1
|
Rodrigues MIDS, Cruz GHRD, Lucini F, Almeida AMD, Pereira FF, Ramalho RT, Simionatto S, Rossato L. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host for the study of pathogenicity in Candida auris. Microb Pathog 2024:107115. [PMID: 39536838 DOI: 10.1016/j.micpath.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Candida auris, a multidrug-resistant fungal pathogen, has emerged as a significant global health threat due to its high transmission and mortality rates, especially in healthcare settings. OBJECTIVE This study aimed to establish the larvae of the coleopteran Tenebrio molitor (mealworm) as an in vivo model to evaluate the virulence of different C. auris strains. METHODS T. molitor larvae were inoculated with varying doses and strains of C. auris. Mortality rates were monitored, melanization responses, and phenoloxidase activity were assessed. Histopathological analyses were conducted to observe tissue invasion by the yeast cells. Additionally, a biofilm formation test was included as a complementary analysis to determine if biofilm production would influence the virulence of the C. auris strains. RESULTS A dose-dependent increase in mortality was observed, with the highest fungal load leading to the highest mortality rates. The study also revealed significant differences in virulence among the strains, with those from Kuwait and the reference strain CBS 10913 showing the highest pathogenicity. Melanization rates were significantly higher in infected larvae, indicating an active immune response. The histopathological analysis revealed the presence of C. auris cells within the tissue of T. molitor larvae. However, the biofilm formation complementary test did not show a significant difference in virulence among the different clades of C. auris. CONCLUSION The T. molitor model effectively demonstrated the pathogenic potential and virulence differences of C. auris strains. Strains from Kuwait and the reference strain CBS 10913 exhibited the highest virulence, causing 100% mortality within 24 hours. The model also highlighted significant biofilm formation and melanization responses, correlating with fungal burden. This insect model provides a valuable and cost-effective tool for preliminary virulence screening of clinical yeast strains, offering insights into host-pathogen interactions and the potential for evaluating antifungal treatments in vivo.
Collapse
Affiliation(s)
| | | | - Fabíola Lucini
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Alexandre Moreira de Almeida
- Department of Biological and Environmental Science, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Fabricio Fagundes Pereira
- Department of Biological and Environmental Science, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Rondon Tosta Ramalho
- Health and Development in the Midwest Region, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Luana Rossato
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
2
|
Bjørgen H, Koppang EO. The melano-macrophage: The black leukocyte of fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109523. [PMID: 38522495 DOI: 10.1016/j.fsi.2024.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Melanin and the process of melanin synthesis or melanogenesis have central roles in the immune system of insects, and production of melanin-synthesizing enzymes from their haemocytes may be induced following activation through danger signals. Melanin-containing macrophage-like cells have been extensively studied in amphibians and they are also present in reptiles. In fish, melano-macrophages are especially recognized with respect to melano-macrophage centres (MMCs), hypothesized to be analogues of germinal centres in secondary lymphoid organs of mammals and some birds. Melano-macrophages are in addition present in several inflammatory conditions, in particular melanised focal changes, or black spots, in the musculature of farmed Atlantic salmon, Salmo salar. Melanins are complex compounds that may be divided into different forms which all have the ability to absorb and scatter light. Other functions include the quenching of free radicals and a direct effect on the immune system. According to the common view held in the pigment cell community, vertebrate melanin synthesis with melanosome formation may only occur in cells of ectodermal origin. However, abundant information suggests that also myeloid cells of ectothermic vertebrates may be classified as melanocytes. Here, we discuss these opposing views and review relevant literature. Finally, we review the current status on the research concerning melanised focal muscle changes that represent the most severe quality problem in Norwegian salmon production, but also other diseases where melano-macrophages play important roles.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Erling Olaf Koppang
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
3
|
Hu H, Hu Q, Weng Q, Wang J. Hemocytin, the special aggregation factor connecting insect hemolymph immunity, a potential target of insecticidal immunosuppresant. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105704. [PMID: 38225099 DOI: 10.1016/j.pestbp.2023.105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Insects possess an effective innate immunity that enables them to adapt to their intricate living environment and fend off various pathogens (or parasites). This innate immunity comprises both humoral and cellular immunity, which synergistically orchestrate immune responses. Hemocytin, a lectin with a distinctive structure, plays a crucial role in insect hemolymph immunity. Hemocytin is involved in the early immune response, facilitating processes such as coagulation, nodulation, and encapsulation in the hemolymph. It prevents hemolymph overflow and microbial pathogens invasion resulting from epidermal damage, and also aids in the recognition and elimination of invaders. However, the research on hemocytin is still limited. Our previous findings demonstrated that destruxin A effectively inhibits insect hemolymph immunity by interacting with hemocytin, suggesting that hemocytin could be a potential target for insecticides development. Therefore, it is crucial to gain a deeper understanding of hemocytin. This review integrates recent advancements in the study of the structure and function of insect hemocytin and also explores the potential of hemocytin as a target for insecticides. This review aims to enhance our comprehension of insect innate immunity and provide innovative ideas for the development of environmentally friendly pesticides.
Collapse
Affiliation(s)
- Hongwang Hu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qiongbo Hu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Qunfang Weng
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| | - Jingjing Wang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Qie X, Yan X, Wang W, Liu Y, Zhang L, Hao C, Lu Z, Ma L. Serpin-4 Negatively Regulates Prophenoloxidase Activation and Antimicrobial Peptide Synthesis in the Silkworm, Bombyx mori. Int J Mol Sci 2023; 25:313. [PMID: 38203484 PMCID: PMC10778760 DOI: 10.3390/ijms25010313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The prophenoloxidase (PPO) activation and Toll antimicrobial peptide synthesis pathways are two critical immune responses in the insect immune system. The activation of these pathways is mediated by the cascade of serine proteases, which is negatively regulated by serpins. In this study, we identified a typical serpin, BmSerpin-4, in silkworms, whose expression was dramatically up-regulated in the fat body and hemocytes after bacterial infections. The pre-injection of recombinant BmSerpin-4 remarkably decreased the antibacterial activity of the hemolymph and the expression of the antimicrobial peptides (AMPs) gloverin-3, cecropin-D, cecropin-E, and moricin in the fat body under Micrococcus luteus and Yersinia pseudotuberculosis serotype O: 3 (YP III) infection. Meanwhile, the inhibition of systemic melanization, PO activity, and PPO activation by BmSerpin-4 was also observed. Hemolymph proteinase 1 (HP1), serine protease 2 (SP2), HP6, and SP21 were predicted as the candidate target serine proteases for BmSerpin-4 through the analysis of residues adjacent to the scissile bond and comparisons of orthologous genes in Manduca sexta. This suggests that HP1, SP2, HP6, and SP21 might be essential in the activation of the serine protease cascade in both the Toll and PPO pathways in silkworms. Our study provided a comprehensive characterization of BmSerpin-4 and clues for the further dissection of silkworm PPO and Toll activation signaling.
