1
|
Van der Meersch V, Armstrong E, Mouillot F, Duputié A, Davi H, Saltré F, Chuine I. Paleorecords Reveal Biological Mechanisms Crucial for Reliable Species Range Shift Projections Amid Rapid Climate Change. Ecol Lett 2025; 28:e70080. [PMID: 39967323 PMCID: PMC11836547 DOI: 10.1111/ele.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
The recent acceleration of global climate warming has created an urgent need for reliable projections of species distributions, widely used by natural resource managers. Such projections have been mainly produced by species distribution models with little information on their performances in novel climates. Here, we hindcast the range shifts of forest tree species across Europe over the last 12,000 years to compare the reliability of three different types of models. We show that in the most climatically dissimilar conditions, process-explicit models (PEMs) tend to outperform correlative species distribution models (CSDMs), and that PEM projections are likely to be more reliable than those made with CSDMs by the end of the 21st century. These results demonstrate for the first time the often promoted albeit so far untested idea that explicit description of mechanisms confers model robustness, and highlight a new avenue to increase model projection reliability in the future.
Collapse
Affiliation(s)
| | - Edward Armstrong
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| | | | - Anne Duputié
- UMR 8198‐EEP‐Evo‐Eco‐PaleoUniversité de Lille, CNRSLilleFrance
| | | | - Frédérik Saltré
- Biogeography Ecology and Modelling, School of Life SciencesUniversity Technology SydneySydneyNew South WalesAustralia
- Australian Museum Research InstituteAustralian MuseumSydneyNew South WalesAustralia
- ARC Centre of Excellence for Indigenous and Environmental Histories and FuturesJames Cook UniversityCairnsQueenslandAustralia
| | | |
Collapse
|
2
|
Kristiansen SM, Leinaas HP, van Gestel CAM, Borgå K. Thermal adaptation affects the temperature-dependent toxicity of the insecticide imidacloprid to soil invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173845. [PMID: 38871314 DOI: 10.1016/j.scitotenv.2024.173845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Terrestrial ectotherms are vulnerable to climate change since their biological rates depend on the ambient temperature. As temperature may interact with toxicant exposure, climate change may cause unpredictable responses to toxic stress. A population's thermal adaptation will impact its response to temperature change, but also to interactive effects from temperature and toxicants, but these effects are still not fully understood. Here, we assessed the combined effects of exposure to the insecticide imidacloprid across the temperatures 10-25 °C of two populations of the Collembola Hypogastrura viatica (Tullberg, 1872), by determining their responses in multiple life history traits. The con-specific populations differ considerably in thermal adaptations; one (arctic) is a temperature generalist, while the other (temperate) is a warm-adapted specialist. For both populations, the sub-lethal concentrations of imidacloprid became lethal with increasing temperature. Although the thermal maximum is higher for the warm-adapted population, the reduction in survival was stronger. Growth was reduced by imidacloprid in a temperature-dependent manner, but only at the adult life stage. The decrease in adult body size combined with the absence of an effect on the age at first reproduction suggests a selection on the timing of maturation. Egg production was reduced by imidacloprid in both populations, but the negative effect was only dependent on temperature in the warm-adapted population, with no effect at 10 °C, and decreases of 41 % at 15 °C, and 74 % at 20 °C. For several key traits, the population best adapted to utilize high temperatures was also the most sensitive to toxic stress at higher temperatures. It could be that by allocating more energy to faster growth, development, and reproduction at higher temperatures, the population had less energy for maintenance, making it more sensitive to toxic stress. Our findings demonstrate the need to take into account a population's thermal adaptation when assessing the interactive effects between temperature and other stressors.
Collapse
Affiliation(s)
- Silje M Kristiansen
- Department of Biosciences, University of Oslo, Blindernvn 31, 0316 Oslo, Norway.
| | - Hans P Leinaas
- Department of Biosciences, University of Oslo, Blindernvn 31, 0316 Oslo, Norway
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boolelaan 1108, 1081, HZ, Amsterdam, the Netherlands
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, Blindernvn 31, 0316 Oslo, Norway
| |
Collapse
|
3
|
Malinski KH, Elizabeth Moore M, Kingsolver JG. Heat stress and host-parasitoid interactions: lessons and opportunities in a changing climate. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101225. [PMID: 38936473 DOI: 10.1016/j.cois.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Ongoing climate change is increasing the frequency and magnitude of high-temperature events (HTEs), causing heat stress in parasitoids and their hosts. We argue that HTEs and heat stress should be viewed in terms of the intersecting life cycles of host and parasitoid. Recent studies illustrate how the biological consequences of a given HTE may vary dramatically depending on its timing within these lifecycles. The temperature sensitivity of host manipulation by parasitoids, and by viral endosymbionts of many parasitoids, can contribute to differing responses of hosts and parasitoids to HTEs. In some cases, these effects can result in reduced parasitoid success and increased host herbivory and may disrupt the ecological interactions between hosts and parasitoids. Because most studies to date involve endoparasitoids of aphid or lepidopteran hosts in agricultural systems, our understanding of heat responses of host-parasitoid interactions in natural systems is quite limited.
