1
|
Freitas CDT, Demarco D, Oliveira JS, Ramos MV. Review: Laticifer as a plant defense mechanism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112136. [PMID: 38810884 DOI: 10.1016/j.plantsci.2024.112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Laticifers have been utilized as paradigms to enhance comprehension of specific facets of plant ecology and evolution. From the beginning of seedling growth, autonomous laticifer networks are formed throughout the plant structure, extending across all tissues and organs. The vast majority of identified products resulting from laticifer chemistry and metabolism are linked to plant defense. The latex, which is the fluid contained within laticifers, is maintained under pressure and has evolved to serve as a defense mechanism against both aggressors and invaders, irrespective of their capabilities or tactics. Remarkably, the latex composition varies among different species. The current goal is to understand the specific functions of various latex components in combating plant enemies. Therefore, the study of latex's chemical composition and proteome plays a critical role in advancing our understanding about plant defense mechanisms. Here, we will discuss some of these aspects.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| | - Diego Demarco
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson S Oliveira
- Federal University of Delta of Parnaíba, Campus Ministro Reis Velloso, Parnaíba, PI, Brazil
| | - Márcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| |
Collapse
|
2
|
Singh S, Singh IK, Singh A. Comparative proteome analysis of Spodoptera litura-infested Zea mays reveals a robust defense strategy targeting insect peritrophic membrane. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108835. [PMID: 38901230 DOI: 10.1016/j.plaphy.2024.108835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Herbivorous insects such as Spodoptera litura, pose a constant threat to agricultural crops. The incompetence of contemporary pest management tools and techniques stipulates unravelling of molecular dogma, that drives pest-plant interaction. From our previous observations, we inferred that despite being a voracious polyphagous herbivore, S. litura growth and adaptability is severely hampered on maize foliage diet. In this investigation we explored further and demonstrated the impact of maize diet on the insect gut peritrophic membrane (PM, a crucial membrane involved in compartmentalizing digestive events and absorption of nutrients), its structural analysis using scanning electron microscopy (SEM) revealed damaged and perforated PM. Further, this study delves into the intricate resistance mechanism adapted by Z. mays against S. litura by conducting a comparative proteome analysis. We have detected 345 differentially abundant proteins (DAPs) at p < 0.05 and fold change ≥1. The DAPs were categorized as plant defense, secondary metabolite synthesis, redox homeostasis, cytoskeleton/cell wall biosynthesis, primary metabolism, transport and molecular processes. We remarkably report differential expression of proteolysis- and defense-related proteins that have potential to target insect gut, digestion and absorption of nutrients. Our findings contribute to a deeper understanding of the molecular dynamics governing maize resistance against S. litura. Understanding of such intricate molecular dialogues at these interfaces could provide valuable information on the arms race between plants and herbivores, it may pave the way for innovative pest management strategies.
Collapse
Affiliation(s)
- Sujata Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India; Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India; Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India.
| |
Collapse
|
3
|
Wu Y, Dong G, Luo F, Xie H, Li X, Yan J. TkJAZs-TkMYC2-TkSRPP/REF Regulates the Biosynthesis of Natural Rubber in Taraxacum kok-saghyz. PLANTS (BASEL, SWITZERLAND) 2024; 13:2034. [PMID: 39124151 PMCID: PMC11314035 DOI: 10.3390/plants13152034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Taraxacum kok-saghyz (TKS) is a natural rubber (NR)-producing plant and a model plant for studying the biosynthesis of NR. Analyzing and studying the biosynthetic mechanism of NR is an important way to cultivate high-yield rubber TKS varieties. JAZ proteins, which belong to the Jasmonate ZIM domain family, function as negative regulators in the jasmonic acid (JA) signal transduction pathway. MYC2 is typically regarded as a regulatory factor for the target genes of JAZ proteins; JAZ proteins indirectly influence the gene expression regulated by MYC2 by modulating its activity. Theoretically, JAZ is expected to participate in growth, development, and responses to environmental cues related to rubber and biomass accumulation in TKS, all of which rely on the interaction between JAZ and MYC2. In this study, we identified 11 TkJAZs through homology searching of the TKS genomes and bioinformatics analyses. Subcellular localization, Y2H, and BiFC analysis demonstrate that TkJAZs and TkMYC2 are localized in the nucleus, with all TkJAZs and TkMYC2 showing nuclear colocalization interactions. Overexpression of TkMYC2 in TKS inhibited leaf development, promoted root growth, and simultaneously increased NR production. RNA-seq and qRT-PCR analysis revealed that the TkSRPP/REF genes exhibit varying degrees of upregulation compared to the wild type, upregulating the TkREF1 gene by 3.7-fold, suggesting that TkMYC2 regulates the synthesis of NR by modulating the TkSRPP/REF genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Yan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi 832003, China; (Y.W.); (G.D.); (F.L.); (H.X.); (X.L.)
| |
Collapse
|
4
|
Ibrahim SP, Dias RO, Ferreira C, Silva CP, Terra WR. Histochemistry and transcriptomics of mucins and peritrophic membrane (PM) proteins along the midgut of a beetle with incomplete PM and their complementary function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104027. [PMID: 37832798 DOI: 10.1016/j.ibmb.2023.104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The midgut of Zabrotes subfasciatus (Coleoptera) and other insects may have regions lacking a peritrophic membrane (matrix, PM) and covered with a jelly-like material known as peritrophic gel. This work was undertaken to test the hypothesis that the peritrophic gel is a vertebrate-like mucus. By histochemistry we identified mucins along the whole midgut, which contrasts with the known occurrence of PM only at the posterior midgut. We also analyzed the expression of the genes coding for mucus-forming mucins (Mf-mucins), peritrophins, chitin synthases and chitin deacetylases along the midgut and carcass (insect without midgut) by RNA-seq. Mf-mucins were identified as proteins with high O-glycosylation and multiple tandem repeats of Pro/Thr/Ser residues. Peritrophins were separated into PM proteins, cuticular proteins analogous to peritrophins (CPAPs) and ubiquitous-chitin-binding domain-(CBD)-containing proteins (UCBPs). PM proteins have at least 3, CPAP one or 3, and UCBPs have a varied number of CBDs. PM proteins are more expressed at midgut, CPAP at the carcass, and UCBP at both. The results showed that most PM proteins are mainly expressed at the posterior midgut, together with midgut chitin synthase and chitin deacetylase, and in agreement with the presence of PM only at the posterior midgut by visual inspection. The excretion of most midgut chitinase is avoided, suggesting that the shortened PM is functional. Mf-mucins are expressed along the whole midgut, probably forming the extracellular mucus layer observed by histochemistry. Thus, the lack of PM at anterior and middle midgut causes the exposure of a mucus, which may correspond to the previously described peritrophic gel. The putative functional interplay of mucus and PM is discussed. The major role of mucus is proposed to be tissue protection and of PM to enhancing digestive efficiency by allowing enzyme recycling.
Collapse
Affiliation(s)
- Samira P Ibrahim
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, 88040-900, Brazil
| | - Renata O Dias
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade, Federal de Goiás, Av. Esperança s/n, 74690-900, Goiânia, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São, Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| | - Carlos P Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, C.P. 476, Florianópolis, 88040-900, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São, Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São, Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| |
Collapse
|
5
|
Zhang Y, Zhang S, Xu L. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. NPJ Biofilms Microbiomes 2023; 9:66. [PMID: 37735530 PMCID: PMC10514296 DOI: 10.1038/s41522-023-00435-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The gut microbiota serves as a critical "organ" in the life cycle of animals, particularly in the intricate interplay between herbivorous pests and plants. This review summarizes the pivotal functions of the gut microbiota in mediating the insect-plant interactions, encompassing their influence on host insects, modulation of plant physiology, and regulation of the third trophic level species within the ecological network. Given these significant functions, it is plausible to harness these interactions and their underlying mechanisms to develop novel eco-friendly pest control strategies. In this context, we also outline some emerging pest control methods based on the intestinal microbiota or bacteria-mediated interactions, such as symbiont-mediated RNAi and paratransgenesis, albeit these are still in their nascent stages and confront numerous challenges. Overall, both opportunities and challenges coexist in the exploration of the intestinal microbiota-mediated interactions between insect pests and plants, which will not only enrich the fundamental knowledge of plant-insect interactions but also facilitate the development of sustainable pest control strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 311300, Hangzhou, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China.
| |
Collapse
|
6
|
Mason CJ, Ray S, Davidson-Lowe E, Ali J, Luthe DS, Felton G. Plant Nutrition Influences Resistant Maize Defense Responses to the Fall Armyworm (Spodoptera frugiperda). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Plants are often confronted by different groups of herbivores, which threaten their growth and reproduction. However, they are capable of mounting defenses against would-be attackers which may be heightened upon attack. Resistance to insects often varies among plant species, with different genotypes exhibiting unique patterns of chemical and physical defenses. Within this framework, plant access to nutrients may be critical for maximal functioning of resistance mechanisms and are likely to differ among plant genotypes. In this study, we aimed to test the hypothesis that access to nutrition would alter the expression of plant resistance to insects and alter insect performance in a manner consistent with fertilization regime. We used two maize (Zea mays) genotypes possessing different levels of resistance and the fall armyworm (Spodoptera frugiperda) as model systems. Plants were subjected to three fertilization regimes prior to assessing insect-mediated responses. Upon reaching V4 stage, maize plants were separated into two groups, one of which was infested with fall armyworm larvae to induce plant defenses. Plant tissue was collected and used in insect bioassays and to measure the expression of defense-related genes and proteins. Insect performance differed between the two plant genotypes substantially. For each genotype, fertilization altered larval performance, where lower fertilization rates hindered larval growth. Induction of plant defenses by prior herbivory substantially reduced naïve fall armyworm growth in both genotypes. The effects between fertilization and induced defenses were complex, with low fertilization reducing induced defenses in the resistant maize. Gene and protein expression patterns differed between the genotypes, with herbivory often increasing expression, but differing between fertilization levels. The soluble protein concentrations did not change across fertilization levels but was higher in the susceptible maize genotype. These results demonstrate the malleability of plant defenses and the cascading effects of plant nutrition on insect herbivory.
