1
|
Wudarski J, Aliabadi S, Gulia-Nuss M. Arthropod promoters for genetic control of disease vectors. Trends Parasitol 2024; 40:619-632. [PMID: 38824066 PMCID: PMC11223965 DOI: 10.1016/j.pt.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/03/2024]
Abstract
Vector-borne diseases (VBDs) impose devastating effects on human health and a heavy financial burden. Malaria, Lyme disease, and dengue fever are just a few examples of VBDs that cause severe illnesses. The current strategies to control VBDs consist mainly of environmental modification and chemical use, and to a small extent, genetic approaches. The genetic approaches, including transgenesis/genome modification and gene-drive technologies, provide the basis for developing new tools for VBD prevention by suppressing vector populations or reducing their capacity to transmit pathogens. The regulatory elements such as promoters are required for a robust sex-, tissue-, and stage-specific transgene expression. As discussed in this review, information on the regulatory elements is available for mosquito vectors but is scant for other vectors.
Collapse
Affiliation(s)
- Jakub Wudarski
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Simindokht Aliabadi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA.
| |
Collapse
|
2
|
Guinet B, Leobold M, Herniou EA, Bloin P, Burlet N, Bredlau J, Navratil V, Ravallec M, Uzbekov R, Kester K, Gundersen Rindal D, Drezen JM, Varaldi J, Bézier A. A novel and diverse family of filamentous DNA viruses associated with parasitic wasps. Virus Evol 2024; 10:veae022. [PMID: 38617843 PMCID: PMC11013392 DOI: 10.1093/ve/veae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 04/16/2024] Open
Abstract
Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.
Collapse
Affiliation(s)
- Benjamin Guinet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Pierrick Bloin
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Nelly Burlet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Justin Bredlau
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX 69622, France
- UMS 3601, Institut Français de Bioinformatique, IFB-Core, 2 rue Gaston Crémieu, Évry CEDEX 91057, France
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
| | - Marc Ravallec
- Diversité, génomes et interactions microorganismes insectes (DGIMI), UMR 1333 INRA, Université de Montpellier 2, 2 Place Eugène Bataillon cc101, Montpellier CEDEX 5 34095, France
| | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Faculty of Medicine, Université de Tours, 10 bd Tonnelle, BP 3223, Tours CEDEX 37032, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye Gory 73, Moscow 119992, Russia
| | - Karen Kester
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Dawn Gundersen Rindal
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Julien Varaldi
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| |
Collapse
|
3
|
El Yamlahi Y, Bel Mokhtar N, Maurady A, Britel MR, Batargias C, Mutembei DE, Nyingilili HS, Malulu DJ, Malele II, Asimakis E, Stathopoulou P, Tsiamis G. Characterization of the Bacterial Profile from Natural and Laboratory Glossina Populations. INSECTS 2023; 14:840. [PMID: 37999039 PMCID: PMC10671886 DOI: 10.3390/insects14110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Tsetse flies (Glossina spp.; Diptera: Glossinidae) are viviparous flies that feed on blood and are found exclusively in sub-Saharan Africa. They are the only cyclic vectors of African trypanosomes, responsible for human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). In this study, we employed high throughput sequencing of the 16S rRNA gene to unravel the diversity of symbiotic bacteria in five wild and three laboratory populations of tsetse species (Glossina pallidipes, G. morsitans, G. swynnertoni, and G. austeni). The aim was to assess the dynamics of bacterial diversity both within each laboratory and wild population in relation to the developmental stage, insect age, gender, and location. Our results indicated that the bacterial communities associated with the four studied Glossina species were significantly influenced by their region of origin, with wild samples being more diverse compared to the laboratory samples. We also observed that the larval microbiota was significantly different than the adults. Furthermore, the sex and the species did not significantly influence the formation of the bacterial profile of the laboratory colonies once these populations were kept under the same rearing conditions. In addition, Wigglesworthia, Acinetobacter, and Sodalis were the most abundant bacterial genera in all the samples, while Wolbachia was significantly abundant in G. morsitans compared to the other studied species. The operational taxonomic unit (OTU) co-occurrence network for each location (VVBD insectary, Doma, Makao, and Msubugwe) indicated a high variability between G. pallidipes and the other species in terms of the number of mutual exclusion and copresence interactions. In particular, some bacterial genera, like Wigglesworthia and Sodalis, with high relative abundance, were also characterized by a high degree of interactions.
Collapse
Affiliation(s)
- Youssef El Yamlahi
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Faculty of Sciences and Technics of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Faculty of Sciences and Technics of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco
| | - Mohammed R. Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece;
| | - Delphina E. Mutembei
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Hamisi S. Nyingilili
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Deusdedit J. Malulu
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Imna I. Malele
- Directorate of Research and Technology Development, TVLA, Dar Es Salaam P.O. Box 9254, Tanzania;
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| |
Collapse
|
4
|
Mirieri CK, Abd-Alla AM, Ros VI, van Oers MM. Evaluating the Effect of Irradiation on the Densities of Two RNA Viruses in Glossina morsitans morsitans. INSECTS 2023; 14:397. [PMID: 37103212 PMCID: PMC10140815 DOI: 10.3390/insects14040397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Tsetse flies are cyclic vectors of Trypanosoma parasites, which cause debilitating diseases in humans and animals. To decrease the disease burden, the number of flies is reduced using the sterile insect technique (SIT), where male flies are sterilized through irradiation and released into the field. This procedure requires the mass rearing of high-quality male flies able to compete with wild male flies for mating with wild females. Recently, two RNA viruses, an iflavirus and a negevirus, were discovered in mass-reared Glossina morsitans morsitans and named GmmIV and GmmNegeV, respectively. The aim of this study was to evaluate whether the densities of these viruses in tsetse flies are affected by the irradiation treatment. Therefore, we exposed tsetse pupae to various doses (0-150 Gy) of ionizing radiation, either in air (normoxia) or without air (hypoxia), for which oxygen was displaced by nitrogen. Pupae and/or emerging flies were collected immediately afterwards, and at three days post irradiation, virus densities were quantified through RT-qPCR. Generally, the results show that irradiation exposure had no significant impact on the densities of GmmIV and GmmNegeV, suggesting that the viruses are relatively radiation-resistant, even at higher doses. However, sampling over a longer period after irradiation would be needed to verify that densities of these insect viruses are not changed by the sterilisation treatment.