Collapse
Affiliation(s)
- Xingtao Qie
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Xizhong Yan
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Wentao Wang
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Yaya Liu
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Lijun Zhang
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Chi Hao
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Li Ma
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (X.Q.); (X.Y.); (W.W.); (Y.L.); (L.Z.); (C.H.)
| |
Collapse
|
5
|
Hrithik MTH, Kim Y. Immune responses of the Asian onion moth, Acrolepiopsis sapporensis, and their genetic factors from RNA-Seq analysis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-21. [PMID: 37459157 DOI: 10.1002/arch.22038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 09/27/2023]
Abstract
A nonmodel insect, Acrolepiopsis sapporensis, has been analyzed in immune responses. The total hemocytes in the fifth instar larvae were 2.33 × 106 cells/mL. These hemocytes comprised at least five different types and different relative ratios: 47% granulocytes, 26% plasmatocytes, 11% oenocytoid, 8% prohemocytes, and 5% spherulocytes. Upon bacterial challenge, some of the hemocytes exhibited typical hemocyte-spreading behaviors, such as focal adhesion, and filopodial and lamellipodial cytoplasmic extensions. The hemocyte behaviors induced cellular immune responses demonstrated by nodule formation. In addition, the plasma collected from the immune-challenged larvae exhibited humoral immune responses by bacterial growth inhibition along with enhanced phenoloxidase enzyme activity. These cellular and humoral immune responses were further analyzed by determining the immune-associated genes from a transcriptome generated by RNA-Seq. A total of about 12 Gb sequences led to about 218,116 contigs, which were predicted to encode about 46,808 genes. Comparative expression analysis showed 8392 uniquely expressed genes in the immune-challenged larvae. Differentially expressed gene (DEG) analysis among the commonly expressed genes indicated that 782 genes were upregulated and 548 genes were downregulated in the expressions after bacterial challenge. These immune-associated genes included pattern recognition receptors, immune mediation/signaling genes, and various immune effectors. Specifically, the genetic components of the Toll, IMD, and JAK/STAT immune signaling pathways were included in the DEG database. These results demonstrate the immune responses of A. sapporensis larvae and suggest the genes associated with the immune responses in this nonmodel insect.
Collapse
Affiliation(s)
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
| |
Collapse
|
6
|
Sato R. Mechanisms and roles of the first stage of nodule formation in lepidopteran insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 37405874 DOI: 10.1093/jisesa/iead049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Nodule formation is a process of cellular immunity in insects and other arthropods with open circulatory systems. Based on histological observations, nodule formation occurs in 2 stages. The first stage occurs immediately after microbial inoculation and includes aggregate formation by granulocytes. The second stage occurs approximately 2-6 h later and involves the attachment of plasmatocytes to melanized aggregates produced during the first stage. The first stage response is thought to play a major role in the rapid capture of invading microorganisms. However, little is known regarding how granulocytes in the hemolymph form aggregates, or how the first stage of the immunological response protects against invading microorganisms. Since the late 1990s, our understanding of the molecules and immune pathways that contribute to nodule formation has improved. The first stage of nodule formation involves a hemocyte-induced response that is triggered by pathogen-associated molecular pattern (PAMP) recognition proteins in the hemolymph regulated by a serine proteinase cascade and cytokine (Spätzle) and Toll signaling pathways. Hemocyte agglutination proceeds through stepwise release of biogenic amine, 5-HT, and eicosanoids that act downstream of the Toll pathway. The first stage of nodule formation is closely linked to melanization and antimicrobial peptide (AMP) production, which is critical for insect humoral immunity. Nodule formation in response to artificial inoculation with millions of microorganisms has long been studied. It has recently been suggested that this system is the original natural immune system, and enables insects to respond to a single invading microorganism in the hemocoel.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
7
|
Wang Y, Shi M, Yang J, Ma L, Chen X, Xu M, Peng R, Wang G, Pan Z, Sima Y, Xu S. Sericin Ser3 Ectopic Expressed in Posterior Silk Gland Affects Hemolymph Immune Melanization Response via Reducing Melanin Synthesis in Silkworm. INSECTS 2023; 14:245. [PMID: 36975930 PMCID: PMC10051610 DOI: 10.3390/insects14030245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The transgenesis of silkworms is an important way to innovate genetic resources and silk function. However, the silk-gland (SG) of transgenic silkworms, which is the most concerned target tissue of sericulture, often suffers from low vitality, stunting and other problems, and the reasons are still unknown. This study trans engineered recombinant Ser3, a middle silk gland (MSG) specific expression gene, in the posterior silk gland (PSG) of the silkworm, and studied hemolymph immune melanization response changes in mutant pure line SER (Ser3+/+). The results showed that although the mutant had normal vitality, the melanin content and phenoloxidase (PO) activity in hemolymph related to humoral immunity were significantly reduced, and caused significantly slower blood melanization and weaker sterilization ability. The mechanism investigation showed that the mRNA levels and enzymatic activities of phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH) and dopamine decarboxylase (DDC) in the melanin synthesis pathway in mutant hemolymph, as well as the transcription levels of the PPAE, SP21 and serpins genes in the serine protease cascade were significantly affected. Moreover, the total antioxidant capacity, superoxide anion inhibition capacity and catalase (CAT) level related to the redox metabolic capacity of hemolymph were significantly increased, while the activities of superoxide dismutase (SOD) and glutathione reductase (GR), as well as the levels of hydrogen peroxide (H2O2) and glutathione (GSH), were significantly decreased. In conclusion, the anabolism of melanin in the hemolymph of PSG transgenic silkworm SER was inhibited, while the basic response level of oxidative stress was increased, and the hemolymph immune melanization response was decreased. The results will significantly improve the safe assessment and development of genetically modified organisms.
