1
|
Barbosa RC, Godoy RSM, Ferreira PG, Mendes TAO, Ramalho-Ortigão M, Ribeiro JMC, Martins GF. Exploring the midgut physiology of the non-haematophagous mosquito Toxorhynchites theobaldi. Open Biol 2024; 14:230437. [PMID: 38955221 DOI: 10.1098/rsob.230437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Toxorhynchites mosquitoes have an exclusively phytophagous feeding habit as adults, which leads to significant differences in their morphophysiology compared with haematophagous mosquitoes. However, the molecular mechanisms of digestion in this mosquito are not well understood. In this study, RNA sequencing of the posterior midgut (PMG) of the mosquito Toxorhynchites theobaldi was undertaken, highlighting its significance in mosquito digestion. Subsequently, a comparison was made between the differential gene expression of the PMG and that of the anterior midgut. It was found that the most abundant proteases in the PMG were trypsin and chymotrypsin, and the level of gene expression for enzymes essential for digestion (such as serine protease, α-amylase and pancreatic triacylglycerol lipase) and innate immune response (including catalase, cecropin-A2 and superoxide dismutase) was like that of haematophagous mosquitoes. Peritrophin-1 was detected in the entire midgut, with an elevated expression level in the PMG. Based on our findings, it is hypothesized that a non-haematophagic habit might have been exhibited by the ancestor of Tx. theobaldi, and this trait may have been retained. This study represents a pioneering investigation at the molecular level of midgut contents in a non-haematophagous mosquito. The findings offer valuable insights into the evolutionary aspects of feeding habits in culicids.
Collapse
Affiliation(s)
- Renata C Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Raquel S M Godoy
- Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Priscila G Ferreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais 50670-900, Brazil
| | - Tiago A O Mendes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais 50670-900, Brazil
| | | | - José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852, USA
| | - Gustavo F Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
2
|
Wang L, Zhu J, Wang Q, Ji X, Wang W, Huang W, Rui C, Cui L. Hormesis effects of sulfoxaflor on Aphis gossypii feeding, growth, reproduction behaviour and the related mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162240. [PMID: 36796701 DOI: 10.1016/j.scitotenv.2023.162240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Sulfoxaflor, an important alternative insecticide in integrated pest management (IPM) strategies, can effectively control sap-feeding insect pests such as Aphis gossypii. Although the side effects of sulfoxaflor have recently attracted widespread attention, its toxicological characteristics and mechanisms are still largely undefined. Therefore, the biological characteristics, life table and feeding behaviour of A. gossypii were studied to evaluate the hormesis effect of sulfoxaflor. Then, the potential mechanisms of induced fecundity associated with the vitellogenin (Ag. Vg) and vitellogenin receptor (Ag. VgR) genes were investigated. Although the LC10 and LC30 concentrations of sulfoxaflor significantly reduced the fecundity and net reproduction rate (R0) of the directly exposed sulfoxaflor-resistant and susceptible aphids, hormesis effects on fecundity and R0 were observed in the F1 generation of Sus A. gossypii when the parental generation was exposed to the LC10 of sulfoxaflor. Moreover, the hormesis effects of sulfoxaflor on phloem feeding were observed in both A. gossypii strains. Additionally, enhanced expression levels and protein content of Ag. Vg and Ag. VgR were observed in progeny generations when F0 was subjected to the trans- and multigenerational sublethal sulfoxaflor exposure. Therefore, sulfoxaflor-induced resurgence might occur in A. gossypii after exposure to sublethal concentrations. Our study could contribute to a comprehensive risk assessment and provide convincing reference to optimize sulfoxaflor in IPM strategies.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Junshu Zhu
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xuejiao Ji
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Wenjie Wang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weiling Huang
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
3
|
Tie S, He YD, Lázaro A, Inouye DW, Guo YH, Yang CF. Floral trait variation across individual plants within a population enhances defense capability to nectar robbing. PLANT DIVERSITY 2023; 45:315-325. [PMID: 37397606 PMCID: PMC10311112 DOI: 10.1016/j.pld.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 07/04/2023]
Abstract
