1
|
Muhammad A, Sun C, Shao Y. The humoral immune response of the lepidopteran model insect, silkworm Bombyx mori L., to microbial pathogens. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100097. [PMID: 39364346 PMCID: PMC11447326 DOI: 10.1016/j.cris.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Insects are valuable models for studying innate immunity and its role in combating infections. The silkworm Bombyx mori L., a well-studied insect model, is susceptible to a range of pathogens, including bacteria, fungi, viruses, and microsporidia. Their susceptibility makes it a suitable model for investigating host-pathogen interactions and immune responses against infections and diseases. This review focuses on the humoral immune response and the production of antimicrobial peptides (AMPs), the phenoloxidase (PO) system, and other soluble factors that constitute the primary defense of silkworms against microbial pathogens. The innate immune system of silkworms relies on pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs), which then activate various immune pathways including Imd, Toll, JAK/STAT, and RNA interference (RNAi). Their activation triggers the secretion of AMPs, enzymatic defenses (lysozyme and PO), and the generation of reactive oxygen species (ROS). Collectively, these pathways work together to neutralize and eliminate pathogens, thereby contributing to the defense mechanism of silkworms. Understanding the innate immunity of silkworms can uncover conserved molecular pathways and key immune components shared between insects and vertebrates. Additionally, it can provide valuable insights for improving sericulture practices, developing strategies to control diseases affecting silk production, and providing a theoretical foundation for developing pest control measures.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
2
|
Hossain Mollah J, Hatimuria A, Kumar Chauhan V. Transcriptomic analysis of Bombyx mori in its early larval stage (2 nd instar) of development upon Nosema bombycis transovarial infection. J Invertebr Pathol 2024; 206:108157. [PMID: 38908473 DOI: 10.1016/j.jip.2024.108157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The infection caused by Nosema bombycis often known as pebrine, is a devastating sericulture disease. The infection can be transmitted to the next generation through eggs laid by infected female Bombyx mori moths (transovarial) as well as with N. bombycis contaminated food (horizontal). Most diagnoses were carried out in the advanced stages of infection until the time that infection might spread to other healthy insects. Hence, early diagnosis of pebrine is of utmost importance to quarantine infected larvae from uninfected silkworm batches and stop further spread of the infection. The findings of our study provide an insight into how the silkworm larval host defence system was activated against early N. bombycis transovarial infection. The results obtained from transcriptome analysis of infected 2nd instar larvae revealed significant (adjusted P-value < 0.05) expression of 1888 genes of which 801 genes were found to be upregulated and 1087 genes were downregulated when compared with the control. Pathway analysis indicated activation of the immune deficiency (IMD) pathway, which shows a potential immune defence response against pebrine infection as well as suppression of the melanin synthesis pathway due to lower expression of prophenoloxidase activating enzyme (PPAE). Liquid chromatography mass spectrometry (LC-MS/MS) analysis of haemolymph from infected larvae shows the secretion of serpin binding protein of N. bombycis which might be involved in the suppression of the melanization pathway. Moreover, among the differentially expressed genes, we found that LPMC-61, yellow-y, gasp and osiris 9 can be utilised as potential markers for early diagnosis of transovarial pebrine infection in B. mori. Physiological as well as biochemical roles and functions of many of the essential genes are yet to be established, and enlightened research will be required to characterize the products of these genes.
Collapse
Affiliation(s)
- Jahid Hossain Mollah
- Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati, Santiniketan, West Bengal-731235, India
| | - Arindam Hatimuria
- Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati, Santiniketan, West Bengal-731235, India
| | - Vinod Kumar Chauhan
- Department of Zoology, Siksha Bhavana (Institute of Science), Visva-Bharati, Santiniketan, West Bengal-731235, India.