Collapse
Affiliation(s)
- Yongfeng Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Meijuan Shi
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jiameng Yang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Lu Ma
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xuedong Chen
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Meng Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Ruji Peng
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Guang Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhonghua Pan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Petronio Petronio G, Pietrangelo L, Cutuli MA, Magnifico I, Venditti N, Guarnieri A, Abate GA, Yewhalaw D, Davinelli S, Di Marco R. Emerging Evidence on Tenebrio molitor Immunity: A Focus on Gene Expression Involved in Microbial Infection for Host-Pathogen Interaction Studies. Microorganisms 2022; 10:1983. [PMID: 36296259 PMCID: PMC9611967 DOI: 10.3390/microorganisms10101983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 08/13/2023] Open
Abstract
In recent years, the scientific community's interest in T. molitor as an insect model to investigate immunity and host-pathogen interactions has considerably increased. The reasons for this growing interest could be explained by the peculiar features of this beetle, which offers various advantages compared to other invertebrates models commonly used in laboratory studies. Thus, this review aimed at providing a broad view of the T. molitor immune system in light of the new scientific evidence on the developmental/tissue-specific gene expression studies related to microbial infection. In addition to the well-known cellular component and humoral response process, several studies investigating the factors associated with T. molitor immune response or deepening of those already known have been reported. However, various aspects remain still less understood, namely the possible crosstalk between the immune deficiency protein and Toll pathways and the role exerted by T. molitor apolipoprotein III in the expression of the antimicrobial peptides. Therefore, further research is required for T. molitor to be recommended as an alternative insect model for pathogen-host interaction and immunity studies.
Collapse
Affiliation(s)
- Giulio Petronio Petronio
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Laura Pietrangelo
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Marco Alfio Cutuli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Noemi Venditti
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Getnet Atinafu Abate
- Department of Biology, College of Natural Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma P.O. Box 307, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Sergio Davinelli
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Science “V. Tiberio”, Università degli Studi del Molise, 8600 Campobasso, Italy
| |
Collapse
|
9
|
Suzuki T, Tang S, Otuka H, Ito K, Sato R. Nodule formation in Bombyx mori larvae is regulated by BmToll10-3. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104441. [PMID: 36116535 DOI: 10.1016/j.jinsphys.2022.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Nodule formation is a two-step cell-mediated immune response that is elicited by the cytokine spätzle1. Spätzle1 is activated within 30 s of invasion by microorganisms via an extracellular signaling pathway that consists of pathogen-associated molecular pattern recognition receptors, C-type lectins, and serine proteases. Here, we investigated a hemocyte molecule that is involved in eliciting the first step of nodule formation. BmToll10-3 was one of 14 Toll homologs identified in the silkworm Bombyx mori; it is an ortholog of Spodoptera exigua Toll. Previous research suggested that SeToll elicits nodule formation, but no evidence was presented to indicate whether SeToll elicited the first or second step of nodule formation. Reverse transcription-polymerase chain reaction and immunostaining confirmed that BmToll10-3 is expressed in granulocytes. To determine whether BmToll10-3 is involved in eliciting the first step of nodule formation, we tested an antiserum raised against BmToll10-3 in a nodule formation assay. The antiserum strongly inhibited the first step of nodule formation in B. mori larvae. Next, we tried to knock out BmToll10-3 using genome editing. Strains that were heterozygous for a truncated BmToll10-3 allele were generated, but no strain that was homozygous for truncated BmToll10-3 was generated. Nonetheless, several healthy homozygous larvae were identified before pupation, and we used these larvae in a nodule formation assay. The larvae that were homozygous for truncated BmToll10-3 did not form nodules. These results suggest that BmToll10-3 is involved in a cellular immunity, nodule formation.
Collapse
Affiliation(s)
- Takuro Suzuki
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Shuyi Tang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Hinata Otuka
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Katsuhiko Ito
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo 183-8509, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
10
|
Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021; 164:401-432. [PMID: 34233014 PMCID: PMC8517599 DOI: 10.1111/imm.13390] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Christa Heryanto
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Taha Bassal
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationGuizhou UniversityGuiyangChina
| | - Gianluca Tettamanti
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Amr Mohamed
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| |
Collapse
|
11
|
Geng T, Lu F, Zhu F, Wang S. Lineage-specific gene evolution of innate immunity in Bombyx mori to adapt to challenge by pathogens, especially entomopathogenic fungi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104171. [PMID: 34118279 DOI: 10.1016/j.dci.2021.104171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori is a model species of Lepidoptera, in which 21 gene families and 220 genes have been identified as involved in immunity. However, only 45 B. mori - Drosophila melanogaster - Anopheles gambiae - Apis mellifera - Tribolium castaneum 1:1:1:1:1 orthologous genes were identified. B. mori has unique immune factors not found in D. melanogaster - A. gambiae - A. mellifera - T. castaneum. Pattern recognition receptors, signal transducers and effector genes for antifungal immune responses in B. mori have evolved through expansion and modification of existing genes. This review summarizes the current knowledge of the antifungal immune responses of B. mori and focuses on the lineage-specific gene evolution used by Lepidoptera to adapt to the challenge by pathogens, especially entomopathogenic fungi.
Collapse
Affiliation(s)
- Tao Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Fuping Lu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, China.
| | - Shuchang Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
12
|
Tokunaga K, Tezuka M, Tang S, Shu M, Yamagishi T, Sato R. A humoral factor, hemolymph proteinase 8, elicits a cellular defense response of nodule formation in Bombyx mori larvae in association with recognition by C-type lectins. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104252. [PMID: 34022191 DOI: 10.1016/j.jinsphys.2021.104252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Previously, we found that nodule formation, a cellular defense response in insects, is regulated by humoral factors called C-type lectins in the hemolymph. To elucidate the factors that elicit nodule formation following the recognition of microorganisms by C-type lectins, a reproducible quantitative in vitro assay system was constructed. Then, using this system, the inhibitory activities of antisera raised against hemolymph proteases (HPs), serine protease homologues (SPHs), and pathogen-associated molecular pattern (PAMP)-recognition proteins were assessed. Among the antisera raised against HP and SPH, only that against HP8, a terminal proteinase that activates Spätzle, consistently inhibited in-vitro nodule-like aggregate formation in all three tested microorganisms, Micrococcus luteus, Escherichia coli, and Saccharomyces cerevisiae. Antisera raised against C-type lectins, BmLBP, and BmMBP also inhibited nodule-like aggregate formation, while those against β-glucan recognition proteins and peptidoglycan recognition protein-S1 did not. Microorganisms pretreated with hemolymph, which contains HP8 and C-type lectins, also induced nodule-like aggregate formation, indicating that nodulation factors are present on microbial cells. Furthermore, antisera raised against HP8, BmLBP, and BmMBP showed inhibitory activities in the in vivo nodule formation system using Bombyx mori larvae. Thus, two humoral factors in the hemolymph of B. mori larvae, BmHP8 and C-type lectins, were found to play significant roles in eliciting the cellular defense response of nodule formation.
