1
|
Mohamed MA, Ghazy AEM, Abdel Karim GS, El-khonezy MI, Abd-Elaziz AM, Ghanem MM. Defense status in larval stage of red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Ghanem MM, Mohamed MA, Abd-Elaziz AM. Distribution, purification and characterization of a monofunctional catalase from Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Mohamed MA, Shaalan S, Ghazy AEM, Ali AA, Abd-Elaziz AM, Ghanem MME, Abd-Elghany SA. Purification and characterization of acetylcholinesterase in Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Int J Biol Macromol 2019; 147:1029-1040. [PMID: 31751747 DOI: 10.1016/j.ijbiomac.2019.10.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Red palm weevil (RPW), Rhynchophorus ferrugineus, is one of the most destructive pests of cultivated palm trees. The application of synthetic insecticides is currently a main strategy for RPW control. In this study we estimated the distribution of acetylcholinesterase (AChE), as a detoxifying enzyme and the target site of inhibition by insecticides, using ASChI as substrate in different organs of the pest including whole gut, cuticle, fat body, head and haemolymph. The activity ranged from 314.9 to 3868 U in individual organs while the specific activity ranged from 99 to 340.8 U/mg proteins; the cuticle had the highest enzyme level. During larval development, the 11th instar larvae had the highest enzyme content with 5630 U in the cuticle, with a specific activity of 140 U/mg protein. The two major AChE isoenzymes were purified by chromatography on gel filtration and ion exchange columns. They had specific activities of 3504.3 and 2979 U/mg protein, molecular weights of 33 and 54 kDa and activation energies of 8.3 and 4.4 kcal/mol, respectively. Both isoenzymes had monomeric forms, optimum activity at pH 8.0 and 40 °C, were completely inhibited by Hg2+ and Cu2 and showed similar trends towards the inhibitors eserine, BW284C51 and iso-OMPA. The catalytic properties were compared with those previously recorded for different insect species. This work will pave the way for more studies for improving the understanding of insecticide resistance and developing the field application of synthetic insecticides for controlling R. ferrugineus to ensure successful application.
Collapse
Affiliation(s)
- Magda A Mohamed
- Molecular Biology Department, National Research Centre, 33-El Bohouth st. Dokki, P.O.12622, Giza, Egypt.
| | - Shebl Shaalan
- Zoology Department, Faculty of Science, Cairo University, P.O.12316, Giza, Egypt
| | - Abd-Elhady M Ghazy
- Molecular Biology Department, National Research Centre, 33-El Bohouth st. Dokki, P.O.12622, Giza, Egypt
| | - Atef A Ali
- Zoology Department, Faculty of Science, Cairo University, P.O.12316, Giza, Egypt
| | - Ahmed M Abd-Elaziz
- Molecular Biology Department, National Research Centre, 33-El Bohouth st. Dokki, P.O.12622, Giza, Egypt
| | - Manal M E Ghanem
- Molecular Biology Department, National Research Centre, 33-El Bohouth st. Dokki, P.O.12622, Giza, Egypt
| | - Sarah A Abd-Elghany
- Molecular Biology Department, National Research Centre, 33-El Bohouth st. Dokki, P.O.12622, Giza, Egypt
| |
Collapse
|
4
|
Gutiérrez-Cabrera AE, Zandberg WF, Zenteno E, Rodríguez MH, Espinoza B, Lowenberger C. Glycosylation on proteins of the intestine and perimicrovillar membrane of Triatoma (Meccus) pallidipennis, under different feeding conditions. INSECT SCIENCE 2019; 26:796-808. [PMID: 29446564 DOI: 10.1111/1744-7917.12579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, interacts with molecules in the midgut of its insect vector to multiply and reach the infective stage. Many studies suggest that the parasite binds to midgut-specific glycans. We identified several glycoproteins expressed in the intestine and perimicrovillar membrane (PMM) of Triatoma (Meccus) pallidipennis under different feeding conditions. In order to assess changes in protein-linked glycans, we performed lectin and immunoblot analyses on glycoprotein extracts from these intestinal tissues using well-characterized lectins, and an antibody, which collectively recognize a wide range of different glycans epitopes. We observed that the amount and composition of proteins and glycoproteins associated with different glycans structures changed over time in the intestines and PMM under different physiological conditions. PMM extracts contained a wide variety of glycoproteins with different sugar residues, including abundant high-mannose and complex sialylated glycans. We propose that these molecules could be involved in the process of parasite-vector interactions.