| |
Collapse
|
3
|
Huang Q, Hu W, Meng X, Chen J, Pan G. Nosema bombycis: A remarkable unicellular parasite infecting insects. J Eukaryot Microbiol 2024:e13045. [PMID: 39095558 DOI: 10.1111/jeu.13045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Microsporidia are opportunistic fungal-like pathogens that cause microsporidiosis, which results in significant economic losses and threatens public health. Infection of domesticated silkworms by the microsporidium Nosema bombycis causes pébrine disease, for which this species of microsporidia has received much attention. Research has been conducted extensively on this microsporidium over the past few decades to better understand its infection, transmission, host-parasite interaction, and detection. Several tools exist to study this species including the complete genome sequence of N. bombycis. In addition to the understanding of N. bombycis being important for the silkworm industry, this species has become a model organism for studying microsporidia. Research on biology of N. bombycis will contribute to the development of knowledge regarding microsporidia and potential antimicrosporidia drugs. Furthermore, this will provide insight into the molecular evolution and functioning of other fungal pathogens.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Wanying Hu
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xianzhi Meng
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Sangklai N, Supungul P, Jaroenlak P, Tassanakajon A. Immune signaling of Litopenaeus vannamei c-type lysozyme and its role during microsporidian Enterocytozoon hepatopenaei (EHP) infection. PLoS Pathog 2024; 20:e1012199. [PMID: 38683868 PMCID: PMC11081493 DOI: 10.1371/journal.ppat.1012199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
The microsporidian Enterocytozoon hepatopenaei (EHP) is a fungi-related, spore-forming parasite. EHP infection causes growth retardation and size variation in shrimp, resulting in severe economic losses. Studies on shrimp immune response have shown that several antimicrobial peptides (AMPs) were upregulated upon EHP infection. Among those highly upregulated AMPs is c-type lysozyme (LvLyz-c). However, the immune signaling pathway responsible for LvLyz-c production in shrimp as well as its function against the EHP infection are still poorly understood. Here, we characterized major shrimp immune signaling pathways and found that Toll and JAK/STAT pathways were up-regulated upon EHP infection. Knocking down of a Domeless (DOME) receptor in the JAK/STAT pathways resulted in a significant reduction of the LvLyz-c and the elevation of EHP copy number. We further elucidated the function of LvLyz-c by heterologously expressing a recombinant LvLyz-c (rLvLyz-c) in an Escherichia coli. rLvLyz-c exhibited antibacterial activity against several bacteria such as Bacillus subtilis and Vibrio parahaemolyticus. Interestingly, we found an antifungal activity of rLvLyz-c against Candida albican, which led us to further investigate the effects of rLvLyz-c on EHP spores. Incubation of the EHP spores with rLvLyz-c followed by a chitin staining showed that the signals were dramatically decreased in a dose-dependent manner, suggesting that rLvLyz-c possibly digest a chitin coat on the EHP spores. Transmission electron microscopy analysis revealed that an endospore layer, which is composed mainly of chitin, was digested by rLvLyz-c. Lastly, we observed that EHP spores that were treated with rLvLyz-c showed a significant reduction of the spore germination rate. We hypothesize that thinning of the endospore of EHP would result in altered permeability, hence affecting spore germination. This work provides insights into shrimp immune signaling pathways responsible for LvLyz-c production and its anti-EHP property. This knowledge will serve as important foundations for developing EHP control strategies.
Collapse
Affiliation(s)
- Nutthapon Sangklai
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Pattana Jaroenlak
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Tersigni J, Tamim El Jarkass H, James EB, Reinke AW. Interactions between microsporidia and other members of the microbiome. J Eukaryot Microbiol 2024:e13025. [PMID: 38561869 DOI: 10.1111/jeu.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The microbiome is the collection of microbes that are associated with a host. Microsporidia are intracellular eukaryotic parasites that can infect most types of animals. In the last decade, there has been much progress to define the relationship between microsporidia and the microbiome. In this review, we cover an increasing number of reports suggesting that microsporidia are common components of the microbiome in both invertebrates and vertebrates. These microsporidia infections can range from mutualistic to pathogenic, causing several physiological phenotypes, including death. Infection with microsporidia often causes a disruption in the normal microbiome, with both increases and decreases of bacterial, fungal, viral, and protozoan species being observed. This impact on the microbiome can occur through upregulation and downregulation of innate immunity as well as morphological changes to tissues that impact interactions with these microbes. Other microbes, particularly bacteria, can inhibit microsporidia and have been exploited to control microsporidia infections. These bacteria can function through regulating immunity, secreting anti-microsporidia compounds, and, in engineered versions, expressing double-stranded RNA targeting microsporidia genes. We end this review by discussing potential future directions to further understand the complex interactions between microsporidia and the other members of the microbiome.