Collapse
Affiliation(s)
- Kotomi Tokunaga
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Moeko Tezuka
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Shuyi Tang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Min Shu
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Takayuki Yamagishi
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
13
|
Disruption of insect immunity using analogs of the pleiotropic insect peptide hormone Neb-colloostatin: a nanotech approach for pest control II. Sci Rep 2021; 11:9459. [PMID: 33947876 PMCID: PMC8097067 DOI: 10.1038/s41598-021-87878-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
This work continues our studies on the pleiotropic activity of the insect peptide Neb-colloostatin in insects. In vivo immunological bioassays demonstrated that hemocytotoxic analogs of Neb-colloostatin injected into Tenebrio molitor significantly reduced the number of hemocytes in the hemolymph and impaired phagocytosis, nodulation and phenoloxidase activities in the insects. Among the analogs tested, [Ala1]-,[Val1]-, [Hyp4]- and [Ach4]-colloostatin were particularly potent in disrupting cellular immunity in larvae, pupae and adult insects. This result suggests that the most effective analogs showed increases in the bioactivity period in the hemolymph of insects when compared to Neb-colloostatin. Recently, we demonstrated that it is possible to introduce Neb-colloostatin through the cuticle of an insect into the hemolymph when the peptide is coupled with nanodiamonds. In this study, we showed that [Ala1]-, [Val1]-, [Hyp4]- and [Ach4]-colloostatin, when complexed with nanodiamonds, may also pass through the cuticle into the hemolymph and induce long-term impairments of immunity in T. molitor at all developmental stages. Studies on the tissue selectivity and effectiveness of Neb-colloostatin analogs and efficient methods for their introduction into insects may contribute to the development of eco-friendly pest control methods based on bioactive peptidomimetics.
Collapse
|
14
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Geng T, Lu F, Wu H, Lou D, Tu N, Zhu F, Wang S. Target antifungal peptides of immune signalling pathways in silkworm, Bombyx mori, against Beauveria bassiana. INSECT MOLECULAR BIOLOGY 2021; 30:102-112. [PMID: 33150694 DOI: 10.1111/imb.12681] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Antifungal innate immunity is an important defence used by insects against entomogenous fungi. However, the downstream target antifungal peptides of different immune signalling pathways are unknown. We found that the Toll, Janus kinase/signal transducer and activator of transcription (Jak/STAT) and Immunodeficiency (IMD) signalling pathways in the silkworm, Bombyx mori, can be activated by Beauveria bassiana. Inhibition of the Toll, IMD and Jak/STAT signalling pathways reduced the antifungal activities of silkworm haemolymph. We verified the target antifungal peptides of different immune signalling pathways. The expression patterns of five anti-fungal peptide genes in silkworm larvae and BmN cells were detected after blocking or over-expressing the immune signalling pathways. The Toll signalling pathways mediated the expression of Bmcecropin A, Bmattacin 1 and Bmgloverin 2; IMD signalling pathways mediated Bmenbocin 1, Bmgloverin 2 and Bmattacin 1; Jak/STAT signalling pathways mediated Bmstorage protein 30K-19G1 (Bmsp 1), Bmattacin 1 and Bmcecropin A. These data indicated that anti-microbial peptide genes in B. mori evolved through expansion and selection of existing genes to adapt to the challenge of invasive microorganisms such as fungi. This information provides insight into the antifungal immune responses in B. mori and aids understanding of insect immune regulation mechanisms.
Collapse
Affiliation(s)
- T Geng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - F Lu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - H Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - D Lou
- College of Plant Protection, Hainan University, Haikou, China
| | - N Tu
- College of Tropical Crop, Hainan University, Haikou, China
| | - F Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - S Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
16
|
Thomaz L, Gustavo de Almeida L, Silva FRO, Cortez M, Taborda CP, Spira B. In vivo Activity of Silver Nanoparticles Against Pseudomonas aeruginosa Infection in Galleria mellonella. Front Microbiol 2020; 11:582107. [PMID: 33240236 PMCID: PMC7680755 DOI: 10.3389/fmicb.2020.582107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/16/2020] [Indexed: 01/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen associated with life-threatening nosocomial and community-acquired infections. Antibiotic resistance is an immediate threat to public health and demands an urgent action to discovering new antimicrobial agents. One of the best alternatives for pre-clinical tests with animal models is the greater wax moth Galleria mellonella. Here, we evaluated the antipseudomonal activity of silver nanoparticles (AgNPs) against P. aeruginosa strain UCBPP-PA14 using G. mellonella larvae. The AgNPs were synthesized through a non-toxic biogenic process involving microorganism fermentation. The effect of AgNPs was assessed through characterization and quantification of the hemocytic response, nodulation and phenoloxidase cascade. On average, 80% of the larvae infected with P. aeruginosa and prophylactically treated with nanoparticles survived. Both the specific and total larvae hemocyte counts were restored in the treated group. In addition, the nodulation process and the phenoloxidase cascade were less exacerbated when the larvae were exposed to the silver nanoparticles. AgNPs protect the larvae from P. aeruginosa infection by directly killing the bacteria and indirectly by preventing an exacerbated immunological response against the pathogen. Our results suggest that the prophylactic use of AgNPs has a strong protective activity against P. aeruginosa infection.
Collapse
Affiliation(s)
- Luciana Thomaz
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Luiz Gustavo de Almeida
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carlos P. Taborda
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Laboratory of Medical Mycology/LIM53, Faculty of Medicine, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Geng T, Lu F, Wu H, Wang Y, Lou D, Tu N, Zhu F, Wang S. C-type lectin 5, a novel pattern recognition receptor for the JAK/STAT signaling pathway in Bombyx mori. J Invertebr Pathol 2020; 179:107473. [PMID: 32946913 DOI: 10.1016/j.jip.2020.107473] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
The Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway is highly conserved in mammals, but the pattern recognition receptors (PRRs) and their functions are unclear. We found that the expression pattern of Bombyx mori C-type lectin 5 (BmCTL 5) had a synergy relevance with the JAK/STAT signaling pathway against Beauveria bassiana. An RNAi assay, subcellular localization analysis, yeast two-hybrid technique, protein recruitment experiment and pathogen infection tests were used to explore the roles of BmCTL 5 in the JAK/STAT signaling pathway. Knock-down of the BmCTL 5 suppressed the JAK/STAT signaling pathway and the PO cascade of nodule melanization. BmCTL 5 is located in the cytomembrane and interacted with BmHOP both in yeast and B. mori ovary cells N (BmN cells). BmCTL 5 and the JAK/STAT signaling pathway was activated by B. bassiana but only slightly activated by B. mori cytoplasmic polyhedrosis virus (BmCPV), Nosema bombycis and bacteria LPS. These findings suggest that BmCTL 5 might be an important PRR for the JAK/STAT signaling pathway and may mediate the nodule melanization for fungi infection. These data provide insights into the immune mechanism of the JAK/STAT signaling pathway in insects and aid understanding of the mechanism of the JAK/STAT signaling pathway and adaptive immune systems in mammals.