Collapse
Affiliation(s)
- Caroline K. Mirieri
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Adly M.M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Vera I.D. Ros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Rupawate PS, Roylawar P, Khandagale K, Gawande S, Ade AB, Jaiswal DK, Borgave S. Role of gut symbionts of insect pests: A novel target for insect-pest control. Front Microbiol 2023; 14:1146390. [PMID: 36992933 PMCID: PMC10042327 DOI: 10.3389/fmicb.2023.1146390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
Insects possess beneficial and nuisance values in the context of the agricultural sector and human life around them. An ensemble of gut symbionts assists insects to adapt to diverse and extreme environments and to occupy every available niche on earth. Microbial symbiosis helps host insects by supplementing necessary diet elements, providing protection from predators and parasitoids through camouflage, modulation of signaling pathway to attain homeostasis and to trigger immunity against pathogens, hijacking plant pathways to circumvent plant defence, acquiring the capability to degrade chemical pesticides, and degradation of harmful pesticides. Therefore, a microbial protection strategy can lead to overpopulation of insect pests, which can drastically reduce crop yield. Some studies have demonstrated increased insect mortality via the destruction of insect gut symbionts; through the use of antibiotics. The review summarizes various roles played by the gut microbiota of insect pests and some studies that have been conducted on pest control by targeting the symbionts. Manipulation or exploitation of the gut symbionts alters the growth and population of the host insects and is consequently a potential target for the development of better pest control strategies. Methods such as modulation of gut symbionts via CRISPR/Cas9, RNAi and the combining of IIT and SIT to increase the insect mortality are further discussed. In the ongoing insect pest management scenario, gut symbionts are proving to be the reliable, eco-friendly and novel approach in the integrated pest management.
Collapse
Affiliation(s)
- Pravara S. Rupawate
- Department of Zoology, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
| | - Praveen Roylawar
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
| | | | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| | - Avinash B. Ade
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Durgesh Kumar Jaiswal
- Department of Botany, Savitribai Phule Pune University, Pune, India
- *Correspondence: Durgesh Kumar Jaiswal,
| | - Seema Borgave
- Department of Zoology, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
- Seema Borgave,
| |
Collapse
|
6
|
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM. Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Front Microbiol 2021; 12:653880. [PMID: 34122367 PMCID: PMC8194091 DOI: 10.3389/fmicb.2021.653880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Vangelis Doudoumis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
7
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
8
|
Uncertainty and sensitivity analyses of extinction probabilities suggest that adult female mortality is the weakest link for populations of tsetse (Glossina spp). PLoS Negl Trop Dis 2020; 14:e0007854. [PMID: 32392220 PMCID: PMC7241813 DOI: 10.1371/journal.pntd.0007854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/21/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022] Open
Abstract
Background A relatively simple life history allows us to derive an expression for the extinction probability of populations of tsetse, vectors of African sleeping sickness. We present the uncertainty and sensitivity analysis of the extinction probability, to offer key insights into factors affecting the control or eradication of tsetse populations. Methods We represent tsetse population growth as a branching process, and derive closed form estimates of population extinction from that model. Statistical and mathematical techniques are used to analyse the uncertainties in estimating extinction probability, and the sensitivity of the extinction probability to changes in input parameters representing the natural life history and vital dynamics of tsetse populations. Results For fixed values of input parameters, the sensitivity of extinction probability depends on the baseline parameter values. Extinction probability is most sensitive to the probability that a female is inseminated by a fertile male when daily pupal mortality is low, whereas the extinction probability is most sensitive to daily mortality rate for adult females when daily pupal mortality, and extinction probabilities, are high. Global uncertainty and sensitivity analysis show that daily mortality rate for adult females has the highest impact on the extinction probability. Conclusions The high correlation between extinction probability and daily female adult mortality gives a strong argument that control techniques which increase daily female adult mortality may be the single most effective means of ensuring eradication of tsetse population. Tsetse flies (Glossina spp.) are vectors of African trypanosomiasis, a deadly disease commonly called sleeping sickness in humans and nagana in livestock. The relatively simple life history of tsetse enabled us to model its population growth as a stochastic branching process. We derived a closed-form expression for the probability that a population of tsetse goes extinct, as a function of death, birth, development and insemination rates in female tsetse. We analyzed the sensitivity of the extinction probability to the different input parameters, in a bid to identify parameters with the highest impact on extinction probability. This information can, potentially, inform policy direction for tsetse control/elimination. In all the scenarios we considered for the global sensitivity analysis, the daily mortality rate for adult females had the greatest impact on the magnitude of extinction probability. Our findings suggest that the mortality rate in the adult females is the weakest link in tsetse life history, and this fact should be exploited in achieving tsetse population control, or even eradication.