Collapse
|
7
|
Mason CJ, Peiffer M, St Clair A, Hoover K, Felton GW. Concerted impacts of antiherbivore defenses and opportunistic Serratia pathogens on the fall armyworm (Spodoptera frugiperda). Oecologia 2021; 198:167-178. [PMID: 34741665 DOI: 10.1007/s00442-021-05072-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Insects frequently confront different microbial assemblages. Bacteria inhabiting an insect gut are often commensal, but some can become pathogenic when the insect is compromised from different stressors. Herbivores are often confronted by various forms of plant resistance, but how defenses generate opportunistic microbial infections from residents in the gut are not well understood. In this study, we evaluated the pathogenic tendencies of Serratia isolated from the digestive system of healthy fall armyworm larvae (Spodoptera frugiperda) and how it interfaces with plant defenses. We initially selected Serratia strains that varied in their direct expression of virulence factors. Inoculation of the different isolates into the fall armyworm body cavity indicated differing levels of pathogenicity, with some strains exhibiting no effects while others causing mortality 24 h after injection. Oral inoculations of pathogens on larvae provided artificial diets caused marginal (< 7%) mortality. However, when insects were provided different maize genotypes, mortality from Serratia increased and was higher on plants exhibiting elevated levels of herbivore resistance (< 50% mortality). Maize defenses facilitated an initial invasion of pathogenic Serratia into the larval hemocoel¸ which was capable of overcoming insect antimicrobial defenses. Tomato and soybean further indicated elevated mortality due to Serratia compared to artificial diets and differences between plant genotypes. Our results indicate plants can facilitate the incipient emergence of pathobionts within gut of fall armyworm. The ability of resident gut bacteria to switch from a commensal to pathogenic lifestyle has significant ramifications for the host and is likely a broader phenomenon in multitrophic interactions facilitated by plant defenses.
Collapse
Affiliation(s)
- Charles J Mason
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA. .,Tropical Crop and Commodity Protection Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA.
| | - Michelle Peiffer
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Abbi St Clair
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Kelli Hoover
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Gary W Felton
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| |
Collapse
|
8
|
Han Y, Taylor EB, Luthe D. Maize Endochitinase Expression in Response to Fall Armyworm Herbivory. J Chem Ecol 2021; 47:689-706. [PMID: 34056671 DOI: 10.1007/s10886-021-01284-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
A large percentage of crop loss is due to insect damage, especially caterpillar damage. Plant chitinases are considered excellent candidates to combat these insects since they can degrade chitin in peritrophic matrix (PM), an important protective structure in caterpillar midgut. Compared to chemical insecticides, chitinases could improve host plant resistance and be both economically and environmentally advantageous. The focus of this research was to find chitinase candidates that could improve plant resistance by effectively limiting caterpillar damage. Five classes of endochitinase (I-V) genes were characterized in the maize genome, and we isolated and cloned four chitinase genes (chitinase A, chitinase B, chitinase I, and PRm3) present in two maize (Zea mays L.) inbred lines Mp708 and Tx601, with different levels of resistance to caterpillar pests. We also investigated the expression of these maize chitinases in response to fall armyworm (Spodoptera frugiperda, FAW) attack. The results indicated that both chitinase transcript abundance and enzymatic activity increased in response to FAW feeding and mechanical wounding. Furthermore, chitinases retained activity inside the caterpillar midgut and enzymatic activity was detected in the food bolus and frass. When examined under scanning electron microscopy, PMs from Tx601-fed caterpillars showed structural damage when compared to diet controls. Analysis of chitinase transcript abundance after caterpillar feeding and proteomic analysis of maize leaf trichomes in the two inbreds implicated chitinase PRm3 found in Tx601 as a potential insecticidal protein.
Collapse
Affiliation(s)
- Yang Han
- The Pennsylvania State University, Plant Science, University Park, PA, USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Dawn Luthe
- The Pennsylvania State University, Plant Science, University Park, PA, USA.
| |
Collapse
|
9
|
Paiva ÉAS. Do calcium oxalate crystals protect against herbivory? Naturwissenschaften 2021; 108:24. [PMID: 34043088 DOI: 10.1007/s00114-021-01735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Calcium oxalate (CaOx) crystals have challenged human curiosity since the advent of microscopy. These crystals are linked to the control of calcium levels in plant cells, but they have also been attributed several other functions, including protection against herbivory. However, the protection offered by CaOx crystals against herbivory may be overstated, as claims have been mainly based on their shapes and hard and indigestible nature rather than on experimental evidence. I contend that it is improbable that a constitutive defense, present since very early in the evolution of plants, has not been superseded by herbivores, especially insects. Here, I present arguments and evidence that suggest that these crystals have low efficiency in protecting plants against herbivores. First, I argue that insects with chewing mouthparts possess a semipermeable structure that protects their midgut, minimizing damage from crystals. Second, the action of CaOx crystals is purely mechanical and similar to other inert materials such as sand. Therefore, CaOx crystals only provide effective protection from herbivory in very particular cases and should not be considered an effective defense without supporting experimental evidence.
Collapse
Affiliation(s)
- Élder Antônio Sousa Paiva
- Plant Secretion & Reproduction (PlantSeR) Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
10
|
Godson A, van der Hoorn RAL. The front line of defence: a meta-analysis of apoplastic proteases in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3381-3394. [PMID: 33462613 PMCID: PMC8042752 DOI: 10.1093/jxb/eraa602] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Secreted proteases act at the front line of defence and play pivotal roles in disease resistance. However, the criteria for apoplastic immune proteases are not always defined and followed. Here, we critically reviewed 46 apoplastic proteases that function in plant defence. We found that most apoplastic immune proteases are induced upon infection, and 17 proteases are genetically required for the immune response. Proteolytic activity has been confirmed for most of the proteases but is rarely shown to be required for biological function, and the apoplastic location of proteases can be subjective and dynamic. Pathogen-derived inhibitors have only been described for cysteine and serine proteases, and the selection pressure acting on immune proteases is rarely investigated. We discuss six different mechanisms by which these proteases mediate plant immunity and summarize the challenges for future research.
Collapse
Affiliation(s)
- Alice Godson
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
11
|
Mason CJ, Hoover K, Felton GW. Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities. Sci Rep 2021; 11:4429. [PMID: 33627698 PMCID: PMC7904771 DOI: 10.1038/s41598-021-83497-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Plants can have fundamental roles in shaping bacterial communities associated with insect herbivores. For larval lepidopterans (caterpillars), diet has been shown to be a driving force shaping gut microbial communities, where the gut microbiome of insects feeding on different plant species and genotypes can vary in composition and diversity. In this study, we aimed to better understand the roles of plant genotypes, sources of microbiota, and the host gut environment in structuring bacterial communities. We used multiple maize genotypes and fall armyworm (Spodoptera frugiperda) larvae as models to parse these drivers. We performed a series of experiments using axenic larvae that received a mixed microbial community prepared from frass from larvae that consumed field-grown maize. The new larval recipients were then provided different maize genotypes that were gamma-irradiated to minimize bacteria coming from the plant during feeding. For field-collected maize, there were no differences in community structure, but we did observe differences in gut community membership. In the controlled experiment, the microbial inoculation source, plant genotype, and their interactions impacted the membership and structure of gut bacterial communities. Compared to axenic larvae, fall armyworm larvae that received frass inoculum experienced reduced growth. Our results document the role of microbial sources and plant genotypes in contributing to variation in gut bacterial communities in herbivorous larvae. While more research is needed to shed light on the mechanisms driving this variation, these results provide a method for incorporating greater gut bacterial community complexity into laboratory-reared larvae.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
12
|
Paddock KJ, Robert CAM, Erb M, Hibbard BE. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. INSECTS 2021; 12:171. [PMID: 33671118 PMCID: PMC7922318 DOI: 10.3390/insects12020171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.
Collapse
Affiliation(s)
- Kyle J. Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Christelle A. M. Robert
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Bruce E. Hibbard
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Zha XL, Yu XB, Zhang HY, Wang H, Huang XZ, Shen YH, Lu C. Identification of Peritrophins and Antiviral Effect of Bm01504 against BmNPV in the Silkworm, Bombyx mori. Int J Mol Sci 2020; 21:ijms21217973. [PMID: 33121000 PMCID: PMC7663561 DOI: 10.3390/ijms21217973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
The insect midgut secretes a semi-permeable, acellular peritrophic membrane (PM) that maintains intestinal structure, promotes digestion, and protects the midgut from food particles and pathogenic microorganisms. Peritrophin is an important PM protein (PMP) in the PM. Here, we identified 11 peritrophins with 1–16 chitin binding domains (CBDs) comprising 50–56 amino acid residues. Multiple CBDs in the same peritrophin clustered together, rather than by species. The CBD contained six highly conserved cysteine residues, with the key feature of amino acids between them being CX11-15CX5CX9-14CX11-12CX6-7C. Peritrophins with 2 and 4 CBDs (Bm09641 and Bm01504, respectively), and with 1, 8, and 16 CBDs (Bm11851, Bm00185, and Bm01491, respectively) were mainly expressed in the anterior midgut, and throughout the midgut, respectively. Survival rates of transgenic silkworms with Bm01504 overexpression (Bm01504-OE) and knockout (Bm01504-KO) infected with B. morinucleopolyhedrovirus (BmNPV) were significantly higher and lower, whereas expression of the key viral gene, p10, were lower and higher, respectively, compared with wild type (WT). Therefore, Bm01504-OE and Bm01504-KO transgenic silkworms were more and less resistant, respectively, to BmNPV. Bm01504 plays important roles in resisting BmNPV invasion. We provide a new perspective for studying PM function, and reveal how the silkworm midgut resists invasive exogenous pathogenic microorganisms.