Collapse
Affiliation(s)
- Tao Geng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Fuping Lu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huazhou Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongsong Wang
- College of Forestry, Hainan University, Haikou 570228, China
| | - Dezhao Lou
- College of Plant Protection, Hainan University, Haikou 570228, China
| | - Nana Tu
- College of Tropical Crop, Hainan University, Haikou 570228, China
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, China.
| | - Shuchang Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
18
|
Shaik HA, Mishra A, Sehadová H, Kodrík D. Responses of sericotropin to toxic and pathogenic challenges: possible role in defense of the wax moth Galleria mellonella. Comp Biochem Physiol C Toxicol Pharmacol 2020; 227:108633. [PMID: 31644954 DOI: 10.1016/j.cbpc.2019.108633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022]
Abstract
This study describes defense functions of the insect neuropeptide sericotropin, which is recognized as an agent that stimulates silk production in some lepidopteran larvae. Sericotropin, expressed in brain tissue of the wax moth Galleria mellonella in all developmental stages, is not expressed in silk glands, indicating its tissue specificity. Fluorescence microscopy confirmed the presence of sericotropin in the brain-subesophageal complex being predominantly and densely distributed under the plasmatic membrane and in axonal parts of neurons. Injection of venom from Habrobracon hebetor and topical application of the entomopathogenic nematode (EPN) Steinernema carpocapsae with symbiotic bacteria Xenorhabdus spp. into or onto G. mellonella larvae resulted in upregulation of the sericotropin gene and peptide, suggesting a role for sericotropin in defense and immunity. Accordingly, two synthetic fragments of sericotropin killed entomotoxic Xenorhabdus spp. bacteria in a disc diffusion antimicrobial test. Further, total metabolism, monitored by carbon dioxide production, significantly decreased after application of either venom or EPN, probably because of muscle impairment by the venom and serious cell damage caused by EPN, especially in the midgut. Both venom and EPN upregulated expression of genes encoding antimicrobial peptides gallerimycin and galiomicin in Galleria brain; however, they downregulated prophenoloxidase and phenoloxidase activity in hemolymph. These results suggest that sericotropin is a multifunctional peptide that plays an important role in G. mellonella defense and immunity.
Collapse
Affiliation(s)
- Haq Abdul Shaik
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Archana Mishra
- Institute of Molecular Biology of Plants, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Hana Sehadová
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
19
|
Noskov YA, Polenogova OV, Yaroslavtseva ON, Belevich OE, Yurchenko YA, Chertkova EA, Kryukova NA, Kryukov VY, Glupov VV. Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae. PeerJ 2019; 7:e7931. [PMID: 31667017 PMCID: PMC6816395 DOI: 10.7717/peerj.7931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Combination of insect pathogenic fungi and microbial metabolites is a prospective method for mosquito control. The effect of the entomopathogenic fungus Metarhizium robertsii J.F. Bischoff, S.A. Rehner & Humber and avermectins on the survival and physiological parameters of Aedes aegypti (Linnaeus, 1762) larvae (dopamine concentration, glutathione S-transferase (GST), nonspecific esterases (EST), acid proteases, lysozyme-like, phenoloxidase (PO) activities) was studied. It is shown that the combination of these agents leads to a synergistic effect on mosquito mortality. Colonization of Ae. aegypti larvae by hyphal bodies following water inoculation with conidia is shown for the first time. The larvae affected by fungi are characterized by a decrease in PO and dopamine levels. In the initial stages of toxicosis and/or fungal infection (12 h posttreatment), increases in the activity of insect detoxifying enzymes (GST and EST) and acid proteases are observed after monotreatments, and these increases are suppressed after combined treatment with the fungus and avermectins. Lysozyme-like activity is also most strongly suppressed under combined treatment with the fungus and avermectins in the early stages posttreatment (12 h). Forty-eight hours posttreatment, we observe increases in GST, EST, acid proteases, and lysozyme-like activities under the influence of the fungus and/or avermectins. The larvae affected by avermectins accumulate lower levels of conidia than avermectin-free larvae. On the other hand, a burst of bacterial CFUs is observed under treatment with both the fungus and avermectins. We suggest that disturbance of the responses of the immune and detoxifying systems under the combined treatment and the development of opportunistic bacteria may be among the causes of the synergistic effect.
Collapse
Affiliation(s)
- Yuriy A Noskov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Tomsk State University, Tomsk, Russia
| | - Olga V Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Olga E Belevich
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yuriy A Yurchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Chertkova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A Kryukova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
20
|
Hemocyte Changes During Immune Melanization in Bombyx Mori Infected with Escherichia coli. INSECTS 2019; 10:insects10090301. [PMID: 31527493 PMCID: PMC6780253 DOI: 10.3390/insects10090301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023]
Abstract
Hemolymph melanization is a conserved immune response in insects and other arthropods. However, the physiological process of the hemolymph system in the melanization response is hardly studied. Here, alterations of hemocytes in immune melanization were observed by Escherichia coli infection in Bombyx mori. Results first showed that there were cells aggregating into clusters. However, it vanished, and only part of clustered hemocytes were melanized during the period of intense immunity. The hemocyte numbers immediately decreased following an immune challenge, slowly increased to a peak, then reduced and finally returned to normalization. Granulocytes participated in cells aggregation at the early and later immune stage, while plasmatocytes were responsible for hemocytes agglomerate and melanization for the longest time, and more oenocytoids appeared at the peak stage of melanization. Moreover, hemocytes played a crucial role in resisting invasion of pathogens by agglomerate and melanization, and the circulatory system maintained higher hemocyte numbers and stronger antibacterial activity in fifth than fourth instar larvae after infection. In vitro immune melanization was most likely preferentially implemented in an independent process. These were the main characteristics reflecting the physiological process of hemolymph immune melanization, which provided an important foundation for further study of the complete mechanisms in the immunity of silkworm.
Collapse
|
21
|
Singkum P, Suwanmanee S, Pumeesat P, Luplertlop N. A powerful in vivo alternative model in scientific research: Galleria mellonella. Acta Microbiol Immunol Hung 2019; 66:31-55. [PMID: 30816806 DOI: 10.1556/030.66.2019.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Murine models are suggested as the gold standard for scientific research, but they have many limitations of ethical and logistical concern. Then, the alternative host models have been developed to use in many aspects especially in invertebrate animals. These models are selected for many areas of research including genetics, physiology, biochemistry, evolution, disease, neurobiology, and behavior. During the past decade, Galleria mellonella has been used for several medical and scientific researches focusing on human pathogens. This model commonly used their larvae stage due to their easy to use, non-essential special tools or special technique, inexpensive, short life span, and no specific ethical requirement. Moreover, their innate immune response close similarly to mammals, which correlate with murine immunity. In this review, not only the current knowledge of characteristics and immune response of G. mellonella, and the practical use of these larvae in medical mycology research have been presented, but also the better understanding of their limitations has been provided.