Collapse
|
9
|
Bhandari K, Crisp P, Keller MA. The oesophageal diverticulum of Dirioxa pornia studied through micro-CT scan, dissection and SEM studies. BMC Biotechnol 2019; 19:89. [PMID: 31847843 PMCID: PMC6918637 DOI: 10.1186/s12896-019-0585-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Dirioxa pornia (Diptera, Tephritidae) (Island fly) is an Australian native species related to a number of pestiferous fruit flies but, unlike many of the pest species, has not been studied extensively due to its non-pest status. However, due to D. pornia’s apparent reliance on the bacteria for survival it is an ideal species to undertake studies into interaction between Tephritid species and bacteria associated with the intestinal tract. The oesophageal diverticulum, which is a blind-ended protrusion of the oesophagus, has been studied, described and characterised in many other Tephritid species. Unlike many other species where the oesophageal diverticulum has been observed the organ was only observed in male D. pornia. It is speculated that this sexual dimorphism the organ may be the primary location to host beneficial bacteria in the involved in the production of the nuptial gift and the mating success of this Tephritid species. In case of D. pornia, however, no study on any area of the digestive system has been conducted. This study was conducted to locate and characterize the oesophageal diverticulum in D. pornia. A virtual dissection of the alimentary tract was made through micro-computer tomography studies. These studies were followed by dissection and scanning microscopy studies to elucidate the presence of bacteria. Results The oesophageal diverticulum of D. pornia is part of the foregut and distends from the oesophagus within the head of the fly. The shape of the oesophageal diverticulum corresponds with the Ceratitis type. Scanning microscopy studies of the oesophageal diverticulum show rod-shaped bacterial cells residing along with yeast cells in the lumen. The organ was only observed in male specimens. Conclusions This study classifies the oesophageal diverticulum of D. pornia under the “Ceratitis type” of oesophageal diverticula in Tephritid species. The study also proves that micro-CT scanning is possible to locate soft tissues in Tephritid species and the Avizo® Fire software can be successfully used to visualize 3 dimensional (3D) images from x-rays. The methods used in this experiment can be used in future studies for visualising soft tissues of adult Tephritid species through micro tomography. There is sexual dimorphism with the organ only found in males. Finally this study shows that bacteria are present in the oesophageal diverticulum of D. pornia.
Collapse
Affiliation(s)
- Kala Bhandari
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Peter Crisp
- Entomology Unit, South Australian Research and Development Institute, PIRSA, Adelaide, SA, Australia.
| | - Michael A Keller
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
10
|
Demirbas-Uzel G, Parker AG, Vreysen MJB, Mach RL, Bouyer J, Takac P, Abd-Alla AMM. Impact of Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) on a heterologous tsetse fly host, Glossina fuscipes fuscipes. BMC Microbiol 2018; 18:161. [PMID: 30470172 PMCID: PMC6251146 DOI: 10.1186/s12866-018-1276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tsetse flies (Diptera: Glossinidae) are the vectors of African trypanosomosis, the causal agent of sleeping sickness in humans and nagana in animals. Glossina fuscipes fuscipes is one of the most important tsetse vectors of sleeping sickness, particularly in Central Africa. Due to the development of resistance of the trypanosomes to the commonly used trypanocidal drugs and the lack of effective vaccines, vector control approaches remain the most effective strategies for sustainable management of those diseases. The Sterile Insect Technique (SIT) is an effective, environment-friendly method for the management of tsetse flies in the context of area-wide integrated pest management programs (AW-IPM). This technique relies on the mass-production of the target insect, its sterilization with ionizing radiation and the release of sterile males in the target area where they will mate with wild females and induce sterility in the native population. It has been shown that Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infection causes a decrease in fecundity and fertility hampering the maintenance of colonies of the tsetse fly G. pallidipes. This virus has also been detected in different species of tsetse files. In this study, we evaluated the impact of GpSGHV on the performance of a colony of the heterologous host G. f. fuscipes, including the flies' productivity, mortality, survival, flight propensity and mating ability and insemination rates. RESULTS Even though GpSGHV infection did not induce SGH symptoms, it significantly reduced all examined parameters, except adult flight propensity and insemination rate. CONCLUSION These results emphasize the important role of GpSGHV management strategy in the maintenance of G. f. fuscipes colonies and the urgent need to implement measures to avoid virus infection, to ensure the optimal mass production of this tsetse species for use in AW-IPM programs with an SIT component.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06, Bratislava, SR, Slovakia.,Scientica, Ltd., Hybešova 33, 831 06, Bratislava, Slovakia
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
11
|
Abstract
Background Microbiota plays an important role in the biology, ecology and evolution of insects including tsetse flies. The bacterial profile of 3 Glossina palpalis gambiensis laboratory colonies was examined using 16S rRNA gene amplicon sequencing to evaluate the dynamics of the bacterial diversity within and between each G. p. gambiensis colony. Results The three G. p. gambiensis laboratory colonies displayed similar bacterial diversity indices and OTU distribution. Larval guts displayed a higher diversity when compared with the gastrointestinal tract of adults while no statistically significant differences were observed between testes and ovaries. Wigglesworthia and Sodalis were the most dominant taxa. In more detail, the gastrointestinal tract of adults was more enriched by Wigglesworthia while Sodalis were prominent in gonads. Interestingly, in larval guts a balanced co-existence between Wigglesworthia and Sodalis was observed. Sequences assigned to Wolbachia, Propionibacterium, and Providencia were also detected but to a much lesser degree. Clustering analysis indicated that the bacterial profile in G. p. gambiensis exhibits tissue tropism, hence distinguishing the gut bacterial profile from that present in reproductive organs. Conclusions Our results indicated that age, gender and the origin of the laboratory colonies did not significantly influence the formation of the bacterial profile, once these populations were kept under the same rearing conditions. Within the laboratory populations a tissue tropism was observed between the gut and gonadal bacterial profile. Electronic supplementary material The online version of this article (10.1186/s12866-018-1290-9) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Demirbas-Uzel G, De Vooght L, Parker AG, Vreysen MJB, Mach RL, Van Den Abbeele J, Abd-Alla AMM. Combining paratransgenesis with SIT: impact of ionizing radiation on the DNA copy number of Sodalis glossinidius in tsetse flies. BMC Microbiol 2018; 18:160. [PMID: 30470179 PMCID: PMC6251162 DOI: 10.1186/s12866-018-1283-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the causative agents of African