Collapse
Affiliation(s)
- Jonathan Tersigni
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Edward B James
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Su Y, Liu M, Li M, Han Z, Lü D, Zhang Y, Zhu F, Shen Z, Qian P, Tang X. Metabolomic analysis of lipid changes in Bombyx mori infected with Nosema bombycis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104750. [PMID: 37329996 DOI: 10.1016/j.dci.2023.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The silkworm (Bombyx mori) is a model species of lepidopteran insect. Microsporidium spp. are obligate intracellular eukaryotic parasites. Infection by the microsporidian Nosema bombycis (Nb) results in an outbreak of Pébrine disease in silkworms and causes substantial losses to the sericulture industry. It has been suggested that Nb depends on nutrients from host cells for spore growth. However, little is known about changes in lipid levels after Nb infection. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was performed to analyze the effect of Nb infection on lipid metabolism in the midgut of silkworms. A total of 1601 individual lipid molecules were detected in the midgut of silkworms, of which 15 were significantly decreased after Nb challenge. Classification, chain length, and chain saturation analysis revealed that these 15 differential lipids can be classified into different lipid subclasses, of which 13 belong to glycerol phospholipid lipids and two belong to glyceride esters. The results indicated that Nb uses the host lipids to complete its own replication, and the acquisition of host lipid subclasses is selective; not all lipid subclasses are required for microsporidium growth or proliferation. Based on lipid metabolism data, phosphatidylcholine (PC) was found to be an important nutrient for Nb replication. Diet supplementation with lecithin substantially promoted the replication of Nb. Knockdown and overexpression of the key enzyme phosphatidate phosphatase (PAP) and phosphatidylcholine (Bbc) for PC synthesis also confirmed that PC is necessary for Nb replication. Our results showed that most lipids in the host midgut decreased when silkworms were infected with Nb. Reduction of or supplementation with PC may be a strategy to suppress or promote microsporidial replication.
Collapse
Affiliation(s)
- Yaping Su
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Mengjin Liu
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Mingze Li
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Zhenghao Han
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Dingding Lü
- Zhenjiang College, Zhenjiang, 212028, Jiangsu Province, China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Feng Zhu
- Zaozhuang University, Zaozhuang, 277160, Shandong Province, China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Ping Qian
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu Province, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu Province, China.
| |
Collapse
|
7
|
Sukonthamarn P, Nanakorn Z, Junprung W, Supungul P, Tassanakajon A. Role of hemocytin from Litopenaeus vannamei in immune response against microsporidian, Enterocytozoon hepatopenaei. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108710. [PMID: 37004896 DOI: 10.1016/j.fsi.2023.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Hemocytin, a multidomain hemostasis-related protein, is a homologous protein of hemolectin in Drosophila melanogaster and von Willebrand factor (vWF) in humans. The vWF type D (VWD) domain in hemocytin is thought to be a major mediator of hemocyte aggregation and the prophenoloxidase (proPO) activation system. Here, we report for the first time the role of hemocytin from Litopenaeus vannamei (LvHCT) against Enterocytozoon hepatopenaei (EHP), the pathogenic microsporidian causing hepatopancreatic microsporidiosis in Pacific white shrimp (L. vannamei). The LvHCT gene contains 58,366 base pairs consisting of 84 exons encoding for 4267 amino acids. Multiple sequence alignment and phylogenetic analysis revealed that LvHCT was clustered with crustacean hemocytins. Gene expression analysis by quantitative real-time RT-PCR showed that LvHCT in hemocytes was significantly upregulated at 9 and 11 days post-EHP cohabitation, which was consistent with EHP copy numbers in the infected shrimp. To further investigate the biological function of LvHCT in EHP infection, a recombinant protein containing an LvHCT-specific VWD domain (rLvVWD) was expressed in Escherichia coli. In vitro agglutination assays showed that rLvVWD was functionally representative of LvHCT and induced aggregation of pathogens, including Gram-negative and -positive bacteria, fungi, and EHP spore. LvHCT suppression resulted in higher EHP copy numbers and proliferation due to the lack of hemocytin-mediated EHP spore aggregation in LvHCT-silenced shrimp. Moreover, immune-related genes in the proPO-activating cascade and Toll, IMD and JAK/STAT signaling pathways were upregulated to eliminate the over-controlled EHP in LvHCT-silenced shrimp. Furthermore, the impaired phenoloxidase activity due to LvLGBP suppression was recovered after rLvVWD injection, suggesting that LvHCT may be directly involved in phenoloxidase activation. In conclusion, a novel LvHCT is involved in shrimp immunity against EHP via EHP spore aggregation and possible activation of the proPO-activating cascade.