Collapse
Affiliation(s)
| | - Megan Elizabeth Moore
- Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center, 538 Tower Road, Ithaca, NY 14850, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Impact of Temperature on the Immune Interaction between a Parasitoid Wasp and Drosophila Host Species. INSECTS 2021; 12:insects12070647. [PMID: 34357307 PMCID: PMC8303993 DOI: 10.3390/insects12070647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Temperature is particularly important for ectotherms, including endoparasitoid wasps that develop inside another ectotherm host. In this study, we tested the impact of three temperatures (20 °C, 25 °C and 30 °C) on the host-parasitoid immune interaction using two Drosophila host species (Drosophila melanogaster and D. yakuba) and two parasitoid lines of Leptopilina boulardi. Drosophila's immune defense against parasitoids consists of the formation of a melanized capsule surrounding the parasitoid egg. To counteract this response, Leptopilina parasitoids rely on the injection of venom during oviposition. Here, we tested the effect of temperature on parasitic success and host encapsulation capacity in response to a parasitoid egg or other foreign body. Increased temperature either promoted or did not affect the parasitic success, depending on the parasitoid-host pairs considered. The mechanisms behind the higher success seemed to vary depending on whether the temperature primarily affected the host immune response or also affected the parasitoid counter-immune response. Next, we tested the effect of parasitoid rearing temperature on its success and venom composition. Venom composition varied strongly with temperature for both parasitoid lines, partially consistent with a change in their parasitic success. Overall, temperature may have a significant impact on the host-parasitoid immune interaction.
Collapse
|
5
|
Kankaanpää T, Vesterinen E, Hardwick B, Schmidt NM, Andersson T, Aspholm PE, Barrio IC, Beckers N, Bêty J, Birkemoe T, DeSiervo M, Drotos KHI, Ehrich D, Gilg O, Gilg V, Hein N, Høye TT, Jakobsen KM, Jodouin C, Jorna J, Kozlov MV, Kresse J, Leandri‐Breton D, Lecomte N, Loonen M, Marr P, Monckton SK, Olsen M, Otis J, Pyle M, Roos RE, Raundrup K, Rozhkova D, Sabard B, Sokolov A, Sokolova N, Solecki AM, Urbanowicz C, Villeneuve C, Vyguzova E, Zverev V, Roslin T. Parasitoids indicate major climate-induced shifts in arctic communities. GLOBAL CHANGE BIOLOGY 2020; 26:6276-6295. [PMID: 32914511 PMCID: PMC7692897 DOI: 10.1111/gcb.15297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/26/2019] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts-as being less fine-tuned to host development-to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic-level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.
Collapse
|
6
|
Iltis C, Louâpre P, Pecharová K, Thiéry D, Zito S, Bois B, Moreau J. Are life-history traits equally affected by global warming? A case study combining a multi-trait approach with fine-grain climate modeling. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103916. [PMID: 31344391 DOI: 10.1016/j.jinsphys.2019.103916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/08/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Predicting species responses to climate change requires tracking the variation in individual performance following exposure to warming conditions. One ecologically relevant approach consists of examining the thermal responses of a large number of traits, both related with population dynamics and trophic interactions (i.e. a multi-trait approach). Based on in situ climatic data and projections from climate models, we here designed two daily fluctuating thermal regimes realistically reflecting current and future conditions in Eastern France. These models detected an increase in mean temperature and in the range of daily thermal fluctuations as two local facets of global warming likely to occur in our study area by the end of this century. We then examined the responses of several fitness-related traits in caterpillars of the moth Lobesia botrana - including development, pupal mass, survival rates, energetic reserves, behavioral and immune traits expressed against parasitoids - to this experimental imitation of global warming. Increasing temperatures positively affected development (leading to a 31% reduction in the time needed to complete larval stage), survival rates (+19%), and movement speed as a surrogate for larval escape ability to natural enemies (+60%). Conversely, warming elicited detrimental effects on lipid reserves (-26%) and immunity (total phenoloxidase activity: -34%). These findings confirm that traits should differ in their sensitivity to global warming, underlying complex consequences for population dynamics and trophic interactions. Our study strengthens the importance of combining a multi-trait approach with the use of realistic fluctuating regimes to forecast the consequences of global warming for individuals, species and species assemblages.
