycosylated and their persistence in the host is short when old eggs are parasitized and much longer when young eggs are parasitized. Physiological experiments indicated three different functions. (1) Venom synergized the effect of BVs in disrupting host development when injected into third instar larvae. (2) Venom had a transient paralytic effect when injected into sixth instar larvae. (3) In vitro experiments with haemocytes of fourth instar larvae suggested that venom alters cell membrane permeability. We propose that venom promotes entry of BVs into host cells and facilitates placement of the egg in the embryo's haemocoel when old eggs are parasitized. The multifunctionality of the venom might thus be essential in enabling parasitization of all stages of host eggs.
Collapse
Affiliation(s)
- Martha Kaeslin
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Volkoff AN, Jouan V, Urbach S, Samain S, Bergoin M, Wincker P, Demettre E, Cousserans F, Provost B, Coulibaly F, Legeai F, Béliveau C, Cusson M, Gyapay G, Drezen JM. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog 2010; 6:e1000923. [PMID: 20523890 PMCID: PMC2877734 DOI: 10.1371/journal.ppat.1000923] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/26/2010] [Indexed: 11/18/2022] Open
Abstract
Many thousands of endoparasitic wasp species are known to inject polydnavirus (PDV) particles into their caterpillar host during oviposition, causing immune and developmental dysfunctions that benefit the wasp larva. PDVs associated with braconid and ichneumonid wasps, bracoviruses and ichnoviruses respectively, both deliver multiple circular dsDNA molecules to the caterpillar. These molecules contain virulence genes but lack core genes typically involved in particle production. This is not completely unexpected given that no PDV replication takes place in the caterpillar. Particle production is confined to the wasp ovary where viral DNAs are generated from proviral copies maintained within the wasp genome. We recently showed that the genes involved in bracovirus particle production reside within the wasp genome and are related to nudiviruses. In the present work we characterized genes involved in ichnovirus particle production by analyzing the components of purified Hyposoter didymator Ichnovirus particles by LC-MS/MS and studying their organization in the wasp genome. Their products are conserved among ichnovirus-associated wasps and constitute a specific set of proteins in the virosphere. Strikingly, these genes are clustered in specialized regions of the wasp genome which are amplified along with proviral DNA during virus particle replication, but are not packaged in the particles. Clearly our results show that ichnoviruses and bracoviruses particles originated from different viral entities, thus providing an example of convergent evolution where two groups of wasps have independently domesticated viruses to deliver genes into their hosts.
Collapse
Affiliation(s)
- Anne-Nathalie Volkoff
- UMR 1231 INRA-Université Montpellier 2, Biologie Intégrative et Virologie des Insectes, Place Eugène Bataillon, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Luo L, Zeng L. A new rod-shaped virus from parasitic wasp Diachasmimorpha longicaudata (Hymenoptera: Braconidae). J Invertebr Pathol 2009; 103:165-9. [PMID: 19682456 DOI: 10.1016/j.jip.2009.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 07/28/2009] [Accepted: 08/07/2009] [Indexed: 11/27/2022]
Abstract
A new rod-shaped nucleocapsids (NCs) was found inadvertently in Diachasmimorpha longicaudata accessory gland filaments (AGFs). The NCs were 30 nm in diameter and nearly 900 nm in length. They replicated in a small cell type of the AGFs in D. longicaudata, and following oviposition, invaded and proliferated in the hemocytes of a parasitized host Bactrocera dorsalis Hendel. This finding of a completely new virus in the AGF indicate that different geographical populations (subspecies) of D. longicaudata may carry different sybionts. This is the first report showing that the same wasp species, but from a different geographical populations, can carry an entirely different virus.