Collapse
Affiliation(s)
- Pantira Singkum
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
| | - San Suwanmanee
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
| | - Potjaman Pumeesat
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
- 2 Faculty of Science and Technology, Department of Medical TechnologyBansomdejchaopraya Rajabhat University, Bangkok, Thailand
| | - Natthanej Luplertlop
- 1 Faculty of Tropical Medicine, Department of Microbiology and ImmunologyMahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Ma L, Zhou L, Lin J, Ji J, Wang Y, Jiang H, Shen X, Lu Z. Manipulation of the silkworm immune system by a metalloprotease from the pathogenic bacterium Pseudomonas aeruginosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:176-185. [PMID: 30261235 PMCID: PMC6204220 DOI: 10.1016/j.dci.2018.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 05/15/2023]
Abstract
Antimicrobial peptide (AMP) production and melanization are two key humoral immune responses in insects. Induced synthesis of AMPs results from Toll and IMD signal transduction whereas melanization depends on prophenoloxidase (PPO) activation system. During invasion, pathogens produce toxins and other virulent factors to counteract host immune responses. Here we show that the pathways leading to PPO activation and AMP synthesis in the silkworm Bombyx mori are affected by a metalloprotease, named elastase B, secreted by Pseudomonas aeruginosa (PAO1). The metalloprotease gene (lasB) was expressed shortly after PAO1 cells had been injected into the larval silkworm hemocoel, leading to an increase of elastase activity. Injection of the purified PAO1 elastase B into silkworm hemolymph compromised PPO activation. In contrast, the protease caused a level increase of gloverin, an AMP in the hemolymph. To verify our results obtained using the purified elastase B, we infected B. mori with PAO1 ΔlasB mutant and found that PO activity in hemolymph of the PAO1 ΔlasB-infected larvae was significantly higher than that in the wild type-infected. The mutant-inhabited hemolymph had lower levels of gloverin and antimicrobial activity. PAO1 ΔlasB showed a decreased viability in the silkworm hemolymph whereas the host had a lower mortality. In addition, the effects caused by the ΔlasB mutant were restored by a complementary strain. These data collectively indicated that the elastase B produced by PAO1 is an important virulent factor that manipulates the silkworm immune system during infection.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lizhen Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinshui Lin
- Department of Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiuyuan Ji
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xihui Shen
- Department of Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
23
|
An Invertebrate Host to Study Fungal Infections, Mycotoxins and Antifungal Drugs: Tenebrio molitor. J Fungi (Basel) 2018; 4:jof4040125. [PMID: 30424549 PMCID: PMC6308941 DOI: 10.3390/jof4040125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Faced with ethical conflict and social pressure, researchers have increasingly chosen to use alternative models over vertebrates in their research. Since the innate immune system is evolutionarily conserved in insects, the use of these animals in research is gaining ground. This review discusses Tenebrio molitor as a potential model host for the study of pathogenic fungi. Larvae of T. molitor are known as cereal pests and, in addition, are widely used as animal and human feed. A number of studies on mechanisms of the humoral system, especially in the synthesis of antimicrobial peptides, which have similar characteristics to vertebrates, have been performed. These studies demonstrate the potential of T. molitor larvae as a model host that can be used to study fungal virulence, mycotoxin effects, host immune responses to fungal infection, and the action of antifungal compounds.
Collapse
|
24
|
Lee KS, Kim BY, Choo YM, Jin BR. Dual role of the serine protease homolog BmSPH-1 in the development and immunity of the silkworm Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:170-176. [PMID: 29684723 DOI: 10.1016/j.dci.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Serine proteases and serine protease homologs are involved in the prophenoloxidase (proPO)-activating system leading to melanization. The Bombyx mori serine protease homolog BmSPH-1 regulates nodule melanization. Here, we show the dual role of BmSPH-1 in the development and immunity of B. mori. BmSPH-1 was expressed in hemocytes after molting and during the larval-pupal transformation in normal development. In contrast, following infection, BmSPH-1 was expressed in hemocytes and cleaved in the hemolymph, which resulted in the induction of PO activity. Moreover, BmSPH-1 was cleaved in the cuticle during the larval-pupal transformation and early pupal stages. In BmSPH-1 RNAi-treated silkworms, the reduced BmSPH-1 mRNA levels during the spinning stage or the prepupal stage resulted in the arrest of pupation or pupal cuticular melanization, respectively. The binding assays revealed that BmSPH-1 interacts with B. mori immulectin, proPO, and proPO-activating enzyme. Our findings demonstrate that BmSPH-1 paticipates larval-pupal transformation, pupal cuticular melanization and innate immunity of silkworms, illustrating the dual role of BmSPH-1 in development and immunity.
Collapse
Affiliation(s)
- Kwang Sik Lee
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Bo Yeon Kim
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Young Moo Choo
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea
| | - Byung Rae Jin
- Department of Applied Biology, College of Natural Resources and Life Science, Dong-A University, Busan, 604-714, Republic of Korea.
| |
Collapse
|
25
|
Patiño-Márquez IA, Patiño-González E, Hernández-Villa L, Ortíz-Reyes B, Manrique-Moreno M. Identification and evaluation of Galleria mellonella peptides with antileishmanial activity. Anal Biochem 2018; 546:35-42. [PMID: 29409865 DOI: 10.1016/j.ab.2018.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 11/27/2022]
Abstract
Leishmaniasis is a neglected disease, World Health Organization (WHO) declared it as high priority worldwide. Colombia is one of the 98 countries in which the disease caused more than 17.000 cases per year. There is a need to explore novel therapies to reduce the side effects of the current treatments. For this reason, this study was aimed to evaluate Galleria mellonella hemolymph for potential peptides with anti-parasitic activity. Larvae were challenged with Leishmania (V) panamensis promastigotes and hemolymph was analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), reversed-phase chromatography (RP-HPLC), two-dimensional gel electrophoresis and liquid chromatography-mass spectroscopy (LC/MS). The immunological response of Galleria mellonella was followed by SDS-PAGE, immunized hemolymph was fractionated by RP-HPLC where fractions 5 and 11 showed the highest antileishmanial activity. From these fractions 15 spots were isolated by 2D gel electrophoresis and evaluated by LC/MS to identify the peptides present in the spots. After the analysis Moricin-B, Moricin-C4, Cecropin-D and Anionic Peptide 2 were identified due to the immune challenge with Leishmania promastigotes. Anionic peptide 2 and Cecropin-D were synthesized and evaluated for antileishmanial activity. The results showed that Anionic peptide 2 presented more anti-parasitic activity. This study showed for the first time the anti-parasitic potential of peptides derived from hemolymph of Galleria mellonella.