Collapse
Affiliation(s)
- Xu-Le Zha
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Xin-Bo Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Hong-Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Han Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
| | - Xian-Zhi Huang
- Science and Technology Department, Southwest University, Chongqing 400715, China;
| | - Yi-Hong Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
- Correspondence: (Y.-H.S.); (C.L.); Tel.: +86-138-8360-7000 (Y.-H.S.); +86-23-6825-0346 (C.L.)
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China; (X.-L.Z.); (X.-B.Y.); (H.-Y.Z.); (H.W.)
- Correspondence: (Y.-H.S.); (C.L.); Tel.: +86-138-8360-7000 (Y.-H.S.); +86-23-6825-0346 (C.L.)
| |
Collapse
|
14
|
Wang S, Wang P. Functional redundancy of structural proteins of the peritrophic membrane in Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 125:103456. [PMID: 32814147 DOI: 10.1016/j.ibmb.2020.103456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The peritrophic membrane (or peritrophic matrix) (PM) in insects is formed by binding of PM proteins with multiple chitin binding domains (CBDs) to chitin fibrils. Multi-CBD chitin binding proteins (CBPs) and the insect intestinal mucin (IIM) are major PM structural proteins. To understand the biochemical and physiological role of IIM in structural formation and physiological function of the PM, Trichoplusia ni mutant strains lacking IIM were generated by CRISPR/Cas9 mutagenesis. The mutant T. ni larvae were confirmed to lack IIM, but PM formation was observed as in wild type larvae and lacking IIM in the PM did not result in changes of protease activities in the larval midgut. Larval growth and development of the mutant strains were similar to the wild type strain on artificial diet and cabbage leaves, but had a decreased survival in the 5th instar. The larvae of the mutant strains with the PM formed without IIM did not have a change of susceptibility to the infection of the baculovirus AcMNPV and the Bacillus thuringiensis (Bt) formulation Dipel, to the toxicity of the Bt toxins Cry1Ac and Cry2Ab and the chemical insecticide sodium aluminofluoride. Treatment of the mutant T. ni larvae with Calcofluor reduced the larval susceptibility to the toxicity of Bt Cry1Ac, as similarly observed in the wild type larvae. Overall, in the mutant T. ni larvae, the PM was formed without IIM and the lacking of IIM in the PM did not drastically impact the performance of larvae on diet or cabbage leaves under the laboratory conditions.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
15
|
Hamed MB, El-Badry MO, Kandil EI, Borai IH, Fahmy AS. A contradictory action of procoagulant ficin by a fibrinolytic serine protease from Egyptian Ficus carica latex. ACTA ACUST UNITED AC 2020; 27:e00492. [PMID: 32642455 PMCID: PMC7334393 DOI: 10.1016/j.btre.2020.e00492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
We purified a serine protease from Ficus carica latex. Serine protease had a high tendency to hydrolyze fibrinogin. Serine protease inhibited blood coagulation.
Ficus carica is one of the most popular and edible plants. Its trees emanate latex of high medical importance. The well-studied procoagulant effect of ficin is a hallmark of this latex which protrudes an interesting question of how can the plant control this effect? In the present work, we purified and characterized a serine protease (FPIII) with fibrinolytic activity from F. carica latex and study the anticoagulant character of the latex. FPIII was inhibited by PMSF and its molecular weight was 48 kDa. The optimum pH and temperature of FPIII were detected at 8.5 and 60 °C, respectively. The activation energy of FPIII was 7 kcal/mol and was thermal stable up to 60 °C. FPIII tended to hydrolyze different protein substrates and showed a good catalytic efficiency (Kcat/Km). The anticoagulant effects and fibrinogenolytic activities of latex crude extract and FPIII were detected, which controls the procoagulant effect of ficin.
Collapse
Affiliation(s)
- Mohamed B Hamed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokii, Cairo, Egypt
| | - Mohamed O El-Badry
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokii, Cairo, Egypt
| | - Eman I Kandil
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ibrahim H Borai
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Afaf S Fahmy
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokii, Cairo, Egypt
| |
Collapse
|
16
|
Graphene quantum dots as cysteine protease nanocarriers against stored grain insect pests. Sci Rep 2020; 10:3444. [PMID: 32103102 PMCID: PMC7044290 DOI: 10.1038/s41598-020-60432-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/03/2020] [Indexed: 11/08/2022] Open
Abstract
Storing grains remain vulnerable to insect pest attack. The present study developed a biopesticide using biomolecules and their encapsulation in nanoparticles. A 25 kDa cysteine protease extracted from seeds of Albizia procera (ApCP) was encapsulated in graphene quantum dots (GQDs). The insecticidal activity of ApCP, with or without GQDs, against two stored grain insect pests, Tribolium castaneum (Herbst) and Rhyzopertha dominica (Fabricius) was explored. Insects were exposed to three concentrations 7.0, 3.5 and 1.7 mg of ApCP per a gram of wheat flour and grains. The insecticidal activity of ApCP encapsulated with GQDs was improved compared to that of ApCP without GQDs for both insect pests. The number of eggs and larvae of T. castaneum was reduced by 49% and 86%, respectively. Larval mortality was increased to 72%, and adult eclosion of T. castaneum was reduced by 98% at a 7.0 mg/g concentration of ApCP with GQDs compared to that of ApCP without GQDs. Exposure to 7.0 mg/g ApCP with GQDs, the number of R. dominica eggs and larvae was reduced by 72% and 92% respectively, larval mortality was increased by 90%, and eclosion was reduced by 97%. The extraction, purification, characterization, quantification and encapsulation of ApCP with GQDs were also studied. Cysteine protease nanocarriers have the potential to control stored grain insect pests.
Collapse
|
17
|
Liu X, Cooper AMW, Yu Z, Silver K, Zhang J, Zhu KY. Progress and prospects of arthropod chitin pathways and structures as targets for pest management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:33-46. [PMID: 31685194 DOI: 10.1016/j.pestbp.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Chitin is a structural component of the arthropod cuticular exoskeleton and the peritrophic matrix of the gut, which play crucial roles in growth and development. In the past few decades, our understanding of the composition, biosynthesis, assembly, degradation, and regulation of chitinous structures has increased. Many chemicals have been developed that target chitin biosynthesis (benzoyphenyl ureas, etoxazole), chitin degradation (allosamidin, psammaplin), and chitin regulation (benzoyl hydrazines), thus resulting in molting deformities and lethality. In addition, proteins that disrupt chitin structures, such as lectins, proteases, and chitinases have been utilized to halt feeding and induce mortality. Chitin-degrading enzymes, such as chitinases are also useful for improving the efficacy of bio-insecticides. Transgenic plants, baculoviruses, fungi, and bacteria have been engineered to express chitinases from a variety of organisms for control of arthropod pests. In addition, RNA interference targeting genes involved in chitin pathways and structures are now being investigated for the development of environmentally friendly pest management strategies. This review describes the chemicals and proteins used to target chitin structures and enzymes for arthropod pest management, as well as pest management strategies based upon these compounds, such as plant-incorporated-protectants and recombinant entomopathogens. Recent advances in RNA interference-based pest management, and how this technology can be used to target chitin pathways and structures are also discussed.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | | | - Zhitao Yu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
18
|
Mason CJ, Ray S, Shikano I, Peiffer M, Jones AG, Luthe DS, Hoover K, Felton GW. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc Natl Acad Sci U S A 2019; 116:15991-15996. [PMID: 31332013 PMCID: PMC6689943 DOI: 10.1073/pnas.1908748116] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Plants produce suites of defenses that can collectively deter and reduce herbivory. Many defenses target the insect digestive system, with some altering the protective peritrophic matrix (PM) and causing increased permeability. The PM is responsible for multiple digestive functions, including reducing infections from potential pathogenic microbes. In our study, we developed axenic and gnotobiotic methods for fall armyworm (Spodoptera frugiperda) and tested how particular members present in the gut community influence interactions with plant defenses that can alter PM permeability. We observed interactions between gut bacteria with plant resistance. Axenic insects grew more but displayed lower immune-based responses compared with those possessing Enterococcus, Klebsiella, and Enterobacter isolates from field-collected larvae. While gut bacteria reduced performance of larvae fed on plants, none of the isolates produced mortality when injected directly into the hemocoel. Our results strongly suggest that plant physical and chemical defenses not only act directly upon the insect, but also have some interplay with the herbivore's microbiome. Combined direct and indirect, microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects. These results imply that plant-insect interactions should be considered in the context of potential mediation by the insect gut microbiome.
Collapse
Affiliation(s)
- Charles J Mason
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802;
| | - Swayamjit Ray
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Ikkei Shikano
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Michelle Peiffer
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Asher G Jones
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Dawn S Luthe
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
19
|
Konno K, Mitsuhashi W. The peritrophic membrane as a target of proteins that play important roles in plant defense and microbial attack. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103912. [PMID: 31301311 DOI: 10.1016/j.jinsphys.2019.103912] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The peritrophic membrane (or peritrophic matrix: PM) is a thin membranous structure that lies along the midgut epithelium in the midgut lumen and consists of chitin and proteins. PM exists between ingested food material and midgut epithelium cells and it is on the frontline of insect-plant and insect-microbe interactions. Therefore, proteins that play major roles in plant defense against herbivorous insects and in microbial attack on insects should penetrate, destroy or modify the PM to accomplish their roles. Recently, it has become clear that some proteins crucial to plant defense or microbial attack have the PM as their primary target. In addition, several plant defense proteins have been reported to affect the PM, although it is still unclear whether the PM is their primary target. This review introduces several of these proteins: fusolin and enhancin, two proteins produced by insect viruses that greatly enhance infection of the viruses by disrupting the PM; the MLX56 family proteins found in mulberry latex as defense proteins against insect herbivores, which modify the PM to a thick structure that inhibits digestive processes; Mir1-CP, a defense cysteine protease from maize that inhibits the growth of insects at very low concentrations and degrades the PM structures; and chitinases and lectins. The importance, necessary characteristics, and modes of action of PM-targeting proteins are then discussed from a strategic point of view, by spotlighting the importance of selective permeability of the PM. Finally, the review discusses the possibility of applying PM-targeting proteins for the control of pest insects.