Collapse
Affiliation(s)
- Li Luo
- Laboratory of Insect Ecology, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, China
| | | |
Collapse
|
21
|
Pfister-Wilhelm R, Lanzrein B. Stage dependent influences of polydnaviruses and the parasitoid larva on host ecdysteroids. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:707-715. [PMID: 19446562 DOI: 10.1016/j.jinsphys.2009.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
In the solitary egg-larval parasitoid Chelonus inanitus (Braconidae) both polydnavirus and the parasitoid larva manipulate host development. Parasitization leads to a premature drop in juvenile hormone titre and a precocious onset of metamorphosis in the 5th larval instar. The C. inanitus bracovirus (CiBV) alone causes a reduction in host ecdysteroid titres at the pupal cell formation stage and prevents pupation. Here we report three new findings. (1) We show that parasitization causes a reduction in haemolymph ecdysteroid titre immediately after the moult to the 5th instar; similarly low values were seen in nonparasitized larvae after the moult to the 6th instar. These data along with parasitoid removal experiments indicate that the low ecdysteroid titre after the moult is a very early sign of the upcoming metamorphosis. (2) In vitro experiments with prothoracic glands and brain extracts showed that CiBV affects both prothoracic glands and prothoracicotropic hormone after the stage of pupal cell formation. (3) In the haemolymph of parasitized larvae the ecdysteroid titre increased in the late cell formation stage, i.e. immediately before egression of the parasitoid. In vitro experiments showed that late 2nd instar parasitoids release ecdysteroids and are thus very likely responsible for the rise in host ecdysteroids.
Collapse
|
22
|
Jervis MA, Ellers J, Harvey JA. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. ANNUAL REVIEW OF ENTOMOLOGY 2008; 53:361-85. [PMID: 17877453 DOI: 10.1146/annurev.ento.53.103106.093433] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Parasitoids display remarkable inter- and intraspecific variation in their reproductive and associated traits. Adaptive explanations have been proposed for many of the between-trait relationships. We present an overview of the current knowledge of parasitoid reproductive biology, focusing on egg production strategies in females, by placing parasitoid reproduction within physiological and ecological contexts. Thus, we relate parasitoid reproduction both to inter- and intraspecific patterns of nutrient allocation, utilization, and acquisition, and to key aspects of host ecology, specifically abundance and dispersion pattern. We review the evidence that resource trade-offs underlie several key intertrait correlations and that reproductive and feeding strategies are closely integrated at both the physiological and the behavioral levels. The idea that parasitoids can be divided into capital-breeders or income-breeders is no longer tenable; such terminology is best restricted to the females' utilization of particular nutrients.
Collapse
Affiliation(s)
- Mark A Jervis
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
23
|
Weber B, Annaheim M, Lanzrein B. Transcriptional analysis of polydnaviral genes in the course of parasitization reveals segment-specific patterns. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 66:9-22. [PMID: 17694561 DOI: 10.1002/arch.20190] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polydnaviruses are symbiotic viruses of endoparasitic wasps, which are formed in their ovary and injected along with the eggs into the host. They manipulate the host in a way to allow successful parasitoid development. A hallmark of polydnaviruses is their segmented genome consisting of several circles of double-stranded DNA. We are studying the solitary egg-larval parasitoid Chelonus inanitus (Braconidae) parasitizing Spodoptera littoralis (Noctuidae). The polydnavirus of Chelonus inanitus (CiV) protects the parasitoid larva from encapsulation by the host's immune system, slightly modifies host nutritional physiology, and induces a developmental arrest of the host in the prepupal stage. Here we present data on newly identified CiV genes and their expression patterns in the course of parasitization. None of these genes has similarity to other genes and so far no gene families could be found. A rough estimation of transcript quantities revealed that even the most highly expressed CiV genes reach maximal values, which are 250 times lower than actin. This indicates that the CiV-induced alterations of the host are brought about by a concerted action of low levels of transcripts. In an overview, we show the expression patterns of all CiV genes analysed up to now; they indicate that several genes with similar expression patterns (early, persistent, intermediate, or late) are grouped together on the same segment. This is the first observation of this type. It suggests that one function of the segmentation of the polydnavirus genome may be the grouping together of genes, which are regulated in a similar manner.