Floral trait variation may help pollinators and nectar robbers identify their target plants and, thus, lead to differential selection pressure for defense capability against floral antagonists. However, the effect of floral trait variation among individuals within a population on multi-dimensional plant-animal interactions has been little explored. We investigated floral trait variation, pollination, and nectar robbing among individual plants in a population of the bumble bee-pollinated plant, Caryopteris divaricata, from which flowers are also robbed by bumble bees with varying intensity across individuals. We measured the variation in corolla tube length, nectar volume and sugar concentration among individual plants, and evaluated whether the variation were recognized by pollinators and robbers. We investigated the influence of nectar robbing on legitimate visitation and seed production per fruit. We found that the primary nectar robber (Bombus nobilis) preferred to forage on plants with long-tubed flowers, which produced less nectar and had lower sugar concentration compared to those with shorter corolla tubes. Individuals with shorter corolla tubes had comparatively lower nectar robbing intensity but higher visitation by legitimate visitors (mainly B. picipes) and higher seed production. Nectar robbing significantly reduced seed production because it decreased pollinator visits. However, neither pollination nor seed production differed between plants with long and short corolla tubes when nectar robbers were excluded. This finding suggests that floral trait variation might not be driven by pollinators. Such variation among individual plants thus allows legitimate visitors and nectar robbers to segregate niches and enhances population defense against nectar robbing in unpredictable conditions.
Collapse
Affiliation(s)
- Shuang Tie
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yong-Deng He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Amparo Lázaro
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA; UIB-CSIC), Esporles, Balearic Islands, Spain
| | - David W. Inouye
- The Rocky Mountain Biological Laboratory, Post Office Box 519, Crested Butte, CO 81224, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - You-Hao Guo
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Feng Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
4
|
Li X, Sun Y, Tian X, Wang C, Li Q, Li Q, Zhu S, Lan C, Zhang Y, Li X, Ding R, Zhu X. Sitobion miscanthi L type symbiont enhances the fitness and feeding behavior of the host grain aphid. PEST MANAGEMENT SCIENCE 2023; 79:1362-1371. [PMID: 36458953 DOI: 10.1002/ps.7308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Symbiotic bacteria affect physiology and ecology of insect hosts. The Sitobion miscanthi L type symbiont (SMLS) is a recently discovered and widely distributed secondary symbiont in the grain aphid Sitobion miscanthi Takahashi in China. RESULTS In this study, SMLS-infected (SI) and SMLS-uninfected (SU) aphid strains were obtained from field population. The artificially SMLS-re-infected (SRI) strain was established by injecting SU aphids with the SI strain hemolymph containing SMLS. The SRI and SU strains had identical genetic backgrounds and similar microbial community structures. Compared with the SU strain, adult longevity, survival rate, and fecundity were significantly greater in the SRI strain (biological fitness of 1.48). Moreover, the SRI strain spent more time ingesting phloem than the SU strain. A comparative transcriptome analysis indicated that reproduction- and longevity-related genes were more highly expressed in the SRI strain than in the SU strain. CONCLUSION The findings indicated that the infection with SMLS enhanced the Sitobion miscanthi fitness and feeding behavior. The beneficial effect of the SMLS on hosts could explain why it frequently infects the field populations in the grain aphid Sitobion miscanthi Takahashi in China. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Henan Engineering Research Center of Green Pesticide Creation and Intelligent Pesticide Residue Sensor Detection, School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Yulin Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xujun Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Research Center for Engineering Technology of Kiwifruit, Institute of Crop Protection, Guizhou University, Guiyang, China
| | - Chao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Qiuchi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Saige Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Lan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruifeng Ding