Collapse
Affiliation(s)
- Isabel A Patiño-Márquez
- Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Colombia
| | - Edwin Patiño-González
- Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Colombia
| | - Laura Hernández-Villa
- Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Colombia
| | - Blanca Ortíz-Reyes
- Faculty of Medicine, University of Antioquia, A.A. 1226, Medellin, Colombia
| | - Marcela Manrique-Moreno
- Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin, Colombia.
| |
Collapse
|
26
|
Whitten MMA, Coates CJ. Re-evaluation of insect melanogenesis research: Views from the dark side. Pigment Cell Melanoma Res 2017; 30:386-401. [PMID: 28378380 DOI: 10.1111/pcmr.12590] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Melanins (eumelanin and pheomelanin) are synthesized in insects for several purposes including cuticle sclerotization and color patterning, clot formation, organogenesis, and innate immunity. Traditional views of insect immunity detail the storage of pro-phenoloxidases inside specialized blood cells (hemocytes) and their release upon recognition of foreign bodies. Activated phenoloxidases convert monophenols into reactive quinones in a two-step enzymatic reaction, and until recently, the mechanism of tyrosine hydroxylation remained a mystery. Herein, we present our interpretations of these enzyme-substrate complexes. The resultant melanins are deposited onto the surface of microbes to immobilize, agglutinate, and suffocate them. Phenoloxidase activity and melanin production are not limited to the blood (hemolymph) or cuticle, as recent evidence points to more diverse, sophisticated interactions in the gut and with the resident symbionts. This review offers insight into the somewhat neglected areas of insect melanogenesis research, particularly in innate immunity, its role in beneficial insects such as pollinators, the functional versatility of phenoloxidases, and the limitations of common experimental approaches that may impede progress inadvertently.
Collapse
|
27
|
Li J, Ma L, Lin Z, Zou Z, Lu Z. Serpin-5 regulates prophenoloxidase activation and antimicrobial peptide pathways in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 73:27-37. [PMID: 27084699 DOI: 10.1016/j.ibmb.2016.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/30/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
The prophenoloxidase (PPO) activation pathway and Toll pathway are two critical insect immune responses against microbial infection. Activation of these pathways is mediated by an extracellular serine protease cascade, which is negatively regulated by serpins. In this study, we found that the mRNA abundance of silkworm serpin-5 (BmSpn-5) increased dramatically in the fat body after bacterial infection. The expression level of antimicrobial peptides (AMPs), gloverin-3, cecropin-D and -E decreased in the silkworm larvae injected with recombinant BmSpn-5 protein. Meanwhile, the inhibition of beads melanization, systemic melanization and PPO activation by BmSpn-5 was also observed. By means of immunoaffinity purification and analysis by mass spectrometry, we identified that the silkworm clip domain serine proteases BmHP6 and BmSP21 form a complex with BmSpn-5, which suggests that BmHP6 and SP21 are the cognate proteases of BmSpn-5 and are essential in the serine protease cascade that activates the Toll and PPO pathways. Our study provides a comprehensive characterization of BmSpn-5 and sheds light on the multiple pathways leading to PPO activation and their regulation by serpins.
Collapse
Affiliation(s)
- Junlan Li
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
28
|
Homa J, Stalmach M, Wilczek G, Kolaczkowska E. Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. J Comp Physiol B 2016; 186:417-30. [PMID: 26922789 PMCID: PMC4830880 DOI: 10.1007/s00360-016-0973-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/30/2022]
Abstract
Oxidative stress is harmful to the microbes but also to the host, and may result in bystander damage or death. Because of this, respiratory burst triggered in phagocytes by pathogens is counteracted by production of antioxidative factors. The aim of this work was to examine effectiveness of the latter system in earthworms Eisenia andrei by induction of reactive oxygen species, lipofuscin and phenoloxidase by natural (LPS, zymosan, Micrococus luteus) and synthetic (phorbol ester, PMA) stimulants. The compounds impaired numbers, viability (increased apoptosis) and composition of coelomocytes, and triggered the antioxidant activity of catalase and selenium-dependent glutathione peroxidase. The natural pathogenic compounds, unlike PMA, strongly activated antioxidative responses that diminished cell apoptosis. Moreover, repeated exposure to the same or different pathogenic compounds did not induce respiratory burst exhausted phenotype showing that coelomocytes are constantly at bay to withstand numerous infections. The current study reveals importance and efficiency of the oxidative-antioxidative systems in annelids but also confirms its evolutionary conservatism and complexity even in lower taxa of the animal kingdom.
Collapse
Affiliation(s)
- J Homa
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - M Stalmach
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - G Wilczek
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - E Kolaczkowska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
29
|
Wu G, Xu L, Yi Y. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses. Immunol Lett 2016; 174:45-52. [PMID: 27107784 DOI: 10.1016/j.imlet.2016.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/16/2016] [Accepted: 04/16/2016] [Indexed: 02/08/2023]
Abstract
Larvae of Galleria mellonella are useful models for studying the innate immunity of invertebrates or for evaluating the virulence of microbial pathogens. In this work, we demonstrated that prior exposure of G. mellonella larvae to high doses (1×10(4), 1×10(5) or 1×10(6) cells/larva) of heat-killed Photorhabdus luminescens TT01 increases the resistance of larvae to a lethal dose (50 cells/larva) of viable P. luminescens TT01 infection administered 48h later. We also found that the changes in immune protection level were highly correlated to the changes in levels of cellular and humoral immune parameters when priming the larvae with different doses of heat-killed P. luminescens TT01. Priming the larvae with high doses of heat-killed P. luminescens TT01 resulted in significant increases in the hemocytes activities of phagocytosis and encapsulation. High doses of heat-killed P. luminescens TT01 also induced an increase in total hemocyte count and a reduction in bacterial density within the larval hemocoel. Quantitative real-time PCR analysis showed that genes coding for cecropin and gallerimycin and galiomycin increased in expression after priming G. mellonella with heat-killed P. luminescens TT01. All the immune parameters changed in a dose-dependent manner. These results indicate that the insect immune system is capable of sensing the extent of priming agent and mounting a proportionate immune response.