Collapse
Affiliation(s)
- Benjamin Weber
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
24
|
Annaheim M, Lanzrein B. Genome organization of the Chelonus inanitus polydnavirus: excision sites, spacers and abundance of proviral and excised segments. J Gen Virol 2007; 88:450-457. [PMID: 17251562 DOI: 10.1099/vir.0.82396-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polydnaviruses are only found in symbiotic association with parasitic wasps within the families Ichneumonidae and Braconidae (ichnoviruses and bracoviruses). They have a segmented genome consisting of circular double-stranded DNA. In the proviral linear form they are integrated in the wasp's genome; in two bracoviruses, segments were found to be clustered. Proviral segments have direct terminal repeats. Segment excision has been proposed to occur through juxtaposition of these repeats by formation of a loop and recombination; one copy of the repeat then ends up in the circular segment and one in the rejoined DNA. Here we analysed the excision/circularization site of four segments of the Chelonus inanitus bracovirus (CiV) and found that they are similar to the two already known sites; on the basis of the combined data an extended excision site motif was found. Analyses of segment flanking sequences led to the first identification of one complete and several partial spacers between proviral segments in a polydnavirus. The spacer between the proviral segments CiV14 and CiV22.5 has a length of 2065 bp; the terminal repeats of CiV14 and CiV22.5 were seen to have an opposite orientation and from this a model on the spacial organization of the loops of the proviral cluster is proposed. Through various approaches it was shown that spacers are not excised or injected into the host. Measurement of relative abundances of various segments in proviral and excised form indicates for the first time that abundant segments are present in multiple copies in the proviral form.
Collapse
Affiliation(s)
- Marc Annaheim
- Institute of Cell Biology, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Beatrice Lanzrein
- Institute of Cell Biology, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| |
Collapse
|
25
|
Rivkin H, Kroemer JA, Bronshtein A, Belausov E, Webb BA, Chejanovsky N. Response of immunocompetent and immunosuppressed Spodoptera littoralis larvae to baculovirus infection. J Gen Virol 2006; 87:2217-2225. [PMID: 16847117 DOI: 10.1099/vir.0.81918-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Mediterranean lepidopteran pest Spodoptera littoralis is highly resistant to infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) via the oral route, but highly sensitive to infection with budded virus (BV) via the intrahaemocoelic route. To study the fate of AcMNPV infection in S. littoralis, vHSGFP, an AcMNPV recombinant that expresses the reporter green fluorescent protein gene under the control of the Drosophila heat-shock promoter, and high-resolution fluorescence microscopy were utilized. S. littoralis fourth-instar larvae infected orally with vHSGFP showed melanization and encapsulation of virus-infected tracheoblast cells serving the midgut columnar cells. At 72 h post-infection, the viral foci were removed during the moult clearing the infection. Thus, oral infection was restricted by immune responses to the midgut and midgut-associated tracheal cells. By contrast, injection of BV into the haemocoel resulted in successful infection of tracheoblasts, followed by spread of the virus through the tracheal epidermis to other tissues. However, in contrast to fully permissive infections where tracheoblasts and haemocytes are equally susceptible to infection, a severe limitation to vHSGFP infection of haemocytes was observed. To investigate the resistance of S. littoralis haemocytes to BV infection with AcMNPV, the larval immune system was suppressed with the Chelonus inanitus polydnavirus or a putatively immunosuppressive polydnavirus gene, P-vank-1. Both treatments increased the susceptibility of S. littoralis larvae to AcMNPV. It is concluded that the resistance of S. littoralis to AcMNPV infection involves both humoral and cellular immune responses that act at the gut and haemocyte levels. The results also support the hypothesis that tracheolar cells mediate establishment of systemic baculovirus infections in lepidopteran larvae. The finding that polydnaviruses and their encoded genes synergize baculovirus infection also provides an approach to dissecting the responses of the lepidopteran immune system to viruses by using specific polydnavirus immunosuppressive genes.