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Martin VN, Schaeffer RN, Fukami T. Potential effects of nectar microbes on pollinator health. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210155. [PMID: 35491594 DOI: 10.1098/rstb.2021.0155] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Floral nectar is prone to colonization by nectar-adapted yeasts and bacteria via air-, rain-, and animal-mediated dispersal. Upon colonization, microbes can modify nectar chemical constituents that are plant-provisioned or impart their own through secretion of metabolic by-products or antibiotics into the nectar environment. Such modifications can have consequences for pollinator perception of nectar quality, as microbial metabolism can leave a distinct imprint on olfactory and gustatory cues that inform foraging decisions. Furthermore, direct interactions between pollinators and nectar microbes, as well as consumption of modified nectar, have the potential to affect pollinator health both positively and negatively. Here, we discuss and integrate recent findings from research on plant-microbe-pollinator interactions and their consequences for pollinator health. We then explore future avenues of research that could shed light on the myriad ways in which nectar microbes can affect pollinator health, including the taxonomic diversity of vertebrate and invertebrate pollinators that rely on this reward. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
| | | | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Multerer MT, Wendler M, Ruther J. The biological significance of lipogenesis in Nasonia vitripennis. Proc Biol Sci 2022; 289:20220208. [PMID: 35414234 PMCID: PMC9006012 DOI: 10.1098/rspb.2022.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Parasitic wasps have long been thought to be unable to synthesize fatty acids de novo, but recent 13C-labelling studies have challenged this view. It remained unclear, however, whether the reported biosynthesis rates are of biological relevance. Here, we show in Nasonia vitripennis that ageing females with partly depleted lipid reserves produce biologically relevant amounts of fatty acids de novo. Females with varying oviposition history (0-48 h) prior to feeding 20% 13C-labelled glucose solution showed 13C-incorporation rates of (mean ± SEM) 30 ± 2%, 50 ± 2%, 49 ± 3% and 21 ± 2% in palmitic, stearic, oleic and linoleic acid, respectively. The absolute amounts of fatty acids synthesized de novo across treatments corresponded to 28 ± 3 egg lipid equivalents. Females incorporated de novo synthesized fatty acids into their eggs, and glucose-fed females laid more eggs than water-fed control females. The number of eggs laid prior to glucose feeding did not correlate with the degree of lipogenesis, but the amounts of de novo synthesized fatty acids correlated with constitutive (not synthesized de novo) fatty acids. Hence, glucose feeding has a twofold effect on the fatty acid status of N. vitripennis females by decelerating the catabolism of existing fat reserves and partially replenishing ebbing fat reserves by lipogenesis.
Collapse
Affiliation(s)
- Marie-Theres Multerer
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Martina Wendler
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Kandori I, Fukada S, Kurosaki T, Yokoi T, Papaj DR. Comparison of color‐learning rates among eight species of three insect orders (Hymenoptera, Diptera, and Lepidoptera). Ecol Res 2021. [DOI: 10.1111/1440-1703.12249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ikuo Kandori
- Laboratory of Entomology, Faculty of Agriculture Kindai University Japan
| | - Satoshi Fukada
- Laboratory of Entomology, Faculty of Agriculture Kindai University Japan
| | - Tsutomu Kurosaki
- Laboratory of Entomology, Faculty of Agriculture Kindai University Japan
| | - Tomoyuki Yokoi
- Laboratory of Conservation Ecology, Faculty of Life and Environmental Sciences University of Tsukuba Japan
| | - Daniel R. Papaj
- Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona USA
| |
Collapse
|
8
|
Ying L, Baiming L, Hongran L, Tianbo D, Yunli T, Dong C. Effect of Cardinium Infection on the Probing Behavior of Bemisia tabaci (Hemiptera: Aleyrodidae) MED. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6306314. [PMID: 34146106 PMCID: PMC8214339 DOI: 10.1093/jisesa/ieab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Facultative endosymbionts can affect the growth, physiology, and behavior of their arthropod hosts. There are several endosymbionts in the invasive whitefly Bemisia tabaci Mediterranean (MED, Q biotype) that influence host fitness by altering stylet probing behavior. We investigated the probing behavior of B. tabaci MED infected with the facultative endosymbiont Candidatus Cardinium hertigii (Cardinium (Sphingobacteriales: Flexibacteraceae)). We generated genetically similar Cardinium-infected (C*+) and uninfected (C-) clonal sublines and analyzed the probing behavior of newly emerged adult on cotton (Malvales: Malvaceae), Gossypium hirsutum L., using electropenetrography (EPG). The C- subline demonstrated a longer duration of E2 (2.81-fold) and more events of E2 (2.22-fold) than the C*+ subline, indicating a greater level of sustained ingestion of plant phloem. These findings provide insight into the fitness costs (fitness of a particular genotype is lower than the average fitness of the population) of the Cardinium-infected B. tabaci.