Collapse
Affiliation(s)
- Ana E Gutiérrez-Cabrera
- CONACyT-Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Wesley F Zandberg
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Edgar Zenteno
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Mexico City, DF, Mexico
| | - Mario H Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Bertha Espinoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, DF, Mexico
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
5
|
Mohamed MA, Ghanem MM, Abd-Elaziz AM, Shams-Eldin IM. Purification and characterization of xylanase isoenzymes from red palm weevil Rhynchophorus ferrugineus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Gutiérrez-Cabrera AE, Córdoba-Aguilar A, Zenteno E, Lowenberger C, Espinoza B. Origin, evolution and function of the hemipteran perimicrovillar membrane with emphasis on Reduviidae that transmit Chagas disease. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:279-291. [PMID: 26639621 DOI: 10.1017/s0007485315000929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The peritrophic matrix is a chitin-protein structure that envelops the food bolus in the midgut of the majority of insects, but is absent in some groups which have, instead, an unusual extra-cellular lipoprotein membrane named the perimicrovillar membrane. The presence of the perimicrovillar membrane (PMM) allows these insects to exploit restricted ecological niches during all life stages. It is found only in some members of the superorder Paraneoptera and many of these species are of medical and economic importance. In this review we present an overview of the midgut and the digestive system of insects with an emphasis on the order Paraneoptera and differences found across phylogenetic groups. We discuss the importance of the PMM in Hemiptera and the apparent conservation of this structure among hemipteran groups, suggesting that the basic mechanism of PMM production is the same for different hemipteran species. We propose that the PMM is intimately involved in the interaction with parasites and as such should be a target for biological and chemical control of hemipteran insects of economic and medical importance.
Collapse
Affiliation(s)
- A E Gutiérrez-Cabrera
- Departamento de Inmunología,Instituto de Investigaciones Biomedicas,Universidad Nacional Autónoma de México,Apdo. 70228,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - A Córdoba-Aguilar
- Departamento de Ecología Evolutiva,Instituto de Ecología,Universidad Nacional Autónoma de México,Apdo. P. 70-275,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,Mexico
| | - E Zenteno
- Departamento de Bioquímica,Facultad de Medicina,Universidad Nacional Autónoma de México,Ciudad Universitaria,04510 D.F.,Mexico
| | - C Lowenberger
- Department of Biological Sciences,Simon Fraser University,Burnaby, B.C., V5A 1S6,Canada
| | - B Espinoza
- Departamento de Inmunología,Instituto de Investigaciones Biomedicas,Universidad Nacional Autónoma de México,Apdo. 70228,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| |
Collapse
|
7
|
Amiri A, Bandani AR, Alizadeh H. MOLECULAR IDENTIFICATION OF CYSTEINE AND TRYPSIN PROTEASE, EFFECT OF DIFFERENT HOSTS ON PROTEASE EXPRESSION, AND RNAI MEDIATED SILENCING OF CYSTEINE PROTEASE GENE IN THE SUNN PEST. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:189-209. [PMID: 26609789 DOI: 10.1002/arch.21311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sunn pest, Eurygaster integriceps, is a serious pest of cereals in the wide area of the globe from Near and Middle East to East and South Europe and North Africa. This study described for the first time, identification of E. integriceps trypsin serine protease and cathepsin-L cysteine, transcripts involved in digestion, which might serve as targets for pest control management. A total of 478 and 500 base pair long putative trypsin and cysteine gene sequences were characterized and named Tryp and Cys, respectively. In addition, the tissue-specific relative gene expression levels of these genes as well as gluten hydrolase (Gl) were determined under different host kernels feeding conditions. Result showed that mRNA expression of Cys, Tryp, and Gl was significantly affected after feeding on various host plant species. Transcript levels of these genes were most abundant in the wheat-fed E. integriceps larvae compared to other hosts. The Cys transcript was detected exclusively in the gut, whereas the Gl and Tryp transcripts were detectable in both salivary glands and gut. Also possibility of Sunn pest gene silencing was studied by topical application of cysteine double-stranded RNA (dsRNA). The results indicated that topically applied dsRNA on fifth nymphal stage can penetrate the cuticle of the insect and induce RNA interference. The Cys gene mRNA transcript in the gut was reduced to 83.8% 2 days posttreatment. Also, it was found that dsRNA of Cys gene affected fifth nymphal stage development suggesting the involvement of this protease in the insect growth, development, and molting.
Collapse
Affiliation(s)
- Azam Amiri
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Reza Bandani
- Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Houshang Alizadeh
- Department of Agronomy & Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
8
|
Kafil M, Bandani AR, Kaltenpoth M, Goldansaz SH, Alavi SM. Role of symbiotic bacteria in the growth and development of the Sunn pest, Eurygaster integriceps. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:99. [PMID: 24205987 PMCID: PMC3835049 DOI: 10.1673/031.013.9901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/12/2012] [Indexed: 05/10/2023]
Abstract
The Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), is the most important pest of wheat and barley in wide areas of the world. Different aspects of the insect's life history have been studied, but to date nothing is known about their microbial symbionts. Here, the contribution of symbiotic bacteria to the fitness of the bug was investigated by combining two different approaches to manipulate the host's microbial community: the supplementation of antibiotics into the insects' diet and egg surface sterilization. First, bacteria cultured from gut homogenates were subjected to antibiotic screening tests using 20 different antibiotics. Norfloxacin was the most effective antibiotic, with the greatest inhibition zone among all antibiotics tested. Feeding norfloxacin to adult E. integriceps individuals significantly impaired growth and development of the offspring in a dose-dependent manner, i.e., higher antibiotic doses increased the negative effects on nymphal growth and development. Total developmental time from first nymphal instars to adult emergence in control animals was 30.1 days, but when adults had been offered diets with 10, 20, and 30 µg antibiotic per mg diet, the offspring's developmental time was prolonged to 32.8, 34.0, and 34.8 days, respectively. In the highest two doses of norfloxacin, all of the nymphs died before reaching the fifth nymphal instar. Similar results as for the antibiotic treatment were obtained when egg surface sterilization was used to manipulate the microbial community of E. integriceps. These results indicate that bacterial symbionts play a crucial role in the successful development of the host.