Collapse
Affiliation(s)
- Pongsakorn Sukonthamarn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zittipong Nanakorn
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Subash P, Uma A, Ahilan B. Early responses in Penaeus vannamei during experimental infection with Enterocytozoon hepatopenaei (EHP) spores by injection and oral routes. J Invertebr Pathol 2022; 190:107740. [PMID: 35257718 DOI: 10.1016/j.jip.2022.107740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023]
Abstract
Hepatopancreatic microsporidiosis caused by Enterocytozoon hepatopenaei (EHP) is associated with severe production losses in Penaeus vannamei farming. Early responses in P. vannamei experimentally infected with EHP was assessed in this study by feeding infected hepatopancreatic tissue and by injecting purified EHP spores (∼1 × 105 Spores/shrimp). Immune responses to EHP infection were assessed in the haemolymph by analysing the total haemocyte count (THC), superoxide dismutase (SOD) activity, prophenoloxidase activity (proPO), respiratory burst activity (RBA), catalase activity (CAT), lysozyme activity (LYS) and Toll gene expression in hepatopancreas at 0, 6, 12, 24, 36, 48, 60 and 72 h post-infection (hpi). Experimental infection with EHP resulted in a significant (p < 0.05) reduction in the immune parameters such THC, CAT and LYS at 6, 24 and 24 hpi respectively while there was a significant increase (p < 0.05) in the levels of SOD, proPO and RBA at 6 hpi. The expression of the Toll gene was significantly upregulated (p < 0.05) after experimental infection with EHP from 6 hpi. These findings on immune responses in P. vannamei during EHP infection will assist in the development of suitable management measures to reduce the negative impacts of EHP in P. vannamei farming. This is the first report on early responses in P. vannamei during EHP infection.
Collapse
Affiliation(s)
- Palaniappan Subash
- Department of Aquatic Animal Health Management, Dr. M.G.R. Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Ponneri 601204, Tamil Nadu, India
| | - Arumugam Uma
- Department of Aquatic Animal Health Management, Dr. M.G.R. Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Ponneri 601204, Tamil Nadu, India; State Referral Laboratory for Aquatic Animal Health, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Madhavaram Campus, Madhavaram milk colony 600051, Chennai, Tamil Nadu, India.