Collapse
Affiliation(s)
- Liu Ying
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Liu Baiming
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300112, China
| | - Li Hongran
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ding Tianbo
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Yunli
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Chu Dong
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Heat accumulation in hollow Arctic flowers: possible microgreenhouse effects in syncalyces of campions (Silene spp. (Caryophyllaceae)) and zygomorphic sympetalous corollas of louseworts (Pedicularis spp. (Orobanchaceae)). Polar Biol 2020. [DOI: 10.1007/s00300-020-02772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Wang L, Wang Q, Wang Q, Rui C, Cui L. The feeding behavior and life history changes in imidacloprid-resistant Aphis gossypii glover (Homoptera: Aphididae). PEST MANAGEMENT SCIENCE 2020; 76:1402-1412. [PMID: 31622011 DOI: 10.1002/ps.5653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Imidacloprid (IMI) is a major neonicotinoid insecticide used to control Aphis gossypii Glover. However, resistance to IMI developed rapidly in A. gossypii. The feeding behavior and life history changes associated with IMI resistance were studied in A. gossypii. RESULTS The resistant population with a point mutation (R81T) in the nAChR β1 subunit showed an IMI resistance ratio of 58.12. This IMI-resistant A. gossypii became more active in finding an appropriate position for feeding. They made more intercellular apoplastic stylet pathway events (C) than the susceptible population. Moreover, the probing and feeding behavior of two aphid populations were dramatically altered by IMI. The phloem ingestion (E2) duration was significantly longer for IMI-resistant aphids on IMI-treated plants (WDI: 208.70 ± 17.38 min) than on control plants (WDI: 133.80 ± 16.37 min). However, IMI statistically reduced the ability of susceptible aphids to find and feed from the phloem. The number and duration of phloem-related activities were sharply decreased for the susceptible aphids treated with IMI. In addition, the resistant population showed an increased relative fitness of 1.36. The fecundity of IMI-resistant adults was dramatically higher than that of the susceptible population. This difference also led to an increase in the net reproductive rate (R0 ) for the IMI-resistant A. gossypii. CONCLUSIONS Imidacloprid provoked phloem-feeding more rapidly and effectively in IMI-resistant A. gossypii, but significantly suppressed the feeding of susceptible A. gossypii. Therefore, the resistance to IMI can result in stimulated feeding and fecundity and subsequent population outbreaks, which make the control of IMI-resistant A. gossypii more challenging. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinqin Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiyuan Wang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changhui Rui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Cui
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Pattrick JG, Symington HA, Federle W, Glover BJ. The mechanics of nectar offloading in the bumblebee Bombus terrestris and implications for optimal concentrations during nectar foraging. J R Soc Interface 2020; 17:20190632. [PMID: 31964267 DOI: 10.1098/rsif.2019.0632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nectar is a common reward provided by plants for pollinators. More concentrated nectar is more rewarding, but also more viscous, and hence more time-consuming to drink. Consequently, theory predicts an optimum concentration for maximizing energy uptake rate, dependent on the mechanics of feeding. For social pollinators such as bumblebees, another important but little-studied aspect of foraging is nectar offloading upon return to the nest. Studying the bumblebee Bombus terrestris, we found that the relationship between viscosity (µ) and volumetric transfer rates (Q) of sucrose solutions differed between drinking and offloading. For drinking, Q ∝ µ-0.180, in good agreement with previous work. Although offloading was quicker than drinking, offloading rate decreased faster with viscosity, with Q ∝ µ-0.502, consistent with constraints imposed by fluid flow through a tube. The difference in mechanics between drinking and offloading nectar leads to a conflict in the optimum concentration for maximizing energy transfer rates. Building a model of foraging energetics, we show that including offloading lowers the maximum rate of energy return to the nest and reduces the concentration which maximizes this rate by around 3%. Using our model, we show that published values of preferred nectar sugar concentrations suggest that bumblebees maximize the overall energy return rather than the instantaneous energy uptake during drinking.