Collapse
Affiliation(s)
- Corentin Iltis
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France.
| | - Philippe Louâpre
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Karolina Pecharová
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Denis Thiéry
- UMR INRA 1065 Santé et Agroécologie du Vignoble, Institut des Sciences de la Vigne et du Vin, 71 Avenue Edouard Bourlaux, 33882 Villenave-d'Ornon, France
| | - Sébastien Zito
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Benjamin Bois
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
7
|
Bouchard M, Martel V, Régnière J, Therrien P, Correia DLP. Do natural enemies explain fluctuations in low-density spruce budworm populations? Ecology 2018; 99:2047-2057. [PMID: 29893007 DOI: 10.1002/ecy.2417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/19/2018] [Accepted: 05/23/2018] [Indexed: 11/10/2022]
Abstract
Understanding the causal pathways through which forest insect outbreaks are triggered is important for resource managers. However, detailed population dynamics studies are hard to conduct in low-density, pre-outbreak populations because the insects are difficult to sample in sufficient numbers. Using laboratory-raised larvae installed in the field across a 1,000 km east-west gradient in Québec (Canada) over an 11-yr period, we examined if parasitism and predation were likely to explain fluctuations in low-density spruce budworm (Choristoneura fumiferana; SBW) populations. Parasitism rates by the two main larval parasitoid species, Elachertus cacoeciae and Tranosema rostrale, peaked during different years. This suggests that temporal fluctuations in overall parasitism were partly buffered by compensatory dynamics among parasitoid species. Still, spatial covariance analyses indicate that the residual interannual variation in parasitism rates was substantial and correlated over large distances (up to 700 km). On the other hand, interannual variation in predation rates was not spatially correlated. Piecewise structural equation models indicate that temporal variation in parasitism and predation does not influence temporal variation in wild SBW abundance. Spatially, however, SBWs installed in warmer locations tended to show higher parasitism rates, and these higher rates correlated with lower wild SBW population levels. Overall, the results indicate that large-scale drops in parasitism occur and could potentially contribute to SBW population increases. However, during the period covered by this study, other factors such as direct effects of weather on SBW larval development or indirect effects through host tree physiology or phenology were more likely to explain large-scale variation in wild SBW populations.
Collapse
Affiliation(s)
- Mathieu Bouchard
- Direction de la Recherche Forestière, Ministère des Forêts, de la Faune et des Parcs du Québec, 2700 rue Einstein, Québec, QC, G1P 3W8, Canada
| | - Véronique Martel
- Canadian Forest Service, Laurentian Forestry Centre, Natural Resources Canada, PO Box 10380, Stn. Ste Foy, Quebec, QC, G1V 4C4, Canada
| | - Jacques Régnière
- Canadian Forest Service, Laurentian Forestry Centre, Natural Resources Canada, PO Box 10380, Stn. Ste Foy, Quebec, QC, G1V 4C4, Canada
| | - Pierre Therrien
- Direction de la Protection des Forêts, Ministère des Forêts, de la Faune et des Parcs du Québec, 2700 rue Einstein, Québec, QC, G1P 3W8, Canada
| | | |
Collapse
|
8
|
Seehausen ML, Naumann PH, Béliveau C, Martel V, Cusson M. Impact of rearing temperature on encapsulation and the accumulation of transcripts putatively involved in capsule formation in a parasitized lepidopteran host. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:244-249. [PMID: 29704478 DOI: 10.1016/j.jinsphys.2018.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Encapsulation and melanisation are innate immune reactions of insects against foreign intruders such as parasitoids. In an earlier study, we observed that immature life stages of the endoparasitoid Tranosema rostrale (Hymenoptera: Ichneumonidae) parasitizing Choristoneura fumiferana (Lepidoptera: Tortricidae) larvae experienced higher mortality due to encapsulation and melanisation when reared at high (30 °C) than at lower (10 °C, 20 °C) temperatures. Downregulation of T. rostrale polydnavirus genes in parasitized hosts and upregulation of two genes involved in the spruce budworm's melanisation process were identified as likely contributors to parasitoid mortality at high temperature. However, levels of transcripts of genes involved in the spruce budworm's cellular encapsulation process were not measured inasmuch as candidate genes, in the spruce budworm, had not yet been identified. In addition, our assessment of temperature-dependent encapsulation and melanisation of foreign objects in spruce budworm larvae was only partial. To fill these knowledge gaps, we injected Sephadex™ beads into unparasitized spruce budworm larvae and assessed their encapsulation/melanisation after the insects had been held at three different temperatures (10, 20, and 30 °C), and we identified spruce budworm genes putatively involved in the encapsulation process and quantified their transcripts at the same three temperatures, using a qPCR approach. As expected, both encapsulation and melanisation of Sephadex™ beads increased as a function of temperature. At the molecular level, three of the five genes examined (Integrin β1, Hopscotch, Stat92E) clearly displayed temperature-dependent upregulation. The results of this study further support the hypothesis that a temperature-dependent increase in the encapsulation response of C. fumiferana against T. rostrale is due to the combined effects of reduced expression of polydnavirus genes and enhanced expression of host immune genes.