Trypanosomosis, which has been identified as a neglected tropical disease in both humans and animals in many regions of sub-Saharan Africa. The sterile insect technique (SIT) has shown to be a powerful method to manage tsetse fly populations when used in the frame of an area-wide integrated pest management (AW-IPM) program. To date, the release of sterile males to manage tsetse fly populations has only been implemented in areas to reduce transmission of animal African Trypanosomosis (AAT). The implementation of the SIT in areas with Human African Trypanosomosis (HAT) would require additional measures to eliminate the potential risk associated with the release of sterile males that require blood meals to survive and hence, might contribute to disease transmission. Paratransgenesis offers the potential to develop tsetse flies that are refractory to trypanosome infection by modifying their associated bacteria (Sodalis glossinidius) here after referred to as Sodalis. Here we assessed the feasibility of combining the paratransgenesis approach with SIT by analyzing the impact of ionizing radiation on the copy number of Sodalis and the vectorial capacity of sterilized tsetse males. Results Adult Glossina morsitans morsitans that emerged from puparia irradiated on day 22 post larviposition did not show a significant decline in Sodalis copy number as compared with non-irradiated flies. Conversely, the Sodalis copy number was significantly reduced in adults that emerged from puparia irradiated on day 29 post larviposition and in adults irradiated on day 7 post emergence. Moreover, irradiating 22-day old puparia reduced the copy number of Wolbachia and Wigglesworthia in emerged adults as compared with non-irradiated controls, but the radiation treatment had no significant impact on the vectorial competence of the flies. Conclusion Although the radiation treatment significantly reduced the copy number of some tsetse fly symbionts, the copy number of Sodalis recovered with time in flies irradiated as 22-day old puparia. This recovery offers the opportunity to combine a paratransgenesis approach – using modified Sodalis to produce males refractory to trypanosome infection – with the release of sterile males to minimize the risk of disease transmission, especially in HAT endemic areas. Moreover, irradiation did not increase the vector competence of the flies for trypanosomes. Electronic supplementary material The online version of this article (10.1186/s12866-018-1283-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Institute of Chemical, Environmental, and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Linda De Vooght
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Robert L Mach
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
13
|
What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus. BMC Microbiol 2018; 18:150. [PMID: 30470176 PMCID: PMC6251153 DOI: 10.1186/s12866-018-1278-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program ‘Enhancing Vector Refractoriness to Trypanosome Infection’, in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host’s immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models.
Collapse
|
14
|
Chung HN, Rodriguez SD, Gonzales KK, Vulcan J, Cordova JJ, Mitra S, Adams CG, Moses-Gonzales N, Tam N, Cluck JW, Attardo GM, Hansen IA. Toward Implementation of Mosquito Sterile Insect Technique: The Effect of Storage Conditions on Survival of Male Aedes aegypti Mosquitoes (Diptera: Culicidae) During Transport. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5153339. [PMID: 30383264 PMCID: PMC6220358 DOI: 10.1093/jisesa/iey103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Indexed: 05/20/2023]
Abstract
Sterile insect technique (SIT) is a promising, environmentally friendly alternative to the use of pesticides for insect pest control. However, implementing SIT with Aedes aegypti (Linnaeus) mosquitoes presents unique challenges. For example, during transport from the rearing facility to the release site and during the actual release in the field, damage to male mosquitoes should be minimized to preserve their reproductive competitiveness. The short flight range of male Ae. aegypti requires elaborate release strategies such as release via Unmanned Aircraft Systems, more commonly referred to as drones. Two key parameters during transport and release are storage temperature and compaction rate. We performed a set of laboratory experiments to identify the optimal temperatures and compaction rates for storage and transport of male Ae. aegypti. We then conducted shipping experiments to test our laboratory-derived results in a 'real-life' setting. The laboratory results indicate that male Ae. aegypti can survive at a broad range of storage temperatures ranging from 7 to 28°C, but storage time should not exceed 24 h. Male survival was high at all compaction rates we tested with a low at 40 males/cm3. Interestingly, results from our 'real-life' shipping experiment showed that high compaction rates were beneficial to survival. This study advances key understudied aspects of the practicalities of moving lab-reared insects into the field and lies the foundation for further studies on the effect of transport conditions on male reproductive fitness.
Collapse
Affiliation(s)
- Hae-Na Chung
- Department of Biology, New Mexico State University, Las Cruces, NM
| | | | | | - Julia Vulcan
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Joel J Cordova
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Soumi Mitra
- Department of Biology, New Mexico State University, Las Cruces, NM
| | | | | | - Nicole Tam
- Department of Entomology and Nematology, University of California, Davis, Davis, CA
| | - Joshua W Cluck
- Department of Entomology and Nematology, University of California, Davis, Davis, CA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM
- Corresponding author, e-mail:
| |
Collapse
|
15
|
Krafsur ES, Maudlin I. Tsetse fly evolution, genetics and the trypanosomiases - A review. INFECTION GENETICS AND EVOLUTION 2018; 64:185-206. [PMID: 29885477 DOI: 10.1016/j.meegid.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/27/2023]
Abstract
This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b. gambiense. In the past decade most genetic attention was given to the chief human African trypanosomiasis vectors in subgenus Nemorhina e.g., Glossina f. fuscipes, G. p. palpalis, and G. p. gambiense. The chief interest in Nemorhina population genetics seemed to be finding vector populations sufficiently isolated to enable efficient and long-lasting suppression. To this end estimates were made of gene flow, derived from FST and its analogues, and Ne, the size of a hypothetical population equivalent to that under study. Genetic drift was greater, gene flow and Ne typically lesser in savannah inhabiting tsetse (subgenus Glossina) than in riverine forms (Nemorhina). Population stabilities were examined by sequential sampling and genotypic analysis of nuclear and mitochondrial genomes in both groups and found to be stable. Gene frequencies estimated in sequential samplings differed by drift and allowed estimates of effective population numbers that were greater for Nemorhina spp than Glossina spp. Prospects are examined of genetic methods of vector control. The tsetse long generation time (c. 50 d) is a major contraindication to any suggested genetic method of tsetse population manipulation. Ecological and modelling research convincingly show that conventional methods of targeted insecticide applications and traps/targets can achieve cost-effective reduction in tsetse densities.