| | - Baboonsundaram Ahilan
- Department of Aquatic Animal Health Management, Dr. M.G.R. Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Ponneri 601204, Tamil Nadu, India
| |
Collapse
|
9
|
Analysis of Transcriptome Difference between Blood-Fed and Starved Tropical Bed Bug, Cimex hemipterus (F.) (Hemiptera: Cimicidae). INSECTS 2022; 13:insects13040387. [PMID: 35447830 PMCID: PMC9029146 DOI: 10.3390/insects13040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Bed bugs are well known for their extreme resilience to starvation. The molecular mechanisms behind this ability, however, are little known. Thus, the whole transcriptomes of blood-fed and starved bed bugs from the species Cimex hemipterus (tropical bed bugs) were sequenced and compared. The transcriptome of tropical bed bugs was initially annotated. Following differentially expressed genes (DEGs) analysis, regulated transcripts were mostly identified in biological processes during blood-feeding and starvation. The results provide an overview of the functional genes proportion of this species and a deeper understanding of the bed bug’s molecular mechanism of resistance to blood feeding and starvation. Abstract The reference transcriptome for Cimex hemipterus (tropical bed bug) was assembled de novo in this study, and differential expression analysis was conducted between blood-fed and starved tropical bed bug. A total of 24,609 transcripts were assembled, with around 79% of them being annotated against the Eukaryotic Orthologous Groups (KOG) database. The transcriptomic comparison revealed several differentially expressed genes between blood-fed and starved bed bugs, with 38 of them being identifiable. There were 20 and 18 genes significantly upregulated in blood-fed and starved bed bugs, respectively. Differentially expressed genes (DEGs) were revealed to be associated with regulation, metabolism, transport, motility, immune, and stress response; endocytosis; and signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed an enrichment of genes encoding steroid biosynthesis, glycosaminoglycan biosynthesis, butanoate metabolism, and autophagy in both blood-fed and starved bed bugs. However, in blood-fed bed bugs, genes involved in histidine metabolism, caffeine metabolism, ubiquinone/terpenoid-quinone biosynthesis, and sulfur relay system were enriched. On the other hand, starvation activates genes related to nicotinate and nicotinamide metabolism, fatty acid elongation, terpenoid backbone biosynthesis, metabolism of xenobiotics by cytochrome P450, riboflavin metabolism, apoptosis, and protein export. The present study is the first to report a de novo transcriptomic analysis in C. hemipterus and demonstrated differential responses of bed bugs in facing blood-feeding and starvation.
Collapse
|
10
|
Caravello G, Franchet A, Niehus S, Ferrandon D. Phagocytosis Is the Sole Arm of Drosophila melanogaster Known Host Defenses That Provides Some Protection Against Microsporidia Infection. Front Immunol 2022; 13:858360. [PMID: 35493511 PMCID: PMC9043853 DOI: 10.3389/fimmu.2022.858360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microsporidia are obligate intracellular parasites able to infest specifically a large range of species, including insects. The knowledge about the biology of microsporidial infections remains confined to mostly descriptive studies, including molecular approaches such as transcriptomics or proteomics. Thus, functional data to understand insect host defenses are currently lacking. Here, we have undertaken a genetic analysis of known host defenses of the Drosophila melanogaster using an infection model whereby Tubulinosema ratisbonensis spores are directly injected in this insect. We find that phagocytosis does confer some protection in this infection model. In contrast, the systemic immune response, extracellular reactive oxygen species, thioester proteins, xenophagy, and intracellular antiviral response pathways do not appear to be involved in the resistance against this parasite. Unexpectedly, several genes such as PGRP-LE seem to promote this infection. The prophenol oxidases that mediate melanization have different functions; PPO1 presents a phenotype similar to that of PGRP-LE whereas that of PPO2 suggests a function in the resilience to infection. Similarly, eiger and Unpaired3, which encode two cytokines secreted by hemocytes display a resilience phenotype with a strong susceptibility to T. ratisbonensis.