Collapse
Affiliation(s)
- M Lukas Seehausen
- University of Toronto, Faculty of Forestry, 33 Willcocks Street, Toronto, Ontario M5S 3B3, Canada.
| | - Paul-Henri Naumann
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Quebec City G1V 4C7, Canada
| | - Catherine Béliveau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Quebec City G1V 4C7, Canada
| | - Véronique Martel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Quebec City G1V 4C7, Canada
| | - Michel Cusson
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Quebec City G1V 4C7, Canada
| |
Collapse
|
9
|
Chuine I, Régnière J. Process-Based Models of Phenology for Plants and Animals. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-022706] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phenology is a key aspect of plant and animal life strategies that determines the ability to capture seasonally variable resources. It defines the season and duration of growth and reproduction and paces ecological interactions and ecosystem functions. Phenology models have become a key component of models in agronomy, forestry, ecology, and biogeosciences. Plant and animal process-based phenology models have taken different paths that have so far not crossed. Yet, they share many features because plant and animal annual cycles also share many characteristics, from their stepwise progression, including a resting period, to their dependence on similar environmental factors. We review the strengths and shortcomings of these models and the divergences in modeling approaches for plants and animals, which are mostly due to specificities of the questions they tackle. Finally, we discuss the most promising avenues and the challenges phenology modeling needs to address in the upcoming years.
Collapse
Affiliation(s)
- Isabelle Chuine
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 Centre National de la Recherche Scientifique—Université de Montpellier—Université Paul-Valéry Montpellier—EPHE, 34293, Montpellier, France
| | - Jacques Régnière
- Natural Resources Canada, Canadian Forest Service, Québec, Québec, G1V 4C7 Canada
| |
Collapse
|
10
|
Seehausen ML, Cusson M, Régnière J, Bory M, Stewart D, Djoumad A, Smith SM, Martel V. High temperature induces downregulation of polydnavirus gene transcription in lepidopteran host and enhances accumulation of host immunity gene transcripts. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:126-133. [PMID: 28041943 DOI: 10.1016/j.jinsphys.2016.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Endoparasitoids face the challenge of overcoming the immune reaction of their hosts, which typically consists of encapsulation and melanisation of parasitoid eggs or larvae. Some endoparasitic wasps such as the solitary Tranosema rostrale (Hymenoptera: Ichneumonidae) that lay their eggs in larvae of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), have evolved a symbiotic relationship with a polydnavirus (PDV), which in turn helps them suppress the host's immune response. We observed an increase in mortality of immature T. rostrale with increasing temperature, and we tested two hypotheses about the mechanisms involved: high temperatures (1) hamper the expression of T. rostrale PDV genes and (2) enhance the expression of spruce budworm immunity-related genes. Dissections of parasitized spruce budworm larvae reared at 30°C revealed that most parasitoid eggs or larvae had died as a result of encapsulation and melanisation by the host. A qPCR analysis of T. rostrale PDV (TrIV) gene expression showed that the transcription of several TrIV genes in host larvae was downregulated at high temperature. On the other hand, encapsulation, but not melanisation, of foreign bodies in spruce budworm larvae was enhanced at high temperatures, as shown by the injection of Sephadex™ beads into larvae. However, at the molecular level, the transcription of genes related to spruce budworm's melanisation process (prophenoloxidase 1 and 2) was upregulated. Our results support the hypothesis that a temperature-dependent increase of encapsulation response is due to the combined effects of reduced expression of TrIV genes and enhanced expression of host immune genes.
Collapse
Affiliation(s)
- M Lukas Seehausen
- University of Toronto, Faculty of Forestry, 33 Willcocks Street, Toronto, Ontario M5S 3B3, Canada.
| | - Michel Cusson
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Jacques Régnière
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Maxence Bory
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Don Stewart
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Abdelmadjid Djoumad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| | - Sandy M Smith
- University of Toronto, Faculty of Forestry, 33 Willcocks Street, Toronto, Ontario M5S 3B3, Canada
| | - Véronique Martel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., Québec G1V 4C7, Canada
| |
Collapse
|