Collapse
Affiliation(s)
- E S Krafsur
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Ian Maudlin
- School of Biomedical Sciences, The University of Edinburgh, Scotland, UK
| |
Collapse
|
16
|
Bateta R, Wang J, Wu Y, Weiss BL, Warren WC, Murilla GA, Aksoy S, Mireji PO. Tsetse fly (Glossina pallidipes) midgut responses to Trypanosoma brucei challenge. Parasit Vectors 2017; 10:614. [PMID: 29258576 PMCID: PMC5738168 DOI: 10.1186/s13071-017-2569-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tsetse flies (Glossina spp.) are the prominent vector of African trypanosome parasites (Trypanosoma spp.) in sub-Saharan Africa, and Glossina pallidipes is the most widely distributed species in Kenya. This species displays strong resistance to infection by parasites, which are typically eliminated in the midgut shortly after acquisition from the mammalian host. Although extensive molecular information on immunity for the related species Glossina morsitans morsitans exists, similar information is scarce for G. pallidipes. METHODS To determine temporal transcriptional responses of G. pallidipes to Trypanosoma brucei brucei challenge, we conducted Illumina based RNA-seq on midgut organ and carcass from teneral females G. pallidipes at 24 and 48 h post-challenge (hpc) with T. b. brucei relative to their respective controls that received normal blood meals (without the parasite). We used a suite of bioinformatics tools to determine differentially expressed and enriched transcripts between and among tissues, and to identify expanded transcripts in G. pallidipes relative to their orthologs G. m. morsitans. RESULTS Midgut transcripts induced at 24 hpc encoded proteins were associated with lipid remodelling, proteolysis, collagen metabolism, apoptosis, and cell growth. Midgut transcripts induced at 48 hpc encoded proteins linked to embryonic growth and development, serine endopeptidases and proteosomal degradation of the target protein, mRNA translation and neuronal development. Temporal expression of immune responsive transcripts at 48 relative to 24 hpc was pronounced, indicative of a gradual induction of host immune responses the following challenge. We also searched for G. m. morsitans orthologous groups that may have experienced expansions in the G. pallidipes genome. We identified ten expanded groups in G. pallidipes with putative immunity-related functions, which may play a role in the higher refractoriness exhibited by this species. CONCLUSIONS There appears to be a lack of strong immune responses elicited by gut epithelia of teneral adults. This in combination with a compromised peritrophic matrix at this stage during the initial phase of T. b. brucei challenge may facilitate the increased parasite infection establishment noted in teneral flies relative to older adults. Although teneral flies are more susceptible than older adults, the majority of tenerals are still able to eliminate parasite infections. Hence, robust responses elicited at a later time point, such as 72 hpc, may clear parasite infections from the majority of flies. The expanded G. m. morsitans orthologous groups in G. pallidipes may also be functionally associated with the enhanced refractoriness to trypanosome infections reported in G. pallidipes relative to G. m. morsitans.
Collapse
Affiliation(s)
- Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Jingwen Wang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Yineng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Wesley C. Warren
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., Campus Box 8501, St Louis, MO 63108 USA
| | - Grace A. Murilla
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Paul O. Mireji
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, P. O. Box 428-80108, Kilifi, Kenya
| |
Collapse
|
17
|
Parry NJ, Pieterse E, Weldon CW. Longevity, Fertility and Fecundity of Adult Blow Flies (Diptera: Calliphoridae) Held at Varying Densities: Implications for Use in Bioconversion of Waste. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2388-2396. [PMID: 29040631 DOI: 10.1093/jee/tox251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Large numbers of flies are needed to produce the quantity of larvae required for insect bioconversion of waste. However, this 'mass-rearing' may negatively affect adult survival and reproductive output. This study assessed the suitability for mass-rearing of four blow fly species, Chrysomya chloropyga, Chrysomya chloropyga (Wiedemann), Chrysomya megacephala (F.), Chrysomya putoria (Wiedemann) and Lucilia sericata (Meigen). Flies were kept at densities of 20, 50, 100, 250, 500, and 1,000 flies per 30 × 30 × 30 cm cage with an even sex ratio. Time to 50% mortality (LT50) was recorded, and the effects of density, species, and sex on LT50, fecundity, and fertility were determined. Females survived longer than males across all species. There was evidence for a trade-off between survival and high fecundity in L. sericata and C. chloropyga at density 250. C. megacephala had low fecundity across all densities. At high densities, C. putoria had the lowest mortality and highest fecundity, making it the most suitable for mass-rearing.