Collapse
Affiliation(s)
- Maryam Kafil
- Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Ali Reza Bandani
- Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Insect Symbiosis Research Group, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | | | - Seyed Mehdi Alavi
- Department of Plant Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O.Box: 14155-6343, Tehran, Iran
| |
Collapse
|
9
|
Mehrabadi M, Bandani AR, Allahyari M, Serrão JE. The Sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) digestive tract: Histology, ultrastructure and its physiological significance. Micron 2012; 43:631-7. [DOI: 10.1016/j.micron.2011.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/13/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
|
10
|
Mehrabadi M, Bandani AR. Secretion and formation of perimicrovillar membrane in the digestive system of the Sunn pest, Eurygaster integriceps (Hemiptera: Scutelleridae) in response to feeding. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 78:190-200. [PMID: 22105665 DOI: 10.1002/arch.20452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, development of perimicrovillar membrane (PMM) from midgut cells of starved and fed Eurygaster integriceps (Hemiptera: Scutelleridae) was studied. Three different approaches, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), marker enzymes of the PMMs (α-glucosidase), perimicrovillar space (aminopeptidase), and microvillar membranes (β-glucosidase) were used. Activities of these enzymes were remarkably low in the starved insects. Moreover, microscopic observations revealed that PMM is not present in the starved insect. Activities of enzymatic markers increased at 5 h postfeeding, and TEM and SEM observations showed the formation of PMM as well as migration of double-membrane vesicles from center of the columnar cell to the cell apex. The highest PMM was observed at 20 h postfeeding which at this time marker enzyme activity, such as α-glucosidase activity, was high, too. Thus, at 20 h postfeeding, PMM system was evident and epithelial cells were completely covered by PMM system. After 20 h postfeeding, presence of the fine holes in PMM started to be seen and at 40 h post-feeding, observation showed degradation of PMM system. Thus, it could be concluded that PMM in E. integriceps is secreted by epithelial cell membrane when needed and its secretion and formation is regulated by feeding. This system was not present in the starved insects as its development takes place at 5 h postfeeding.
Collapse
Affiliation(s)
- Mohammad Mehrabadi
- Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
11
|
Costa IA, Samuels RI, Bifano TD, Terra WR, Silva CP. Purification and partial characterization of an aminopeptidase from the midgut tissue of Dysdercus peruvianus. Comp Biochem Physiol B Biochem Mol Biol 2010; 158:235-41. [PMID: 21167291 DOI: 10.1016/j.cbpb.2010.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 11/26/2022]
Abstract
The surface of midgut cells in Hemiptera is ensheathed by a lipoprotein membrane (the perimicrovillar membrane), which delimits a closed compartment with the microvillar membrane, the so-called perimicrovillar space. In Dysdercus peruvianus midgut perimicrovillar space a soluble aminopeptidase maybe involved in the digestion of oligopeptides and proteins ingested in the diet. This D. peruvianus aminopeptidase was purified to homogeneity by ion-exchange chromatography on an Econo-Q column, hydrophobic interaction chromatography on phenyl-agarose column and preparative polyacrylamide gel electrophoresis. The results suggested that there is a single molecular species of aminopeptidase in D. peruvianus midgut. Molecular mass values for the aminopeptidase were estimated to be 106kDa (gel filtration) and 55kDa (SDS-PAGE), suggesting that the enzyme occurs as a dimer under native conditions. Kinetic data showed that D. peruvianus aminopeptidase hydrolyzes the synthetic substrates LpNA, RpNA, AβNA and AsnMCA (K(m)s 0.65, 0.14, 0.68 and 0.74mM, respectively). The aminopeptidase activity upon LpNA was inhibited by EDTA and 1,10-phenanthroline, indicating the importance of metal ions in enzyme catalysis. One partial sequence of BLAST-identified aminopeptidase was found by random sequencing of the D. peruvianus midgut cDNA library. Semi-quantitative RT-PCR analysis showed that the aminopeptidase genes were expressed throughout the midgut epithelium, in the epithelia of V1, V2 and V3, Malphigian tubules and fat body, but it was not expressed in the salivary glands. These results are important in furthering our understanding of the digestive process in this pest species.
Collapse
Affiliation(s)
- Inês A Costa
- Laboratório de Química e Função de Proteínas e Peptídeos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28030-600, Campos dos Goytacazes, RJ, Brazil
| | | | | | | | | |
Collapse
|