Collapse
Affiliation(s)
- Jonathan G Pattrick
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Hamish A Symington
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Walter Federle
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
12
|
Lair V, Calmet A, Albin V, Griveau S, Cassir M. Electrolytic Cell Design to Simulate the Electrochemical Skin Response. ELECTROANAL 2019. [DOI: 10.1002/elan.201800504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Virginie Lair
- PSL Research University; Chimie Paristech-CNRS; Institut de Recherche de Chimie de Paris; 11 rue Pierre et Marie Curie F-75231 Paris Cedex 05 France
| | - Amandine Calmet
- PSL Research University; Chimie Paristech-CNRS; Institut de Recherche de Chimie de Paris; 11 rue Pierre et Marie Curie F-75231 Paris Cedex 05 France
- PSL Research University; Chimie ParisTech; Unité de Technologies Chimiques et Biologiques pour la Santé; 75005 Paris France
- INSERM; Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022); 75005 Paris France
- CNRS; Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258; 75005 Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Unité de Technologies Chimiques et Biologiques pour la Santé; 75005 Paris France
| | - Valérie Albin
- PSL Research University; Chimie Paristech-CNRS; Institut de Recherche de Chimie de Paris; 11 rue Pierre et Marie Curie F-75231 Paris Cedex 05 France
| | - Sophie Griveau
- PSL Research University; Chimie ParisTech; Unité de Technologies Chimiques et Biologiques pour la Santé; 75005 Paris France
- INSERM; Unité de Technologies Chimiques et Biologiques pour la Santé (n° 1022); 75005 Paris France
- CNRS; Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258; 75005 Paris France
- Université Paris Descartes; Sorbonne Paris Cité; Unité de Technologies Chimiques et Biologiques pour la Santé; 75005 Paris France
| | - Michel Cassir
- PSL Research University; Chimie Paristech-CNRS; Institut de Recherche de Chimie de Paris; 11 rue Pierre et Marie Curie F-75231 Paris Cedex 05 France
| |
Collapse
|
13
|
A novel technique for determination of the fructose, glucose and sucrose distribution in nectar from orchids by HPLC-ELSD. J Chromatogr B Analyt Technol Biomed Life Sci 2018. [DOI: 10.1016/j.jchromb.2018.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Beaulieu M, Franke K, Fischer K. Feeding on ripening and over-ripening fruit: interactions between sugar, ethanol and polyphenol contents in a tropical butterfly. ACTA ACUST UNITED AC 2017. [PMID: 28646036 DOI: 10.1242/jeb.162008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In ripe fruit, energy mostly derives from sugar, while in over-ripe fruit, it also comes from ethanol. Such ripeness differences may alter the fitness benefits associated with frugivory if animals are unable to degrade ethanol when consuming over-ripe fruit. In the tropical butterfly Bicyclus anynana, we found that females consuming isocaloric solutions mimicking ripe (20% sucrose) and over-ripe fruit (10% sucrose, 7% ethanol) of the palm Astrocaryum standleyanum exhibited higher fecundity than females consuming a solution mimicking unripe fruit (10% sucrose). Moreover, relative to butterflies consuming a solution mimicking unripe fruit, survival was enhanced when butterflies consumed a solution mimicking either ripe fruit supplemented with polyphenols (fruit antioxidant compounds) or over-ripe fruit devoid of polyphenols. This suggests that (1) butterflies have evolved tolerance mechanisms to derive the same reproductive benefits from ethanol and sugar, and (2) polyphenols may regulate the allocation of sugar and ethanol to maintenance mechanisms. However, variation in fitness owing to the composition of feeding solutions was not paralleled by corresponding physiological changes (alcohol dehydrogenase activity, oxidative status) in butterflies. The fitness proxies and physiological parameters that we measured therefore appear to reflect distinct biological pathways. Overall, our results highlight that the energy content of fruit primarily affects the fecundity of B. anynana butterflies, while the effects of fruit consumption on survival are more complex and vary depending on ripening stage and polyphenol presence. The actual underlying physiological mechanisms linking fruit ripeness and fitness components remain to be clarified.