Collapse
Affiliation(s)
- Kotaro Konno
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan.
| | - Wataru Mitsuhashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
20
|
Rodríguez-de la Noval C, Rodríguez-Cabrera L, Izquierdo L, Espinosa LA, Hernandez D, Ponce M, Moran-Bertot I, Tellez-Rodríguez P, Borras-Hidalgo O, Huang S, Kan Y, Wright DJ, Ayra-Pardo C. Functional expression of a peritrophin A-like SfPER protein is required for larval development in Spodoptera frugiperda (Lepidoptera: Noctuidae). Sci Rep 2019; 9:2630. [PMID: 30796291 PMCID: PMC6385298 DOI: 10.1038/s41598-019-38734-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/04/2019] [Indexed: 01/20/2023] Open
Abstract
Peritrophins are associated with structural and functional integrity of peritrophic membranes (PM), structures composed of chitin and proteins. PM lines the insect midgut and has roles in digestion and protection from toxins. We report the full-length cDNA cloning, molecular characterization and functional analysis of SfPER, a novel PM peritrophin A protein, in Spodoptera frugiperda. The predicted amino acid sequence indicated SfPER's domain structure as a CMCMC-type, consisting of a signal peptide and three chitin-binding (C) domains with two intervening mucin-like (M) domains. Phylogenetic analysis determined a close relationship between SfPER and another S. frugiperda PM peritrophin partial sequence. SfPER transcripts were found in larvae and adults but were absent from eggs and pupae. Chitin affinity studies with a recombinant SfPER-C1 peritrophin A-type domain fused to SUMO/His-tag confirmed that SfPER binds to chitin. Western blots of S. frugiperda larval proteins detected different sized variants of SfPER along the PM, with larger variants found towards the posterior PM. In vivo suppression of SfPER expression did not affect susceptibility of larvae to Bacillus thuringiensis toxin, but significantly decreased pupal weight and adult emergence, possibly due to PM structural alterations impairing digestion. Our results suggest SfPER could be a novel target for insect control.
Collapse
Affiliation(s)
- Claudia Rodríguez-de la Noval
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Laurent Izquierdo
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Luis A Espinosa
- Analytical Unit Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Daily Hernandez
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Milagro Ponce
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Ivis Moran-Bertot
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Pilar Tellez-Rodríguez
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), Havana, 10600, Cuba
| | - Orlando Borras-Hidalgo
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biotechnology, Qi Lu University of Technology, Jinan, 250353, People's Republic of China
| | - Siliang Huang
- China-UK, NYNU-RRES Joint Insect Biology Laboratory, Nanyang Normal University, Henan, 473061, People's Republic of China
| | - Yunchao Kan
- China-UK, NYNU-RRES Joint Insect Biology Laboratory, Nanyang Normal University, Henan, 473061, People's Republic of China
| | - Denis J Wright
- Department of Life Sciences, Imperial College London, Silwood Park campus, Ascot, Berkshire, SL5 7PY, UK
| | - Camilo Ayra-Pardo
- China-UK, NYNU-RRES Joint Insect Biology Laboratory, Nanyang Normal University, Henan, 473061, People's Republic of China.
| |
Collapse
|
21
|
Senthil-Nathan S. Effect of methyl jasmonate (MeJA)-induced defenses in rice against the rice leaffolder Cnaphalocrocis medinalis (Guenèe) (Lepidoptera: Pyralidae). PEST MANAGEMENT SCIENCE 2019; 75:460-465. [PMID: 29998605 DOI: 10.1002/ps.5139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Methyl jasmonate (MeJA) activates host defense mechanisms against insect pests of agricultural importance, and regulates defense responses against living and non-living stresses in various plant species. Rice leaf-folder (Cnaphalocrocis medinalis Guenèe, Lepidoptera: Pyralidae) feeding activity and mortality were evaluated after MeJA treatment of rice plants ASD-16. RESULTS Rice plant resistance was activated through the topical application of MeJA to rice leaves. Feeding deterrence occurred with application of 2.5 and 5 mm MeJA solution. Feeding activity and consumption rates were significantly different, being reduced compared with controls post MeJA treatment. Significantly greater mortality was seen in second instars post treatment with 2.5 and 5 mm MeJA. Survival was significantly reduced for larvae and adults post treatment. CONCLUSION Application of MeJA as a topical spray onto rice plants significantly altered the biology and survival of the leaf-folder, having an effect on all life stages. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, India
| |
Collapse
|
22
|
Wanderley LF, Soares AMDS, Silva CRE, Figueiredo IMD, Ferreira ATDS, Perales J, Mota HRDO, Oliveira JTA, Costa Junior LM. A cysteine protease from the latex of Ficus benjamina has in vitro anthelmintic activity against Haemonchus contortus. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2018; 27:473-480. [DOI: 10.1590/s1984-296120180070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
Abstract
Abstract Haemonchus contortus is a gastrointestinal nematode that is responsible for high mortality rates in ruminant herds. The resistance of nematodes to synthetic anthelmintics is widespread and requires a continuous search for new bioactive molecules, such as proteins. The objective of this study was to evaluate the anthelmintic potential of a protease purified from the latex of Ficus benjamina against H. contortus . Fresh latex was collected from plants via small incisions in the green stems, the rubber was removed by centrifugation, and the latex protein extract (LPE) was obtained. After LPE fractionation with ammonium sulfate and chromatography of the fraction containing the highest proteolytic activity on CM-cellulose, a cysteine protease (FbP) was purified. FbP has a molecular mass of approximately 23.97 kDa, and its proteolytic activity was stable between pH 6.0 and pH 10 and over a broad temperature range, with optimum activity at 60 °C. FbP inhibited both the development and exsheathment of H. contortus larvae, with 50% effective concentrations of 0.26 and 0.79 mg/mL, respectively. We conclude that this cysteine protease from F. benjamina latex with anthelmintic activity against H. contortus could be a promising alternative for the development of products for use in parasite control programmes.
Collapse
|
23
|
Herbivore-Induced Defenses in Tomato Plants Enhance the Lethality of the Entomopathogenic Bacterium, Bacillus thuringiensis var. kurstaki. J Chem Ecol 2018; 44:947-956. [PMID: 29980959 DOI: 10.1007/s10886-018-0987-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
Plants can influence the effectiveness of microbial insecticides through numerous mechanisms. One of these mechanisms is the oxidation of plant phenolics by plant enzymes, such as polyphenol oxidases (PPO) and peroxidases (POD). These reactions generate a variety of products and intermediates that play important roles in resistance against herbivores. Oxidation of the catecholic phenolic compound chlorogenic acid by PPO enhances the lethality of the insect-killing bacterial pathogen, Bacillus thuringiensis var. kurstaki (Bt) to the polyphagous caterpillar, Helicoverpa zea. Since herbivore feeding damage often triggers the induction of higher activities of oxidative enzymes in plant tissues, here we hypothesized that the induction of plant defenses would enhance the lethality of Bt on those plants. We found that the lethality of a commercial formulation of Bt (Dipel® PRO DF) on tomato plants was higher if it was applied to plants that were induced by H. zea feeding or induced by the phytohormone jasmonic acid. Higher proportions of H. zea larvae killed by Bt were strongly correlated with higher levels of PPO activity in the leaflet tissue. Higher POD activity was only weakly associated with higher levels of Bt-induced mortality. While plant-mediated variation in entomopathogen lethality is well known, our findings demonstrate that plants can induce defensive responses that work in concert with a microbial insecticide/entomopathogen to protect against insect herbivores.
Collapse
|
24
|
Silva NC, Conceição JG, Ventury KE, De Sá LF, Oliveira EA, Santos IS, Gomes VM, Costa MN, Ferreira AT, Perales J, Xavier-Filho J, Fernandes KV, Oliveira AE. Soybean seed coat chitinase as a defense protein against the stored product pest Callosobruchus maculatus. PEST MANAGEMENT SCIENCE 2018; 74:1449-1456. [PMID: 29250895 DOI: 10.1002/ps.4832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/10/2017] [Accepted: 12/10/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Chitinases (EC 3.2.1.14) are enzymes involved in the breaking of the β-1,4-glycosidic linkages of chitin. In insects, chitin is present mainly in the cuticle and in peritrophic membranes and peritrophic gel. Enzymes with the potential to damage peritrophic membranes and gel, such as chitinase, have been associated with plant defense systems. Identification and characterization of seed coat chitinase as a plant defense molecule may indicate a more effective target for manipulation strategies, which may lead to the prevention of consumption of embryonic tissues by larvae and consequently minimization of seed damage. RESULTS We studied the efficiency of soybean seed coat chitinase as a defense molecule against the insect Callosobruchus maculatus. The seed coat chitinase was isolated and identified by mass spectrometry, immunoreacted with an anti-chitinase antibody and shown to have activity against chitin azure and 4-methylumbelliferyl β-D-N,N',N''-triacetylchitotrioside. A chitinase fraction incorporated in artificial cotyledons at 0.1% reduced larval survival by approximately 77%, and at 0.5%, the reduction in larval mass was 60%. Fluorescein isothiocyanate (FITC)-labeled chitinase was detected in the guts and feces of larvae. At 25% in thick artificial seed coats, chitinase showed a high toxicity to larvae, with mortality of 90% and a reduction of larval mass of 87%. CONCLUSION Seed coat chitinase is an important seed defense molecule not only in the cotyledons but also in seed coats, acting as part of the array of defense mechanisms against Callosobruchus maculatus. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nadia Cm Silva
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Jamile G Conceição
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Kayan Eudorico Ventury
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Leonardo Fr De Sá
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Eduardo Ag Oliveira
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Izabela S Santos
- NUPEM, Universidade Federal do Rio de Janeiro-UFRJ, Macaé, RJ, Brazil
| | - Valdirene M Gomes
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Monique N Costa
- Laboratório de Toxinologia, Fundação Oswaldo Cruz, Rio de Janeiro-Brazil (FIOCRUZ-RJ), Rio de Janeiro, RJ, Brazil
| | - Andre Ts Ferreira
- Laboratório de Toxinologia, Fundação Oswaldo Cruz, Rio de Janeiro-Brazil (FIOCRUZ-RJ), Rio de Janeiro, RJ, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Fundação Oswaldo Cruz, Rio de Janeiro-Brazil (FIOCRUZ-RJ), Rio de Janeiro, RJ, Brazil
| | - Jose Xavier-Filho
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Kátia Vs Fernandes
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Antonia Ea Oliveira
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
25
|
A Maize Inbred Exhibits Resistance Against Western Corn Rootwoorm, Diabrotica virgifera virgifera. J Chem Ecol 2017; 43:1109-1123. [PMID: 29151152 DOI: 10.1007/s10886-017-0904-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
Insect resistance against root herbivores like the western corn rootworm (WCR, Diabrotica virgifera virgifera) is not well understood in non-transgenic maize. We studied the responses of two American maize inbreds, Mp708 and Tx601, to WCR infestation using biomechanical, molecular, biochemical analyses, and laser ablation tomography. Previous studies performed on several inbreds indicated that these two maize genotypes differed in resistance to pests including fall armyworm (Spodoptera frugiperda) and WCR. Our data confirmed that Mp708 shows resistance against WCR, and demonstrates that the resistance mechanism is based in a multi-trait phenotype that includes increased resistance to cutting in nodal roots, stable root growth during insect infestation, constitutive and induced expression of known herbivore-defense genes, including ribosomal inhibitor protein 2 (rip2), terpene synthase 23 (tps23) and maize insect resistance cysteine protease-1 (mir1), as well high constitutive levels of jasmonic acid and production of (E)-β-caryophyllene. In contrast, Tx601 is susceptible to WCR. These findings will facilitate the use of Mp708 as a model to explore the wide variety of mechanisms and traits involved in plant defense responses and resistance to herbivory by insects with several different feeding habits.