Collapse
Affiliation(s)
- Hadassah Rivkin
- Entomology Department, Institute of Plant Protection, The Volcani Center, POB 6, Bet Dagan 50250, Israel
| | - Jeremy A Kroemer
- Department of Entomology, University of Kentucky, S-225 Agricultural Sciences Center North, Lexington, KY 40546, USA
| | - Alexander Bronshtein
- Entomology Department, Institute of Plant Protection, The Volcani Center, POB 6, Bet Dagan 50250, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, The Volcani Center, POB 6, Bet Dagan 50250, Israel
| | - Bruce A Webb
- Department of Entomology, University of Kentucky, S-225 Agricultural Sciences Center North, Lexington, KY 40546, USA
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, POB 6, Bet Dagan 50250, Israel
| |
Collapse
|
26
|
Fath-Goodin A, Gill TA, Martin SB, Webb BA. Effect of Campoletis sonorensis ichnovirus cys-motif proteins on Heliothis virescens larval development. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:576-85. [PMID: 16580679 DOI: 10.1016/j.jinsphys.2006.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/31/2006] [Accepted: 02/08/2006] [Indexed: 05/08/2023]
Abstract
Polydnaviruses are obligate symbionts of some parasitic hymenopteran wasps responsible for modifying the physiology of their host lepidopteran larvae to benefit the endoparasite. Injection of Campoletis sonorensis ichnovirus (CsIV) into Heliothis virescens larvae alters larval growth, development and immunity but genes responsible for alterations of host physiology are not well described. Recent studies of polydnavirus genomes establish that these genomes encode families of related genes expressed in parasitized larvae. Here we evaluate five members of the CsIV cys-motif gene family for their ability to inhibit growth and development of lepidopteran larvae. To study the function of cys-motif proteins, recombinant proteins were produced from baculovirus expression vectors and injected or fed to H. virescens larvae in diet. rVHv1.1 was identified as the most potent protein tested causing a significant reduction in growth of H. virescens and Spodoptera exigua larvae. H. virescens larvae ingesting this protein also exhibited delayed development, reductions in pupation and increased mortality. Increased mortality was associated with chronic sub-lethal baculovirus infections. Taken together, these data indicate that the cys-motif proteins have pleiotropic effects on lepidopteran physiology affecting both development and immunity.
Collapse
Affiliation(s)
- Angelika Fath-Goodin
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Building North, Lexington, KY 40546-0091, USA
| | | | | | | |
Collapse
|
27
|
Kaeslin M, Wyler T, Grossniklaus-Bürgin C, Lanzrein B. Development of the anal vesicle, salivary glands and gut in the egg-larval parasitoid Chelonus inanitus: tools to take up nutrients and to manipulate the host? JOURNAL OF INSECT PHYSIOLOGY 2006; 52:269-81. [PMID: 16386270 DOI: 10.1016/j.jinsphys.2005.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/10/2005] [Accepted: 11/15/2005] [Indexed: 05/05/2023]
Abstract
Larvae of endoparasitoids undergo extensive morphological changes and often have special features to allow their development inside the host. We present the first detailed study on the development of the anal vesicle and the gut. The analyses reveal that the anal vesicle is first seen on the dorsal side of the abdomen as an internal structure covered by a membrane. The morphology of the abdomen then changes intensively: new segments are formed and the anal vesicle develops from a crest of large cells to a protrusion. Towards the end of the first instar, the anal vesicle is fully evaginated and no longer covered by a membrane; the large epithelial cells have microvilli on their apical side which suggests uptake of nutrients from the host's haemolymph. When the larva has moulted to the second instar, the ultrastructure of the anal vesicle begins to change and shows signs of degeneration. In this stage the epithelium of the midgut is fully developed and has a brush border which suggests that nutrient uptake occurs now primarily through the midgut. The anal vesicle then degenerates completely. The salivary glands are prominent already in first instar larvae and appear to produce and release a host regulatory 212 kD protein.
Collapse
Affiliation(s)
- Martha Kaeslin
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Berne, Switzerland
| | | | | | | |
Collapse
|
28
|
Gill TA, Fath-Goodin A, Maiti II, Webb BA. Potential Uses of Cys‐Motif and Other Polydnavirus Genes in Biotechnology. Adv Virus Res 2006; 68:393-426. [PMID: 16997018 DOI: 10.1016/s0065-3527(06)68011-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exploiting the ability of insect pathogens, parasites, and predators to control natural and damaging insect populations is a cornerstone of biological control. Here we focus on an unusual group of viruses, the polydnaviruses (PDV), which are obligate symbionts of some hymenopteran insect parasitoids. PDVs have a variety of important pathogenic effects on their parasitized hosts. The genes controlling some of these pathogenic effects, such as inhibition of host development, induction of precocious metamorphosis, slowed or reduced feeding, and immune suppression, may have use for biotechnological applications. In this chapter, we consider the physiological functions of both wasp and viral genes with emphasis on the Cys-motif gene family and their potential use for insect pest control.
Collapse
Affiliation(s)
- Torrence A Gill
- Department of Entomology, S-225 Agricultural Science Building North University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | |
Collapse
|