Collapse
Affiliation(s)
- Gongqing Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China; Guangdong Cosmetics Engineering & Technology Research Center, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yunhong Yi
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
30
|
Shu M, Mang D, Fu GS, Tanaka S, Endo H, Kikuta S, Sato R. Mechanisms of nodule-specific melanization in the hemocoel of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:10-23. [PMID: 26707571 DOI: 10.1016/j.ibmb.2015.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/26/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
In the insect immune system, nodules are known to be a product of the cellular response against microorganisms and may be a preferential target for melanization. However, the mechanism of nodule-preferential melanization remains to be explored. In this study, we identified several mechanisms of nodule-preferential melanization by analyzing congregation and the activation of several factors involved in the prophenoloxidase (proPO)-activating system in the silkworm, Bombyx mori. Microorganism-binding assays revealed that B. mori larval plasma have an effective invading microorganism-surveillance network consisting of at least six pattern-recognition receptors (PRRs). We also found that a hemolymph serine proteinase, BmHP14, can bind to Saccharomyces cerevisiae. Pull-down assays showed that PRR C-type lectins form protein complexes with serine proteinase homologs, BmSPH1 and BmSPH2, which leads to the activated forms of BmSPH1 and BmSPH2 being gathered on microorganisms and trapped in nodules. Immunostaining analysis revealed that most factors in the proPO-activating system and some factors in the triggering system for antimicrobial peptide production exist in the granules of hemocytes which can gather in nodules. Western blot analysis showed that factors in the proPO-activating system are congregated in formed nodules by their concentration in plasma and aggregating hemocytes.
Collapse
Affiliation(s)
- Min Shu
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Dingze Mang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Gege Sun Fu
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shiho Tanaka
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Haruka Endo
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shingo Kikuta
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
31
|
Kostanjšek R, Pirc Marolt T. Pathogenesis, tissue distribution and host response to Rhabdochlamydia porcellionis infection in rough woodlouse Porcellio scaber. J Invertebr Pathol 2015; 125:56-67. [PMID: 25593037 DOI: 10.1016/j.jip.2015.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 02/06/2023]
Abstract
Rhabdochlamydia porcellionis is a known intracellular pathogen in digestive glands of the terrestrial isopod crustacean Porcellio scaber. To describe the pathogenesis, tissue distribution and host response to R. porcellionis, we conducted microscopic observations and localization of infection in tissues by Fluorescent In Situ Hybridization (FISH). Digestive glands were confirmed as the primary site of infection. From there, R. porcellionis disseminates either through the apical membrane of infected cells into the lumen of digestive glands and further throughout the digestive tract or into the surrounding hemocoel by rupture of the basal membrane and lamina of infected digestive gland cells. Once in the hemocoel, R. porcellionis infects hindgut cells, hemocytes and hemopoetic tissues while the ventral nerve cord and gonads seem to be devoid of infection despite the presence of rhabdochlamydia on the surface of these organs. The host response to R. porcellionis includes aggregation of hemocytes around the infected cells and formation of multilayered melanized nodules exhibiting endogenous fluorescence. The structure of nodules is asymmetric when hemocytes are deposited on the basal side of infected gut and digestive glands cells, or symmetric, when nodules entrapping clusters of rhabdochlamydiae are deposited on other organs in the hemocoel. The study also revealed a high prevalence of infection in P. scaber populations (up to 27%) and confirmed its detrimental effect on the host. Although agility, behavior and molting cycle of infected animals appear unaffected, in the later stages R. porcellionis infection manifests as severe damage to the digestive system and decreased feeding, which eventually lead to the death of the host organism.
Collapse
Affiliation(s)
- Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Tinkara Pirc Marolt
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
32
|
Exsheathment and midgut invasion of nocturnally subperiodic Brugia malayi microfilariae in a refractory vector, Aedes aegypti (Thailand strain). Parasitol Res 2014; 113:4141-9. [PMID: 25138070 DOI: 10.1007/s00436-014-4086-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Exsheathment and midgut invasion of nocturnally subperiodic Brugia malayi microfilariae were analyzed using light and scanning electron microscopy in a refractory vector, Aedes aegypti (Thailand strain). Results showed that exsheathed microfilariae represented only approximately 1% of the total microfilaria midguts dissected at 5-min post-infected blood meal (PIBM). The percentage of exsheathed microfilariae found in midguts progressively increased to about 20, 60, 80, 90, and 100% at 1-, 2-5-, 6-12-, 18-36-, and 48-h PIBM, respectively. Importantly, all the microfilariae penetrating the mosquito midguts were exsheathed. Midgut invasion by the exsheathed microfilariae was observed between 2- and 48-h PIBM. SEM analysis revealed sheathed microfilariae surrounded by small particles and maceration of the microfilarial sheath in the midguts, suggesting that the midguts of the refractory mosquitoes might have protein(s) and/or enzyme(s) and/or factor(s) that induce and/or accelerate exsheathment. The microfilariae penetrated the internal face of the peritrophic matrix (PM) by their anterior part and then the midgut epithelium, before entering the hemocoel suggesting that PM was not a barrier against the microfilariae migrating towards the midgut. Melanized microfilariae were discovered in the hemocoel examined at 96-h PIBM suggesting that the refractory mosquitoes used melanization reactions against this parasite. This study provided evidence that A. aegypti (Thailand strain) has refractory mechanisms against B. malayi in both midgut and hemocoel.
Collapse
|
33
|
Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, Luan YX, Ling E. Insect prophenoloxidase: the view beyond immunity. Front Physiol 2014; 5:252. [PMID: 25071597 PMCID: PMC4092376 DOI: 10.3389/fphys.2014.00252] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Abstract
Insect prophenoloxidase (PPO) is an important innate immunity protein due to its involvement in cellular and humoral defense. It belongs to a group of type-3 copper-containing proteins that occurs in almost all organisms. Insect PPO has been studied for over a century, and the PPO activation cascade is becoming clearer. The insect PPO activation pathway incorporates several important proteins, including pattern-recognition receptors (PGRP, β GRP, and C-type lectins), serine proteases, and serine protease inhibitors (serpins). Due to their complexity, PPO activation mechanisms vary among insect species. Activated phenoloxidase (PO) oxidizes phenolic molecules to produce melanin around invading pathogens and wounds. The crystal structure of Manduca sexta PPO shows that a conserved amino acid, phenylalanine (F), can block the active site pocket. During activation, this blocker must be dislodged or even cleaved at the N-terminal sequence to expose the active site pockets and allow substrates to enter. Thanks to the crystal structure of M. sexta PPO, some domains and specific amino acids that affect PPO activities have been identified. Further studies of the relationship between PPO structure and enzyme activities will provide an opportunity to examine other type-3 copper proteins, and trace when and why their various physiological functions evolved. Recent researches show that insect PPO has a relationship with neuron activity, longevity, feces melanization (phytophagous insects) and development, which suggests that it is time for us to look back on insect PPO beyond the view of immunity in this review.
Collapse
Affiliation(s)
- Anrui Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Qiaoli Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Jie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Kai Wu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Wei Xie
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yun-Xia Luan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|