Collapse
Affiliation(s)
- Michaël Beaulieu
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Kristin Franke
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| |
Collapse
|
15
|
Individual honey bee (Apis cerana) foragers adjust their fuel load to match variability in forage reward. Sci Rep 2015; 5:16418. [PMID: 26549746 PMCID: PMC4637910 DOI: 10.1038/srep16418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
Animals may adjust their behavior according to their perception of risk. Here we show that free-flying honey bee (Apis cerana) foragers mitigate the risk of starvation in the field when foraging on a food source that offers variable rewards by carrying more ‘fuel’ food on their outward journey. We trained foragers to a feeder located 1.2 km from each of four colonies. On average foragers carried 12.7% greater volume of fuel, equivalent to 30.2% more glucose when foraging on a variable source (a random sequence of 0.5, 1.5 and 2.5 M sucrose solution, average sucrose content 1.5 M) than when forging on a consistent source (constant 1.5 M sucrose solution). Our findings complement an earlier study that showed that foragers decrease their fuel load as they become more familiar with a foraging place. We suggest that honey bee foragers are risk sensitive, and carry more fuel to minimize the risk of starvation in the field when a foraging trip is perceived as being risky, either because the forager is unfamiliar with the foraging site, or because the forage available at a familiar site offers variable rewards.
Collapse
|
16
|
Williams L, Deschodt P, Pointurier O, Wyckhuys KAG. Sugar concentration and timing of feeding affect feeding characteristics and survival of a parasitic wasp. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:10-18. [PMID: 26021561 DOI: 10.1016/j.jinsphys.2015.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
The availability of food sources is important for parasitoid survival, especially for those that inhabit ecosystems where nectar and honeydew are spatially or temporally scarce. Therefore, the value of even a single meal can be crucial for survival. Psyttalia lounsburyi is a parasitoid, and biological control agent, of the olive fruit fly, Bactrocera oleae. In order to improve our understanding of the basic nutritional ecology of P. lounsburyi and its role in survival we evaluated the effect of a single sucrose meal on the longevity of female and male wasps. We measured the duration of feeding, volume ingested, sucrose consumption, energy content, and longevity of wasps provided with different concentrations of sucrose (0.5, 1, and 2M) at different times after emergence (0, 1, 2 or 3 days after emergence). Our results showed that longevity was significantly influenced by sucrose concentration and timing of feeding. For females, feeding on sucrose increased the likelihood of survival to varying degrees, ranging from 32.3% to 95.4%, compared to water-only controls. The longest duration of feeding was observed for the highest sucrose concentrations and oldest wasps. The amount of sugar ingested and energy uptake increased, up to a point, as sugar concentration increased. Our results suggest that P. lounsburyi derived greatest benefit from the intermediate concentration (1M) of sucrose provided 2 or 3 days after emergence. Our study emphasizes the importance of finding balance between increasing longevity and limiting the duration of feeding, and concomitant uptake of nutrients, that is fundamental for survival of the wasp in nature.