Collapse
|
26
|
Sandoval-Mojica AF, Scharf ME. Silencing gut genes associated with the peritrophic matrix of Reticulitermes flavipes (Blattodea: Rhinotermitidae) increases susceptibility to termiticides. INSECT MOLECULAR BIOLOGY 2016; 25:734-744. [PMID: 27515783 DOI: 10.1111/imb.12259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The peritrophic matrix (PM) is a noncellular structure that lines the gut of most insects. Because of its close involvement in digestive processes and its role as a barrier against pathogens and toxins, the PM is an attractive target for pest management strategies. The objectives of this study were to (1) reduce the expression of a chitin synthase gene (Reticulitermes flavipes chitin synthase B, RfCHSB), a putative peritrophin [R. flavipes Protein with Peritrophin-A domain 1, (RfPPAD1)] and a confirmed peritrophin [R. flavipes Protein with Peritrophin-A domain 2 (RfPPAD2)] in R. flavipes by means of RNA interference, and (2) to evaluate the susceptibility of R. flavipes to termiticides and a bacterial pathogen, after silencing the target genes. Force feeding termites with 55 and 100 ng of long double-stranded RNAs (dsRNAs), targeting RfCHSB and RfPPAD2, respectively, resulted in the highest levels of transcript suppression. RfCHSB expression was reduced by 70%, whereas the transcript level of RfPPAD2 was decreased by 90%. Force feeding 100 ng/termite of a long RfPPAD1 dsRNA reduced the expression of the transcript by 30%. Challenging termites with imidacloprid, chlorantraniliprole and noviflumuron, after silencing RfCHSB, significantly increased termite mortality. Force feeding termites a dsRNA cocktail, targeting RfCHSB, RfPPAD1 and RfPPAD2, caused the highest significant increase in termite mortality after challenging the insects with imidacloprid. These results demonstrate the viability of the R. flavipes PM as a target in termite pest management.
Collapse
Affiliation(s)
| | - M E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
27
|
Borrego EJ, Kolomiets MV. Synthesis and Functions of Jasmonates in Maize. PLANTS (BASEL, SWITZERLAND) 2016; 5:E41. [PMID: 27916835 PMCID: PMC5198101 DOI: 10.3390/plants5040041] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023]
Abstract
Of the over 600 oxylipins present in all plants, the phytohormone jasmonic acid (JA) remains the best understood in terms of its biosynthesis, function and signaling. Much like their eicosanoid analogues in mammalian system, evidence is growing for the role of the other oxylipins in diverse physiological processes. JA serves as the model plant oxylipin species and regulates defense and development. For several decades, the biology of JA has been characterized in a few dicot species, yet the function of JA in monocots has only recently begun to be elucidated. In this work, the synthesis and function of JA in maize is presented from the perspective of oxylipin biology. The maize genes responsible for catalyzing the reactions in the JA biosynthesis are clarified and described. Recent studies into the function of JA in maize defense against insect herbivory, pathogens and its role in growth and development are highlighted. Additionally, a list of JA-responsive genes is presented for use as biological markers for improving future investigations into JA signaling in maize.
Collapse
Affiliation(s)
- Eli J Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
28
|
Medeiros AH, Mingossi FB, Dias RO, Franco FP, Vicentini R, Mello MO, Moura DS, Silva-Filho MC. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding. Int J Mol Sci 2016; 17:E1444. [PMID: 27598134 PMCID: PMC5037723 DOI: 10.3390/ijms17091444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022] Open
Abstract
Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.
Collapse
Affiliation(s)
- Ane H Medeiros
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, 13600-970 São Paulo, Brazil.
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Fabiana B Mingossi
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Flávia P Franco
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Renato Vicentini
- Systems Biology Laboratory, Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, 13083-970 São Paulo, Brazil.
| | - Marcia O Mello
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
- Monsanto do Brasil, Campinas, 13069-380 São Paulo, Brazil.
| | - Daniel S Moura
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13400-918 São Paulo, Brazil.
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| |
Collapse
|
29
|
Silva NCM, De Sá LFR, Oliveira EAG, Costa MN, Ferreira ATS, Perales J, Fernandes KVS, Xavier-Filho J, Oliveira AEA. Albizia lebbeck Seed Coat Proteins Bind to Chitin and Act as a Defense against Cowpea Weevil Callosobruchus maculatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3514-3522. [PMID: 27078512 DOI: 10.1021/acs.jafc.6b00549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The seed coat is an external tissue that participates in defense against insects. In some nonhost seeds, including Albizia lebbeck, the insect Callosobruchus maculatus dies during seed coat penetration. We investigated the toxicity of A. lebbeck seed coat proteins to C. maculatus. A chitin-binding protein fraction was isolated from seed coat, and mass spectrometry showed similarity to a C1 cysteine protease. By ELM program an N-glycosylation interaction motif was identified in this protein, and by molecular docking the potential to interact with N-acetylglucosamine (NAG) was shown. The chitin-binding protein fraction was toxic to C. maculatus and was present in larval midgut and feces but not able to hydrolyze larval gut proteins. It did not interfere, though, with the intestinal cell permeability. These results indicate that the toxicity mechanism of this seed coat fraction may be related to its binding to chitin, present in the larvae gut, disturbing nutrient absorption.
Collapse
Affiliation(s)
- Nadia C M Silva
- Laboratório de Quı́mica e Função de Proteı́nas e Peptı́deos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF , 28013602 Campos dos Goytacazes, RJ, Brazil
| | - Leonardo F R De Sá
- Laboratório de Quı́mica e Função de Proteı́nas e Peptı́deos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF , 28013602 Campos dos Goytacazes, RJ, Brazil
| | - Eduardo A G Oliveira
- Laboratório de Quı́mica e Função de Proteı́nas e Peptı́deos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF , 28013602 Campos dos Goytacazes, RJ, Brazil
| | - Monique N Costa
- Laboratório de Toxinologia, Fundação Oswaldo Cruz , Rio de Janeiro, FIOCRUZ-RJ, Brazil
| | - Andre T S Ferreira
- Laboratório de Toxinologia, Fundação Oswaldo Cruz , Rio de Janeiro, FIOCRUZ-RJ, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Fundação Oswaldo Cruz , Rio de Janeiro, FIOCRUZ-RJ, Brazil
| | - Kátia V S Fernandes
- Laboratório de Quı́mica e Função de Proteı́nas e Peptı́deos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF , 28013602 Campos dos Goytacazes, RJ, Brazil
| | - Jose Xavier-Filho
- Laboratório de Quı́mica e Função de Proteı́nas e Peptı́deos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF , 28013602 Campos dos Goytacazes, RJ, Brazil
| | - Antonia E A Oliveira
- Laboratório de Quı́mica e Função de Proteı́nas e Peptı́deos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF , 28013602 Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
30
|
Baeyens-Volant D, Matagne A, El Mahyaoui R, Wattiez R, Azarkan M. A novel form of ficin from Ficus carica latex: Purification and characterization. PHYTOCHEMISTRY 2015; 117:154-167. [PMID: 26083455 DOI: 10.1016/j.phytochem.2015.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/28/2023]
Abstract
A novel ficin form, named ficin E, was purified from fig tree latex by a combination of cation-exchange chromatography on SP-Sepharose Fast Flow, Thiopropyl Sepharose 4B and fplc-gel filtration chromatography. The new ficin appeared not to be sensitive to thiol derivatization by a polyethylene glycol derivative, allowing its purification. The protease is homogeneous according to PAGE, SDS-PAGE, mass spectrometry, N-terminal micro-sequencing analyses and E-64 active site titration. N-terminal sequencing of the first ten residues has shown high identity with the other known ficin (iso)forms. The molecular weight was found to be (24,294±10)Da by mass spectrometry, a lower value than the apparent molecular weight observed on SDS-PAGE, around 27 kDa. Far-UV CD data revealed a secondary structure content of 22% α-helix and 26% β-sheet. The protein is not glycosylated as shown by carbohydrate analysis. pH and temperature measurements indicated maxima activity at pH 6.0 and 50 °C, respectively. Preliminary pH stability analyses have shown that the protease conserved its compact structure in slightly acidic, neutral and alkaline media but at acidic pH (<3), the formation of some relaxed or molten state was evidenced by 8-anilino-1-naphtalenesulfonic acid binding characteristics. Comparison with the known ficins A, B, C, D1 and D2 (iso)forms revealed that ficin E showed activity profile that looked like ficin A against two chromogenic substrates while it resembled ficins D1 and D2 against three fluorogenic substrates. Enzymatic activity of ficin E was not affected by Mg(2+), Ca(2+) and Mn(2+) at a concentration up to 10mM. However, the activity was completely suppressed by Zn(2+) at a concentration of 1mM. Inhibitory activity measurements clearly identified the enzyme as a cysteine protease, being unaffected by synthetic (Pefabloc SC, benzamidine) and by natural proteinaceous (aprotinin) serine proteases inhibitors, by aspartic proteases inhibitors (pepstatin A) and by metallo-proteases inhibitors (EDTA, EGTA). Surprisingly, it was well affected by the metallo-protease inhibitor o-phenanthroline. The enzymatic activity was however completely blocked by cysteine proteases inhibitors (E-64, iodoacetamide), by thiol-blocking compounds (HgCl2) and by cysteine/serine proteases inhibitors (TLCK and TPCK). This is a novel ficin form according to peptide mass fingerprint analysis, specific amidase activity, SDS-PAGE and PAGE electrophoretic mobility, N-terminal sequencing and unproneness to thiol pegylation.