Collapse
Affiliation(s)
| | - Elsje Pieterse
- Department of Animal Sciences, Stellenbosch University, South Africa
| | | |
Collapse
|
18
|
Tsagmo Ngoune JM, Njiokou F, Loriod B, Kame-Ngasse G, Fernandez-Nunez N, Rioualen C, van Helden J, Geiger A. Transcriptional Profiling of Midguts Prepared from Trypanosoma/T. congolense-Positive Glossina palpalis palpalis Collected from Two Distinct Cameroonian Foci: Coordinated Signatures of the Midguts' Remodeling As T. congolense-Supportive Niches. Front Immunol 2017; 8:876. [PMID: 28804485 PMCID: PMC5532377 DOI: 10.3389/fimmu.2017.00876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Our previous transcriptomic analysis of Glossina palpalis gambiensis experimentally infected or not with Trypanosoma brucei gambiense aimed to detect differentially expressed genes (DEGs) associated with infection. Specifically, we selected candidate genes governing tsetse fly vector competence that could be used in the context of an anti-vector strategy, to control human and/or animal trypanosomiasis. The present study aimed to verify whether gene expression in field tsetse flies (G. p. palpalis) is modified in response to natural infection by trypanosomes (T. congolense), as reported when insectary-raised flies (G. p. gambiensis) are experimentally infected with T. b. gambiense. This was achieved using the RNA-seq approach, which identified 524 DEGs in infected vs. non-infected tsetse flies, including 285 downregulated genes and 239 upregulated genes (identified using DESeq2). Several of these genes were highly differentially expressed, with log2 fold change values in the vicinity of either +40 or −40. Downregulated genes were primarily involved in transcription/translation processes, whereas encoded upregulated genes governed amino acid and nucleotide biosynthesis pathways. The BioCyc metabolic pathways associated with infection also revealed that downregulated genes were mainly involved in fly immunity processes. Importantly, our study demonstrates that data on the molecular cross-talk between the host and the parasite (as well as the always present fly microbiome) recorded from an experimental biological model has a counterpart in field flies, which in turn validates the use of experimental host/parasite couples.
Collapse
Affiliation(s)
- Jean M Tsagmo Ngoune
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Béatrice Loriod
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | | | - Nicolas Fernandez-Nunez
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Claire Rioualen
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Jacques van Helden
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| |
Collapse
|
19
|
Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations. Sci Rep 2017; 7:4699. [PMID: 28680117 PMCID: PMC5498494 DOI: 10.1038/s41598-017-04740-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023] Open
Abstract
Profiling of wild and laboratory tsetse populations using 16S rRNA gene amplicon sequencing allowed us to examine whether the "Wigglesworthia-Sodalis-Wolbachia dogma" operates across species and populations. The most abundant taxa, in wild and laboratory populations, were Wigglesworthia (the primary endosymbiont), Sodalis and Wolbachia as previously characterized. The species richness of the microbiota was greater in wild than laboratory populations. Spiroplasma was identified as a new symbiont exclusively in Glossina fuscipes fuscipes and G. tachinoides, members of the palpalis sub-group, and the infection prevalence in several laboratory and natural populations was surveyed. Multi locus sequencing typing (MLST) analysis identified two strains of tsetse-associated Spiroplasma, present in G. f. fuscipes and G. tachinoides. Spiroplasma density in G. f. fuscipes larva guts was significantly higher than in guts from teneral and 15-day old male and female adults. In gonads of teneral and 15-day old insects, Spiroplasma density was higher in testes than ovaries, and was significantly higher density in live versus prematurely deceased females indicating a potentially mutualistic association. Higher Spiroplasma density in testes than in ovaries was also detected by fluorescent in situ hybridization in G. f. fuscipes.
Collapse
|
20
|
Abstract
Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies.
Collapse
Affiliation(s)
- Alan H. Fairlamb
- Dundee Drug Discovery Unit, Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Neil A. R. Gow
- Aberdeen Fungal Group, Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
21
|
More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations. Acta Trop 2016; 157:115-30. [PMID: 26774684 DOI: 10.1016/j.actatropica.2016.01.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022]
Abstract
Mosquitoes (Diptera: Culicidae) and tsetse flies (Diptera: Glossinidae) are bloodsucking vectors of human and animal pathogens. Mosquito-borne diseases (malaria, filariasis, dengue, zika, and chikungunya) cause severe mortality and morbidity annually, and tsetse fly-borne diseases (African trypanosomes causing sleeping sickness in humans and nagana in livestock) cost Sub-Saharan Africa an estimated US$ 4750 million annually. Current reliance on insecticides for vector control is unsustainable: due to increasing insecticide resistance and growing concerns about health and environmental impacts of chemical control there is a growing need for novel, effective and safe biologically-based methods that are more sustainable. The integration of the sterile insect technique has proven successful to manage crop pests and disease vectors, particularly tsetse flies, and is likely to prove effective against mosquito vectors, particularly once sex-separation methods are improved. Transgenic and symbiont-based approaches are in development, and more advanced in (particularly Aedes) mosquitoes than in tsetse flies; however, issues around stability, sustainability and biosecurity have to be addressed, especially when considering population replacement approaches. Regulatory issues and those relating to intellectual property and economic cost of application must also be overcome. Standardised methods to assess insect quality are required to compare and predict efficacy of the different approaches. Different combinations of these three approaches could be integrated to maximise their benefits, and all have the potential to be used in tsetse and mosquito area-wide integrated pest management programmes.
Collapse
|
22
|
Hamidou Soumana I, Klopp C, Ravel S, Nabihoudine I, Tchicaya B, Parrinello H, Abate L, Rialle S, Geiger A. RNA-seq de novo Assembly Reveals Differential Gene Expression in Glossina palpalis gambiensis Infected with Trypanosoma brucei gambiense vs. Non-Infected and Self-Cured Flies. Front Microbiol 2015; 6:1259. [PMID: 26617594 PMCID: PMC4643127 DOI: 10.3389/fmicb.2015.01259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/29/2015] [Indexed: 12/24/2022] Open
Abstract
Trypanosoma brucei gambiense (Tbg), causing the sleeping sickness chronic form, completes its developmental cycle within the tsetse fly vector Glossina palpalis gambiensis (Gpg) before its transmission to humans. Within the framework of an anti-vector disease control strategy, a global gene expression profiling of trypanosome infected (susceptible), non-infected, and self-cured (refractory) tsetse flies was performed, on their midguts, to determine differential genes expression resulting from in vivo trypanosomes, tsetse flies (and their microbiome) interactions. An RNAseq de novo assembly was achieved. The assembled transcripts were mapped to reference sequences for functional annotation. Twenty-four percent of the 16,936 contigs could not be annotated, possibly representing untranslated mRNA regions, or Gpg- or Tbg-specific ORFs. The remaining contigs were classified into 65 functional groups. Only a few transposable elements were present in the Gpg midgut transcriptome, which may represent active transpositions and play regulatory roles. One thousand three hundred and seventy three genes differentially expressed (DEGs) between stimulated and non-stimulated flies were identified at day-3 post-feeding; 52 and 1025 between infected and self-cured flies at 10 and 20 days post-feeding, respectively. The possible roles of several DEGs regarding fly susceptibility and refractoriness are discussed. The results provide new means to decipher fly infection mechanisms, crucial to develop anti-vector control strategies.