Collapse
Affiliation(s)
- Livy Williams
- USDA-ARS European Biological Control Laboratory, Montferrier sur Lez, France.
| | | | | | | |
Collapse
|
17
|
Small fiber neuropathy diagnosis by a non-invasive electrochemical method: mimicking the in-vivo responses by optimization of electrolytic cell parameters. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Carvalheiro LG, Biesmeijer JC, Benadi G, Fründ J, Stang M, Bartomeus I, Kaiser-Bunbury CN, Baude M, Gomes SIF, Merckx V, Baldock KCR, Bennett ATD, Boada R, Bommarco R, Cartar R, Chacoff N, Dänhardt J, Dicks LV, Dormann CF, Ekroos J, Henson KS, Holzschuh A, Junker RR, Lopezaraiza-Mikel M, Memmott J, Montero-Castaño A, Nelson IL, Petanidou T, Power EF, Rundlöf M, Smith HG, Stout JC, Temitope K, Tscharntke T, Tscheulin T, Vilà M, Kunin WE. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol Lett 2014; 17:1389-99. [DOI: 10.1111/ele.12342] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/26/2014] [Accepted: 07/20/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Luísa Gigante Carvalheiro
- School of Biology; University of Leeds; Leeds LS2 9JT UK
- Naturalis Biodiversity Center; RA Leiden 2300 The Netherlands
| | - Jacobus Christiaan Biesmeijer
- Naturalis Biodiversity Center; RA Leiden 2300 The Netherlands
- Institute for Biodiversity and Ecosystems Dynamics (IBED); University of Amsterdam; Amsterdam The Netherlands
| | - Gita Benadi
- Department of Biometry and Environmental Systems Analysis; University of Freiburg; Tennenbacherstr. 4 Freiburg i. Br 79106 Germany
| | - Jochen Fründ
- Department of Integrative Biology; University of Guelph; Ontario N1G 2W1 Canada
| | - Martina Stang
- Institute of Biology; University of Leiden; RA Leiden 2300 The Netherlands
| | | | | | - Mathilde Baude
- School of Biological Sciences; University of Bristol; Bristol BS8 1UG UK
- Collégium Sciences et Techniques (LBLGC-1207); Université d'Orléans; Orléans F-45067 France
| | | | - Vincent Merckx
- Naturalis Biodiversity Center; RA Leiden 2300 The Netherlands
| | | | - Andrew T. D. Bennett
- School of Biological Sciences; University of Bristol; Bristol BS8 1UG UK
- Centre for Integrative Ecology; Deakin University; Victoria 3217 Australia
| | - Ruth Boada
- School of Biological Sciences; University of Bristol; Bristol BS8 1UG UK
| | - Riccardo Bommarco
- Department of Ecology; Swedish University of Agricultural Sciences; Uppsala SE-75007 Sweden
| | - Ralph Cartar
- Department of Biological Sciences; University of Calgary; Calgary AB T2N 1N4 Canada
| | - Natacha Chacoff
- Fac. de Cs Nat. e IML; Instituto de Ecología Regional; Universidad Nacional de Tucumán; Tucumán Argentina
| | - Juliana Dänhardt
- Centre for Environmental and Climate Research & Department of Biology; Lund University; Lund S-223 62 Sweden
| | - Lynn V. Dicks
- Department of Zoology; University of Cambridge; Cambridge UK
| | - Carsten F. Dormann
- Department of Biometry and Environmental Systems Analysis; University of Freiburg; Tennenbacherstr. 4 Freiburg i. Br 79106 Germany
| | - Johan Ekroos
- Centre for Environmental and Climate Research & Department of Biology; Lund University; Lund S-223 62 Sweden
| | - Kate S.E. Henson
- School of Biological Sciences; University of Bristol; Bristol BS8 1UG UK
| | - Andrea Holzschuh
- Animal Ecology and Tropical Biology; University of Würzburg; Würzburg 97074 Germany
| | - Robert R. Junker
- Department of Organismic Biology; University Salzburg; Salzburg 5020 Austria
| | - Martha Lopezaraiza-Mikel
- Unidad Académica en Desarrollo Sustentable; Universidad Autónoma de Guerrero; Guerrero 40900 México