Collapse
Affiliation(s)
- Danielle Baeyens-Volant
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070 Brussels, Belgium
| | - André Matagne
- University of Liège, Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, Liège, Belgium
| | - Rachida El Mahyaoui
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070 Brussels, Belgium
| | - Ruddy Wattiez
- University of Mons-Hainaut, Faculty of Sciences, Department of Proteomics and Microbiology, Interdisciplinary Center of Mass Spectrometry (CISMa), Mons, Belgium
| | - Mohamed Azarkan
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
31
|
Feng D, Chen Z, Wang Z, Zhang C, He K, Guo S. Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer. PLoS One 2015; 10:e0136430. [PMID: 26295704 PMCID: PMC4546665 DOI: 10.1371/journal.pone.0136430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023] Open
Abstract
The insecticidal IE648 toxin is a truncated Cry1Ie protein with increased toxicity against Asian corn borer (ACB). Cry toxins are pore-forming toxins that disrupt insect midgut cells to kill the larvae. However, the peritrophic membrane (PM) is an important barrier that Cry toxins must cross before binding to midgut cells. Previously, it was shown that Cry toxins are able to bind and accumulate in the PM of several lepidopteran insects. Binding of IE648 toxin to PM of ACB was previously reported and the goal of the current work was the identification of the binding region between Cry1Ie and the PM of ACB. Homologous competition binding assays showed that this interaction was specific. Heterologous competition binding assays performed with different fragments corresponding to domain I, domain II and domain III allowed us to identify that domain III participates in the interaction of IE648 with the PM. Specifically, peptide D3-L8 (corresponding to Cry1Ie toxin residues 607 to 616), located in an exposed loop region of domain III is probably involved in this interaction. Ligand blot assays show that IE648 interact with chitin and PM proteins with sizes of 30, 32 and 80 kDa. The fact that domain III interacts with proteins of similar molecular masses supports that this region of the toxin might be involved in PM interaction. These data provide for the first time the identification of domain III as a putative binding region between PM and 3D-Cry toxin.
Collapse
Affiliation(s)
- Dongmei Feng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhiwen Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunlu Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kanglai He
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuyuan Guo
- School of Life Science, Beijing Institute of Technology, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Campos ML, Kang JH, Howe GA. Jasmonate-triggered plant immunity. J Chem Ecol 2014; 40:657-75. [PMID: 24973116 DOI: 10.1007/s10886-014-0468-3] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
The plant hormone jasmonate (JA) exerts direct control over the production of chemical defense compounds that confer resistance to a remarkable spectrum of plant-associated organisms, ranging from microbial pathogens to vertebrate herbivores. The underlying mechanism of JA-triggered immunity (JATI) can be conceptualized as a multi-stage signal transduction cascade involving: i) pattern recognition receptors (PRRs) that couple the perception of danger signals to rapid synthesis of bioactive JA; ii) an evolutionarily conserved JA signaling module that links fluctuating JA levels to changes in the abundance of transcriptional repressor proteins; and iii) activation (de-repression) of transcription factors that orchestrate the expression of myriad chemical and morphological defense traits. Multiple negative feedback loops act in concert to restrain the duration and amplitude of defense responses, presumably to mitigate potential fitness costs of JATI. The convergence of diverse plant- and non-plant-derived signals on the core JA module indicates that JATI is a general response to perceived danger. However, the modular structure of JATI may accommodate attacker-specific defense responses through evolutionary innovation of PRRs (inputs) and defense traits (outputs). The efficacy of JATI as a defense strategy is highlighted by its capacity to shape natural populations of plant attackers, as well as the propensity of plant-associated organisms to subvert or otherwise manipulate JA signaling. As both a cellular hub for integrating informational cues from the environment and a common target of pathogen effectors, the core JA module provides a focal point for understanding immune system networks and the evolution of chemical diversity in the plant kingdom.
Collapse
Affiliation(s)
- Marcelo L Campos
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
33
|
Agrawal S, Kelkenberg M, Begum K, Steinfeld L, Williams CE, Kramer KJ, Beeman RW, Park Y, Muthukrishnan S, Merzendorfer H. Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 49:24-34. [PMID: 24680676 DOI: 10.1016/j.ibmb.2014.03.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/07/2014] [Accepted: 03/14/2014] [Indexed: 05/13/2023]
Abstract
The peritrophic matrix (PM) in the midgut of insects consists primarily of chitin and proteins and is thought to support digestion and provide protection from abrasive food particles and enteric pathogens. We examined the physiological roles of 11 putative peritrophic matrix protein (PMP) genes of the red flour beetle, Tribolium castaneum (TcPMPs). TcPMP genes are differentially expressed along the length of the midgut epithelium of feeding larvae. RNAi of individual PMP genes revealed no abnormal developmental phenotypes for 9 of the 11 TcPMPs. However, RNAi for two PMP genes, TcPMP3 and TcPMP5-B, resulted in depletion of the fat body, growth arrest, molting defects and mortality. In situ permeability assays after oral administration of different-sized FITC-dextran beads demonstrated that the exclusion size of the larval peritrophic matrix (PM) decreases progressively from >2 MDa to <4 kDa from the anterior to the most posterior regions of the midgut. In the median midguts of control larvae, 2 MDa dextrans were completely retained within the PM lumen, whereas after RNAi for TcPMP3 and TcPMP5-B, these dextrans penetrated the epithelium of the median midgut, indicating loss of structural integrity and barrier function of the larval PM. In contrast, RNAi for TcPMP5-B, but not RNAi for TcPMP3, resulted in breakdown of impermeability to 4 and 40 kDa dextrans in the PM of the posterior midgut. These results suggest that specific PMPs are involved in the regulation of PM permeability, and that a gradient of barrier function is essential for survival and fat body maintenance.
Collapse
Affiliation(s)
- Sinu Agrawal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - Marco Kelkenberg
- Department of Biology, Chemistry, University of Osnabrück, Osnabrück 49069, Germany
| | - Khurshida Begum
- Department of Entomology, Kansas State University, 103 Waters Hall, Manhattan, KS 66506, USA
| | - Lea Steinfeld
- Department of Biology, Chemistry, University of Osnabrück, Osnabrück 49069, Germany
| | - Clay E Williams
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA; Center for Grain and Animal Health Research, ARS-USDA, 1515 College Avenue, Manhattan, KS 66502, USA
| | - Richard W Beeman
- Center for Grain and Animal Health Research, ARS-USDA, 1515 College Avenue, Manhattan, KS 66502, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, 103 Waters Hall, Manhattan, KS 66506, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA.
| | - Hans Merzendorfer
- Department of Biology, Chemistry, University of Osnabrück, Osnabrück 49069, Germany.
| |
Collapse
|
34
|
Ramos MV, Souza DP, Gomes MTR, Freitas CDT, Carvalho CPS, Júnior PAVR, Salas CE. A Phytopathogenic Cysteine Peptidase from Latex of Wild Rubber Vine Cryptostegia grandiflora. Protein J 2014; 33:199-209. [DOI: 10.1007/s10930-014-9551-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
European corn borer (Ostrinia nubilalis) induced responses enhance susceptibility in maize. PLoS One 2013; 8:e73394. [PMID: 24023868 PMCID: PMC3759431 DOI: 10.1371/journal.pone.0073394] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/20/2013] [Indexed: 12/22/2022] Open
Abstract
Herbivore-induced plant responses have been widely described following attack on leaves; however, less attention has been paid to analogous local processes that occur in stems. Early studies of maize (Zea mays) responses to stem boring by European corn borer (ECB, Ostrinianubilalis) larvae revealed the presence of inducible acidic diterpenoid phytoalexins, termed kauralexins, and increases in the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one-glucose (HDMBOA-Glc) after 24 h of herbivory. Despite these rapidly activated defenses, larval growth was not altered in short-term feeding assays. Unexpectedly, ECB growth significantly improved in assays using stem tissue preconditioned by 48 h of larval tunneling. Correspondingly, measures of total soluble protein increased over 2.6-fold in these challenged tissues and were accompanied by elevated levels of sucrose and free linoleic acid. While microarray analyses revealed up-regulation of over 1100 transcripts, fewer individual protein increases were demonstrable. Consistent with induced endoreduplication, both wounding and ECB stem attack resulted in similar significant expansion of the nucleus, nucleolus and levels of extractable DNA from challenged tissues. While many of these responses are triggered by wounding alone, biochemical changes further enhanced in response to ECB may be due to larval secreted effectors. Unlike other Lepidoptera examined, ECB excrete exceedingly high levels of the auxin indole-3-acetic acid (IAA) in their frass which is likely to contact and contaminate the surrounding feeding tunnel. Stem exposure to a metabolically stable auxin, such as 2,4-dichlorophenoxyacetic acid (2,4-D), promoted significant protein accumulation above wounding alone. As a future testable hypothesis, we propose that ECB-associated IAA may function as a candidate herbivore effector promoting the increased nutritional content of maize stems.