Collapse
Affiliation(s)
| | - Christophe Klopp
- Institut National de la Recherche Agronomique, GenoToul, UR875 Castanet-Tolosan, France
| | - Sophie Ravel
- UMR 177, Institut de Recherche Pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France
| | | | - Bernadette Tchicaya
- UMR 177, Institut de Recherche Pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France
| | - Hugues Parrinello
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle Montpellier, France ; Institut National de la Santé et de la Recherche Médicale U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR 5203 Montpellier, France ; Montpellier GenomiX, Institut de Génomique Fonctionnelle Montpellier, France
| | - Luc Abate
- UMR MIVEGEC (Institut de Recherche pour le Développement 224-Centre National de la Recherche Scientifique 5290-UM1-UM2), Institut de Recherche pour le Développement Montpellier, France
| | - Stéphanie Rialle
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut de Génomique Fonctionnelle Montpellier, France ; Institut National de la Santé et de la Recherche Médicale U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR 5203 Montpellier, France ; Montpellier GenomiX, Institut de Génomique Fonctionnelle Montpellier, France
| | - Anne Geiger
- UMR 177, Institut de Recherche Pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France
| |
Collapse
|
23
|
Yimer MM, Bula DG, Tesama TK, Tadesse KA, Abera BH. Prevalence of salivary gland hypertrophy syndrome in laboratory colonies and wild flies of Glossina pallidipes in Ethiopia. Onderstepoort J Vet Res 2015; 82:e1-e6. [PMID: 26244680 PMCID: PMC6238694 DOI: 10.4102/ojvr.v82i1.896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
Glossina pallidipes salivary gland hyperplasia (GpSGH) syndrome caused by the salivary gland hyperplasia virus reduces the reproduction potential of tsetse flies, posing a serious threat for rearing of sufficient colonies for use of tsetse and trypanosome control using the sterile insect technique. This research was conducted in the Kaliti Tsetse Mass Rearing and Irradiation Centre in Ethiopia with the objective of studying the prevalence of GpSGH syndrome in laboratory colonies of G. pallidipes (Tororo and Arbaminch) reared for release in the implementation of the sterile insect technique and a field strain of G. pallidipes Arbaminch. Presence or absence of GpSGH was determined when pathological features of the salivary gland were revealed after dissection. The overall prevalence of GpSGH syndrome in laboratory colonies was 48.3% (747/1548) with a statistically significant (z = 17.30, p = 0.001) prevalence of 70.2% (544/775) in Arbaminch colonies and 26.26% (203/773) in Tororo colonies. The prevalence of GpSGH in laboratory flies fed according to the clean blood feeding protocol was 68.9% and 22.4% in Arbaminch and Tororo strains respectively. It was 70.5% and 27.2% respectively in laboratory colonies of Arbaminch and Tororo strains fed according to the standard membrane feeding protocol. The difference in prevalence of the disease between the two feeding protocols was not statistically significant in either Arbaminch (z = 0.361, p = 0.359) or Tororo (z = 1.22, p = 0.111) strains. The prevalence of SGH in wild G. pallidipes Arbaminch strain was 3% (15/500) and was significantly (z = 23.61, p < 0.001) lower than in the laboratory strain. The effect of age and density-related stress on the development of GpSGH was not statistically significant. The prevalence of GpSGH in the newly emerging (teneral) flies in the laboratory colonies was 66.7% and 20% in the Arbaminch and Tororo strains respectively. For all considered risk factors, the prevalence was much higher in G. pallidipes Arbaminch laboratory colonies.
Collapse
|
24
|
Lewis Z, Lizé A. Insect behaviour and the microbiome. CURRENT OPINION IN INSECT SCIENCE 2015; 9:86-90. [PMID: 32846714 DOI: 10.1016/j.cois.2015.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/03/2015] [Accepted: 03/13/2015] [Indexed: 05/10/2023]
Abstract
Increasingly we are coming to understand the role of the microbiome in determining host physiological, behavioural, and evolutionary processes. Indeed it is now widely accepted that the host genome should be considered from a hologenomic point of view, with it also including the genomes of its symbiotic microbiota. Some of the most remarkable phenomena in the insect world relate to behavioural manipulation by the microorganisms associated with a host, and we here review recent progress in the study of these phenomena. The effects of the microbiome on insect hosts have important evolutionary consequences, and we are at the forefront of an exciting time in the study of manipulated insects.