| | - Jane Memmott
- School of Biological Sciences; University of Bristol; Bristol BS8 1UG UK
| | | | - Isabel L. Nelson
- School of Biological Sciences; University of Bristol; Bristol BS8 1UG UK
| | - Theodora Petanidou
- Department of Geography; Laboratory of Biogeography and Ecology; University of the Aegean; Mytilene Lesvos 81100 Greece
| | - Eileen F. Power
- School of Natural Sciences and Trinity Centre for Biodiversity Research; Trinity College Dublin; Dublin 2 Ireland
| | - Maj Rundlöf
- Centre for Environmental and Climate Research & Department of Biology; Lund University; Lund S-223 62 Sweden
| | - Henrik G. Smith
- Centre for Environmental and Climate Research & Department of Biology; Lund University; Lund S-223 62 Sweden
| | - Jane C. Stout
- School of Natural Sciences and Trinity Centre for Biodiversity Research; Trinity College Dublin; Dublin 2 Ireland
| | - Kehinde Temitope
- Department of Conservation Ecology and Entomology; Stellenbosch University; Stellenbosch South Africa
- Department of Zoology; Obafemi Awolowo University; Ile-Ife Nigeria
| | | | - Thomas Tscheulin
- Department of Geography; Laboratory of Biogeography and Ecology; University of the Aegean; Mytilene Lesvos 81100 Greece
| | | | | |
Collapse
|
19
|
Detrain C, Prieur J. Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources. JOURNAL OF INSECT PHYSIOLOGY 2014; 64:74-80. [PMID: 24667145 DOI: 10.1016/j.jinsphys.2014.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 05/08/2023]
Abstract
Carbohydrate sources such as plant exudates, nectar and honeydew represent the main source of energy for many ant species and contribute towards maintaining their mutualistic relationships with plants or aphid colonies. Here we characterise the sensitivity, feeding response curve and food intake efficiency of the aphid tending ant, Lasius niger for major sugars found in nectar, honeydew and insect haemolymph (i.e. fructose, glucose, sucrose, melezitose and trehalose). We found that sucrose concentrations - ranging from 0.1 to 2.5 M - triggered food acceptance by L.niger workers with their food intake efficiency being enhanced by sugar concentrations of 1M or higher at which points energy intake was maximised. The range of sucrose concentrations that elicit a feeding response by L. niger scouts thus overlaps with that of natural sugar resources. The response curves of feeding acceptance by scouts consistently increased with sugar concentration, except for trehalose which was disregarded by the ants. Ants are highly sensitive to sucrose and melezitose exhibiting low response thresholds. Sucrose, fructose and glucose share a same potential to act as phagostimulants as they had similar half feeding efficiency concentration values when expressed as the energetic content of sugar solution. Aphid-biosynthezised melezitose generated the highest sensitivity and phagostimulant potential. The feeding behavior of ants appears to be primarily regulated by the energy content of the food solution for the main sugars present in nectar and honeydew. However, feeding by scouts is also influenced by the informative value of individual sugars when it serves as a cue for the presence of aphid partners such as the aphid-biosynthesised melezitose.
Collapse
Affiliation(s)
- Claire Detrain
- Service d'Ecologie Sociale CP 231, Université Libre de Bruxelles, 50 avenue F. Rossevelt, B-1050 Bruxelles, Belgium.
| | - Jacques Prieur
- UMR 6552 ETHOS, University of Rennes 1, CNRS Biological Station, 35380 Paimpont, France
| |
Collapse
|