Collapse
|
36
|
Fescemyer HW, Sandoya GV, Gill TA, Ozkan S, Marden JH, Luthe DS. Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:280-291. [PMID: 23306018 DOI: 10.1016/j.ibmb.2012.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/05/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
Understanding the molecular mechanisms underlying insect compensatory responses to plant defenses could lead to improved plant resistance to herbivores. The Mp708 inbred line of maize produces the maize insect resistant 1-cysteine protease (Mir1-CP) toxin. Reduced feeding and growth of fall armyworm larvae fed on Mp708 was previously linked to impairment of nutrient utilization and degradation of the midgut (MG) peritrophic matrix (PM) by Mir1-CP. Here we examine the biochemical and transcriptional responses of fall armyworm larvae to Mir1-CP. Insect Intestinal Mucin (IIM) was severely depleted from pure PMs treated in vitro with recombinant Mir1-CP. Larvae fed on Mp708 midwhorls excrete frass largely depleted of IIM. Cracks, fissures and increased porosity previously observed in the PM of larvae fed on Mp708 midwhorls could ensue when Mir1-CP degrades the IIM that cross-links chitin fibrils in the PM. Both targeted and global transcriptome analyses were performed to determine how complete dissolution of the structure and function of the PM is prevented, enabling larvae to continue growing in the presence of Mir1-CP. The MGs from fall armyworm fed on Mp708 upregulate expression of genes encoding proteins involved in PM production as an apparent compensation to replace the disrupted PM structure and restore appropriate counter-current MG gradients. Also, several families of digestive enzymes (endopeptidases, aminopeptidases, lipases, amylase) were more highly expressed in MGs from larvae fed on Mp708 than MGs from larvae fed on diets lacking Mir1-CP (artificial diet, midwhorls from Tx601 or B73 maize). Impaired growth of larvae fed on Mp708 probably results from metabolic costs associated with higher production of PM constituents and digestive enzymes in a compensatory attempt to maintain MG function.
Collapse
Affiliation(s)
- Howard W Fescemyer
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Valaitis AP, Podgwaite JD. Bacillus thuringiensis Cry1A toxin-binding glycoconjugates present on the brush border membrane and in the peritrophic membrane of the Douglas-fir tussock moth are peritrophins. J Invertebr Pathol 2013; 112:1-8. [DOI: 10.1016/j.jip.2012.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/19/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
38
|
|
39
|
Azarkan M, Matagne A, Wattiez R, Bolle L, Vandenameele J, Baeyens-Volant D. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex. PHYTOCHEMISTRY 2011; 72:1718-1731. [PMID: 21665232 DOI: 10.1016/j.phytochem.2011.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 05/28/2023]
Abstract
The latex of Ficus carica constitutes an important source of many proteolytic components known under the general term of ficin (EC 3.4.22.3) which belongs to the cysteine proteases of the papain family. So far, no data on the purification and characterization of individual forms of these proteases are available. An effective strategy was used to fractionate and purify to homogeneity five ficin forms, designated A, B, C, D1 and D2 according to their sequence of elution from a cation-exchange chromatographic support. Following rapid fractionation on a SP-Sepharose Fast Flow column, the different ficin forms were chemically modified by a specific and reversible monomethoxypolyethylene glycol (mPEG) reagent. In comparison with their un-derivatized counterparts, the mPEG-protein derivatives behaved differently on the ion-exchanger, allowing us for the first time to obtain five highly purified ficin molecular species titrating 1mol of thiol group per mole of enzyme. The purified ficins were characterized by de novo peptide sequencing and peptide mass fingerprinting analyzes, using mass spectrometry. Circular dichroism measurements indicated that all five ficins were highly structured, both in term of secondary and tertiary structure. Furthermore, analysis of far-UV CD spectra allowed calculation of their secondary structural content. Both these data and the molecular masses determined by MS reinforce the view that the enzymes belong to the family of papain-like proteases. The five ficin forms also displayed different specific amidase activities against small synthetic substrates like dl-BAPNA and Boc-Ala-Ala-Gly-pNA, suggesting some differences in their active site organization. Enzymatic activity of the five ficin forms was completely inhibited by specific cysteine and cysteine/serine proteases inhibitors but was unaffected by specific serine, aspartic and metallo proteases inhibitors.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Free University of Brussels, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
40
|
Whitehill JGA, Popova-Butler A, Green-Church KB, Koch JL, Herms DA, Bonello P. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer. PLoS One 2011; 6:e24863. [PMID: 21949771 PMCID: PMC3174216 DOI: 10.1371/journal.pone.0024863] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 08/22/2011] [Indexed: 12/03/2022] Open
Abstract
The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.
Collapse
Affiliation(s)
- Justin G A Whitehill
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America.
| | | | | | | | | | | |
Collapse
|
41
|
González-Rábade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador MDC. Production of plant proteases in vivo and in vitro--a review. Biotechnol Adv 2011; 29:983-96. [PMID: 21889977 DOI: 10.1016/j.biotechadv.2011.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/10/2011] [Accepted: 08/19/2011] [Indexed: 12/30/2022]
Abstract
In the latest two decades, the interest received by plant proteases has increased significantly. Plant enzymes such as proteases are widely used in medicine and the food industry. Some proteases, like papain, bromelain and ficin are used in various processes such as brewing, meat softening, milk-clotting, cancer treatment, digestion and viral disorders. These enzymes can be obtained from their natural source or through in vitro cultures, in order to ensure a continuous source of plant enzymes. The focus of this review will be the production of plant proteases both in vivo and in vitro, with particular emphasis on the different types of commercially important plant proteases that have been isolated and characterized from naturally grown plants. In vitro approaches for the production of these proteases is also explored, focusing on the techniques that do not involve genetic transformation of the plants and the attempts that have been made in order to enhance the yield of the desired proteases.
Collapse
|
42
|
Wohlschlager T, Butschi A, Zurfluh K, Vonesch SC, Auf dem Keller U, Gehrig P, Bleuler-Martinez S, Hengartner MO, Aebi M, Künzler M. Nematotoxicity of Marasmius oreades agglutinin (MOA) depends on glycolipid binding and cysteine protease activity. J Biol Chem 2011; 286:30337-30343. [PMID: 21757752 DOI: 10.1074/jbc.m111.258202] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fruiting body lectins have been proposed to act as effector proteins in the defense of fungi against parasites and predators. The Marasmius oreades agglutinin (MOA) is a Galα1,3Gal/GalNAc-specific lectin from the fairy ring mushroom that consists of an N-terminal ricin B-type lectin domain and a C-terminal dimerization domain. The latter domain shows structural similarity to catalytically active proteins, suggesting that, in addition to its carbohydrate-binding activity, MOA has an enzymatic function. Here, we demonstrate toxicity of MOA toward the model nematode Caenorhabditis elegans. This toxicity depends on binding of MOA to glycosphingolipids of the worm via its lectin domain. We show further that MOA has cysteine protease activity and demonstrate a critical role of this catalytic function in MOA-mediated nematotoxicity. The proteolytic activity of MOA was dependent on high Ca(2+) concentrations and favored by slightly alkaline pH, suggesting that these conditions trigger activation of the toxin at the target location. Our results suggest that MOA is a fungal toxin with intriguing similarities to bacterial binary toxins and has a protective function against fungivorous soil nematodes.
Collapse
Affiliation(s)
| | - Alex Butschi
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | - Sibylle C Vonesch
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | - Peter Gehrig
- Functional Genomics Center, University and ETH Zürich, CH-8057 Zürich, Switzerland
| | | | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
43
|
Gill TA, Sandoya G, Williams P, Luthe DS. Belowground resistance to western corn rootworm in lepidopteran-resistant maize genotypes. JOURNAL OF ECONOMIC ENTOMOLOGY 2011; 104:299-307. [PMID: 21404871 DOI: 10.1603/ec10117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Several maize, Zea mays L., inbred lines developed from an Antiguan maize population have been shown to exhibit resistance to numerous aboveground lepidopteran pests. This study shows that these genotypes are able to significantly reduce the survival of two root feeding pests, western corn rootworm, Diabrotica virgifera virgifera LeConte, and southern corn rootworm, Diabrotica undecimpunctata howardi Barber. The results also demonstrated that feeding by the aboveground herbivore fall armyworm, Spodoptera frugiperda (J. E. Smith), before infestation by western corn rootworm reduced survivorship of western corn rootworm in the root tissues of some, but not all, genotypes. Likewise, the presence of western corn rootworm in the soil seemed to increase resistance to fall armyworm in the whorl in several genotypes. However, genotypes derived from the Antiguan germplasm with genetic resistance to lepidopterans were still more resistant to the fall armyworm and both rootworm species than the susceptible genotypes even after defense induction. These results suggest that there may be intraplant communication that alters plant responses to aboveground and belowground herbivores.