Collapse
Affiliation(s)
- Zenobia Lewis
- Institute of Integrative Biology/School of Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Anne Lizé
- UMR 6553 ECOBIO, University of Rennes 1, 35042 Rennes, France.
| |
Collapse
|
25
|
Geiger A, Hamidou Soumana I, Tchicaya B, Rofidal V, Decourcelle M, Santoni V, Hem S. Differential expression of midgut proteins in Trypanosoma brucei gambiense-stimulated vs. non-stimulated Glossina palpalis gambiensis flies. Front Microbiol 2015; 6:444. [PMID: 26029185 PMCID: PMC4428205 DOI: 10.3389/fmicb.2015.00444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/24/2015] [Indexed: 11/13/2022] Open
Abstract
The unicellular pathogenic protozoan Trypanosoma brucei gambiense is responsible for the chronic form of sleeping sickness. This vector-borne disease is transmitted to humans by the tsetse fly of the group Glossina palpalis, including the subspecies G. p. gambiensis, in which the parasite completes its developmental cycle. Sleeping sickness control strategies can therefore target either the human host or the fly vector. Indeed, suppression of one step in the parasite developmental cycle could abolish parasite transmission to humans, with consequences on the spreading of the disease. In order to develop this type of approach, we have identified, at the proteome level, events resulting from the tripartite interaction between the tsetse fly G. p. gambiensis, its microbiome, and the trypanosome. Proteomes were analyzed from four biological replicates of midguts from flies sampled 3 days post-feeding on either a trypanosome-infected (stimulated flies) or a non-infected (non-stimulated flies) bloodmeal. Over 500 proteins were identified in the midguts of flies from both feeding groups, 13 of which were shown to be differentially expressed in trypanosome-stimulated vs. non-stimulated flies. Functional annotation revealed that several of these proteins have important functions that could be involved in modulating the fly infection process by trypanosomes (and thus fly vector competence), including anti-oxidant and anti-apoptotic, cellular detoxifying, trypanosome agglutination, and immune stimulating or depressive effects. The results show a strong potential for diminishing or even disrupting fly vector competence, and their application holds great promise for improving the control of sleeping sickness.
Collapse
Affiliation(s)
- Anne Geiger
- UMR 177, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France
| | | | - Bernadette Tchicaya
- UMR 177, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/G Montpellier, France
| | - Valérie Rofidal
- Plateforme de Spectrométrie de Masse Protéomique - MSPP, Biochimie et Physiologie Moléculaire des Plantes - UMR 5004 Centre National de la Recherche Scientifique/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier II Montpellier, France
| | - Mathilde Decourcelle
- Plateforme de Spectrométrie de Masse Protéomique - MSPP, Biochimie et Physiologie Moléculaire des Plantes - UMR 5004 Centre National de la Recherche Scientifique/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier II Montpellier, France
| | - Véronique Santoni
- Plateforme de Spectrométrie de Masse Protéomique - MSPP, Biochimie et Physiologie Moléculaire des Plantes - UMR 5004 Centre National de la Recherche Scientifique/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier II Montpellier, France
| | - Sonia Hem
- Plateforme de Spectrométrie de Masse Protéomique - MSPP, Biochimie et Physiologie Moléculaire des Plantes - UMR 5004 Centre National de la Recherche Scientifique/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier II Montpellier, France
| |
Collapse
|
26
|
Zheng ML, Zhang DJ, Damiens DD, Yamada H, Gilles JRL. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae) - I - egg quantification. Parasit Vectors 2015; 8:42. [PMID: 25614052 PMCID: PMC4311487 DOI: 10.1186/s13071-014-0631-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Quantification of eggs prior to rearing the immature stages of mosquitoes is an essential step in establishing a standardized mass rearing system. To develop a simple and accurate method of egg quantification for Aedes aegypti and Aedes albopictus, the relationship between egg number and weight, as well as egg number and volume, were studied. METHODS Known quantities of eggs (1,000, 3,000, 6,000, 12,000, 15,000, 18,000, 21,000 and 27,000) were counted and subsequently their weight and volume were measured. Best-fit curves and regression equations were used to describe relationships between Aedes egg number and both weight and volume. RESULTS Eighteen thousand Ae. aegypti eggs weighed 159.8 mg and had a volume of 277.4 μl, compared to measurements of 131.5 mg and 230.3 μl for Ae. albopictus. The eggs of Ae. aegypti were thus larger and heavier than those of Ae. albopictus. The use of weight and volume to quantify egg number was validated by counting volumes and weights of eggs expected to correspond to 3,000 and 18,000 eggs of each species; significant correlations were found in all cases except in the case of 3,000 Ae. albopictus eggs measured by volume. CONCLUSION Methods for egg quantification were validated and shown to be a consistent and practical means to achieve uniform distribution of Aedes larvae between rearing trays, important for optimal mass rearing of the immature stages of Aedes mosquitoes.
Collapse
Affiliation(s)
- Min-Lin Zheng
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria. .,Beneficial Insects Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China.
| | - Dong-Jing Zhang
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
| | - David D Damiens
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
| | - Jeremie R L Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
| |
Collapse
|
27
|
Proteomic footprints of a member of Glossinavirus (Hytrosaviridae): an expeditious approach to virus control strategies in tsetse factories. J Invertebr Pathol 2012; 112 Suppl:S26-31. [PMID: 22841943 DOI: 10.1016/j.jip.2012.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 11/21/2022]
Abstract
The Glossinavirus (Glossina pallidipes salivary gland hypertrophy virus (GpSGHV)) is a rod-shaped enveloped insect virus containing a 190,032 bp-long, circular dsDNA genome. The virus is pathogenic for the tsetse fly Glossina pallidipes and has been associated with the collapse of selected mass-reared colonies. Maintenance of productive fly colonies is critical to tsetse and trypanosomiasis eradication in sub-Saharan Africa using the Sterile Insect Technique. Proteomics, an approach to define the expressed protein complement of a genome, was used to further our understanding of the protein composition, morphology, morphogenesis and pathology of GpSGHV. Additionally, this approach provides potential targets for novel and sustainable molecular-based antiviral strategies to control viral infections in tsetse colonies. To achieve this goal, identification of key protein partners involved in virus transmission is required. In this review, we integrate the available data on GpSGHV proteomics to assess the impact of viral infections on host metabolism and to understand the contributions of such perturbations to viral pathogenesis. The relevance of the proteome findings to tsetse and trypanosomiasis management in sub-Sahara Africa is also considered.
Collapse
|