Collapse
Affiliation(s)
- Torrence A Gill
- Department of Crop and Soil Science, 116 ASI Bldg., The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
44
|
Luthe DS, Gill T, Zhu L, Lopéz L, Pechanova O, Shivaji R, Ankala A, Williams WP. Aboveground to belowground herbivore defense signaling in maize: a two-way street? PLANT SIGNALING & BEHAVIOR 2011; 6:126-9. [PMID: 21270535 PMCID: PMC3122024 DOI: 10.4161/psb.6.1.14255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Insect pests that attempt to feed on the caterpillar-resistant maize genotype Mp708 encounter a potent, multipronged defense system that thwarts their invasion. First, these plants are on "constant alert" due to constitutively elevated levels of the phytohormone jasmonic acid that signals the plant to activate its defenses. The higher jasmonic acid levels trigger the expression of defense genes prior to herbivore attack so the plants are "primed" and respond with a faster and stronger defense. The second defense is the rapid accumulation of a toxic cysteine protease called Mir1-CP in the maize whorl in response to caterpillar feeding. When caterpillars ingest Mir1-CP, it damages the insect's midgut and retards their growth. In this article, we discuss a third possible defense strategy employed by Mp708. We have shown that foliar caterpillar feeding causes Mir1-CP and defense gene transcripts to accumulate in its roots. We propose that caterpillar feeding aboveground sends a signal belowground via the phloem that results in Mir1-CP accumulation in the roots. We also postulate that the roots serve as a reservoir of Mir1-CP that can be mobilized to the whorl in response to caterpillar assault.
Collapse
Affiliation(s)
- Dawn S Luthe
- Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Harrison RL, Bonning BC. Proteases as insecticidal agents. Toxins (Basel) 2010; 2:935-53. [PMID: 22069618 PMCID: PMC3153225 DOI: 10.3390/toxins2050935] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 04/26/2010] [Accepted: 04/30/2010] [Indexed: 11/16/2022] Open
Abstract
Proteases from a variety of sources (viruses, bacteria, fungi, plants, and insects) have toxicity towards insects. Some of these insecticidal proteases evolved as venom components, herbivore resistance factors, or microbial pathogenicity factors, while other proteases play roles in insect development or digestion, but exert an insecticidal effect when over-expressed from genetically engineered plants or microbial pathogens. Many of these proteases are cysteine proteases, although insect-toxic metalloproteases and serine proteases have also been examined. The sites of protease toxic activity range from the insect midgut to the hemocoel (body cavity) to the cuticle. This review discusses these insecticidal proteases along with their evaluation and use as potential pesticides.
Collapse
Affiliation(s)
- Robert L. Harrison
- Invasive Insect Biocontrol and Behavior Laboratory, USDA Agricultural Research Service, Plant Sciences Institute, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA; Robert.L.
| | - Bryony C. Bonning
- Department of Entomology, Iowa State University, 418 Science II, Ames, IA 50011-3222, USA
- Author to whom correspondence should be addressed; ; Tel.: +01-515-294-1989; Fax: +01-515-294-5957
| |
Collapse
|
46
|
Veljanovski V, Major IT, Patton JJ, Bol E, Louvet S, Hawkins BJ, Constabel CP. Induction of acid phosphatase transcripts, protein and enzymatic activity by simulated herbivory of hybrid poplar. PHYTOCHEMISTRY 2010; 71:619-26. [PMID: 20129630 DOI: 10.1016/j.phytochem.2010.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/19/2009] [Accepted: 01/06/2010] [Indexed: 05/28/2023]
Abstract
Herbivory and wounding upregulate a large suite of defense genes in hybrid poplar leaves. A strongly wound- and herbivore-induced gene with high similarity to Arabidopsis vegetative storage proteins (VSPs) and acid phosphatase (AP) was identified among genes strongly expressed during the poplar herbivore defense response. Phylogenetic analysis showed that the putative poplar acid phosphatase (PtdAP1) gene is part of an eight-member AP gene family in poplar, and is most closely related to a functionally characterized soybean nodule AP. Unlike the other poplar APs, PtdAP1 is expressed in variety of tissues, as observed in an analysis of EST data. Following wounding, the gene shows an expression profile similar to other known poplar defense genes such as protease inhibitors, chitinase, and polyphenol oxidase. Significantly, we show for the first time that subsequent to the wound-induction of PtdAP1 transcripts, AP protein and activity increase in extracts of leaves and other tissues. Although its mechanism of action is as yet unknown, these results suggest in hybrid poplar PtdAP1 is likely a component of the defense response against leaf-eating herbivores.
Collapse
Affiliation(s)
- Vasko Veljanovski
- Centre for Forest Biology, Biology Department, University of Victoria, Victoria, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Shivaji R, Camas A, Ankala A, Engelberth J, Tumlinson JH, Williams WP, Wilkinson JR, Luthe DS. Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar-resistant maize. J Chem Ecol 2010; 36:179-91. [PMID: 20148356 DOI: 10.1007/s10886-010-9752-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/03/2010] [Accepted: 01/15/2010] [Indexed: 12/20/2022]
Abstract
This study was conducted to determine if constitutive levels of jasmonic acid (JA) and other octadecanoid compounds were elevated prior to herbivory in a maize genotype with documented resistance to fall armyworm (Spodoptera frugiperda) and other lepidopteran pests. The resistant inbred Mp708 had approximately 3-fold higher levels of jasmonic acid (JA) prior to herbivore feeding than the susceptible inbred Tx601. Constitutive levels of cis-12-oxo-phytodienoic acid (OPDA) also were higher in Mp708 than Tx601. In addition, the constitutive expression of JA-inducible genes, including those in the JA biosynthetic pathway, was higher in Mp708 than Tx601. In response to herbivory, Mp708 generated comparatively higher levels of hydrogen peroxide, and had a greater abundance of NADPH oxidase transcripts before and after caterpillar feeding. Before herbivore feeding, low levels of transcripts encoding the maize insect resistance cysteine protease (Mir1-CP) and the Mir1-CP protein were detected consistently. Thus, Mp708 appears to have a portion of its defense pathway primed, which results in constitutive defenses and the ability to mount a stronger defense when caterpillars attack. Although the molecular mechanisms that regulate the constitutive accumulation of JA in Mp708 are unknown, it might account for its enhanced resistance to lepidopteran pests. This genotype could be valuable in studying the signaling pathways that maize uses to response to insect herbivores.
Collapse
Affiliation(s)
- Renuka Shivaji
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Vandenborre G, Groten K, Smagghe G, Lannoo N, Baldwin IT, Van Damme EJM. Nicotiana tabacum agglutinin is active against Lepidopteran pest insects. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1003-14. [PMID: 20018900 DOI: 10.1093/jxb/erp365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A jasmonate-inducible lectin called Nicotiana tabacum agglutinin or NICTABA was found in tobacco (Nicotiana tabacum cv Samsun) leaves. Since NICTABA expression is also induced after insect herbivory, a role in the defence response of tobacco was suggested. In this report, a detailed analysis was made of the entomotoxic properties of NICTABA using different transgenic approaches. First, purified NICTABA was shown to be strongly resistant to proteolytic degradation by enzymes present in the Lepidopteran midgut. To address the question of whether NICTABA is also active against Lepidopteran larvae, transgenic N. tabacum plants that silence endogenous NICTABA expression were constructed using RNA interference. Feeding experiments with these transgenic N. tabacum plants demonstrated that silencing of NICTABA expression enhances the larval performance of the generalist pest insect Spodoptera littoralis. In a second transgenic approach, NICTABA was ectopically expressed in the wild diploid tobacco Nicotiana attenuata, a species that lacks a functional NICTABA gene. When these transgenic N. attenuata plants were used in feeding experiments with S. littoralis larvae, a clear reduction in mass gain and significantly slower development were observed. In addition, feeding experiments with the Solanaceae specialist, Manduca sexta, provided further evidence that NICTABA exerts clear entomotoxic effects on Lepidopteran larvae.
Collapse
Affiliation(s)
- Gianni Vandenborre
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Erb M, Lenk C, Degenhardt J, Turlings TCJ. The underestimated role of roots in defense against leaf attackers. TRENDS IN PLANT SCIENCE 2009; 14:653-9. [PMID: 19736036 DOI: 10.1016/j.tplants.2009.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/04/2009] [Accepted: 08/10/2009] [Indexed: 05/23/2023]
Abstract
Plants have evolved intricate strategies to withstand attacks by herbivores and pathogens. Although it is known that plants change their primary and secondary metabolism in leaves to resist and tolerate aboveground attack, there is little awareness of the role of roots in these processes. This is surprising given that plant roots are responsible for the synthesis of plant toxins, play an active role in environmental sensing and defense signaling, and serve as dynamic storage organs to allow regrowth. Hence, studying roots is essential for a solid understanding of resistance and tolerance to leaf-feeding insects and pathogens. Here, we highlight this function of roots in plant resistance to aboveground attackers, with a special focus on systemic signaling and insect herbivores.
Collapse
Affiliation(s)
- Matthias Erb
- Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland.
| | | | | | | |
Collapse
|
50
|
Ankala A, Luthe DS, Williams WP, Wilkinson JR. Integration of ethylene and jasmonic acid signaling pathways in the expression of maize defense protein Mir1-CP. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1555-1564. [PMID: 19888821 DOI: 10.1094/mpmi-22-12-1555] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In plants, ethylene and jasmonate control the defense responses to multiple stressors, including insect predation. Among the defense proteins known to be regulated by ethylene is maize insect resistance 1-cysteine protease (Mir1-CP). This protein is constitutively expressed in the insect-resistant maize (Zea mays) genotype Mp708; however, its abundance significantly increases during fall armyworm (Spodoptera frugiperda) herbivory. Within 1 h of herbivory by fall armyworm, Mir1-CP accumulates at the feeding site and continues to increase in abundance until 24 h without any increase in its transcript (mir1) levels. To resolve this discrepancy and elucidate the role of ethylene and jasmonate in the signaling of Mir1-CP expression, the effects of phytohormone biosynthesis and perception inhibitors on Mir1-CP expression were tested. Immunoblot analysis of Mir1-CP accumulation and quantitative reverse-transcriptase polymerase chain reaction examination of mir1 levels in these treated plants demonstrate that Mir1-CP accumulation is regulated by both transcript abundance and protein expression levels. The results also suggest that jasmonate functions upstream of ethylene in the Mir1-CP expression pathway, allowing for both low-level constitutive expression and a two-stage defensive response, an immediate response involving Mir1-CP accumulation and a delayed response inducing mir1 transcript expression.
Collapse
Affiliation(s)
- A Ankala
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississipi State, MS 39762, USA
| | | | | | | |
Collapse
|