Collapse
Affiliation(s)
| | | | | | - Dominique Ferrandon
- UPR9022, University of Strasbourg, Institut de Biologie Moléculaire et Cellulaire (IBMC), Modèles Insectes D’Immunité Innée (M3I) Unité Propre Recherche (UPR) 9022 du Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| |
Collapse
|
11
|
UDP-Glucosyltransferases Induced by Nosema bombycis Provide Resistance to Microsporidia in Silkworm ( Bombyx mori). INSECTS 2021; 12:insects12090799. [PMID: 34564239 PMCID: PMC8469862 DOI: 10.3390/insects12090799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Nosema bombycis (N. bombycis), an obligate intracellular eukaryotic parasite, is a virulent pathogen of the silkworm, that causes major economic losses. Although many studies have reported on B. mori host response to this pathogen, little is known about which genes are induced by N. bombycis. Our results showed that two B. mori uridine diphosphate-glucosyltransferases (UGTs) (BmUGT10295 and BmUGT8453) could be activated by N. bombycis and provide resistance to the microsporidia in silkworms. These results will contribute to our understanding of host stress reaction to pathogens and the two pathogen-induced resistant genes will provide a target for promoting pathogen resistance. Abstract As a silkworm pathogen, the microsporidian N. bombycis can be transovarially transmitted from parent to offspring and seriously impedes sericulture industry development. Previous studies found that Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are involved in regulating diverse cellular processes, such as detoxification, pigmentation, and odorant sensing. Our results showed that BmUGT10295 and BmUGT8453 genes were specifically induced in infected silkworms, but other BmUGTs were not. Tissue distribution analysis of the two BmUGTs showed that the transcriptions of the two BmUGTs were mainly activated in the midgut and Malpighian tubule of infected silkworms. Furthermore, there were significantly fewer microsporidia in over-expressed BmUGTs compared with the control, but there were significantly more microsporidia in RNA interference BmUGTs compared with the control. These findings indicate that the two BmUGTs were induced by N. bombycis and provided resistance to the microsporidia.
Collapse
|
12
|
Hu N, Dong ZQ, Long JQ, Zheng N, Hu CW, Wu Q, Chen P, Lu C, Pan MH. Transcriptome analysis reveals changes in silkworm energy metabolism during Nosema bombycis infection. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104809. [PMID: 33838710 DOI: 10.1016/j.pestbp.2021.104809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Energy metabolism is important for the proliferation of microsporidia in infected host cells, but there is limited information on the host response. The energy metabolism response of silkworm (Bombyx mori) to microsporidia may help manage Nosema bombycis infections. We analyzed differentially expressed genes in the B.mori midgut transcriptome at two significant time points of microsporidia infection. A total of 1448 genes were up-regulated, while 315 genes were down-regulated. A high proportion of genes were involved in the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, and glycerolipid metabolism at 48 h post infection (h p.i.), and a large number of genes were involved in the TCA cycle and protein processing at 120 h p.i. These results showed that the early stages of microsporidia infection affected the basic metabolism and biosynthesis processes of the silkworm. Knockout of Bm_nscaf2860_46 (Bombyx mori isocitrate dehydrogenase, BmIDH) and Bm_nscaf3027_062 (Bombyx mori hexokinase, BmHXK) reduced the production of ATP and inhibited microsporidia proliferation. Host fatty acid degradation, glycerol metabolism, glycolysis pathway, and TCA cycle response to microsporidia infection were also analyzed, and their importance to microsporidia proliferation was verified. These results increase our understanding of the molecular mechanisms involved in N. bombycis infection and provide new insights for research on microsporidia control. IMPORTANCE: Nosema bombycis can be vertically transmitted in silkworm eggs. The traditional prevention and control strategies for microsporidia are difficult and time-consuming, and this is a problem in silkworm culture. Research has mainly focused on host gene functions related to microsporidia infection and host immune responses after microsporidia infection. Little is known about the metabolic changes occurring in the host after infection. Understanding the metabolic changes in the silkworm host could aid in the recognition of host genes important for microsporidia infection and growth. We analyzed host metabolic changes and the main participating pathways at two time points after microsporidia infection and screened the microsporidia-dependent host energy metabolism genes BmIDH and BmHXK. The results revealed genes that are important for the proliferation of Nosema bombycis. These results illustrate how microsporidia hijack the host genome for their growth and reproduction.
Collapse
Affiliation(s)
- Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China
| | - Jiang-Qiong Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ning Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cong-Wu Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Ministry of Agriculture and Rural Affairs, Chongqing 400716, China.
| |
Collapse
|
13
|
Hua X, Xu W, Ma S, Xia Q. STING-dependent autophagy suppresses Nosema bombycis infection in silkworms, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103862. [PMID: 32916206 DOI: 10.1016/j.dci.2020.103862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Nosema bombycis is a unicellular spore-forming obligate parasite, related to fungi, and causes infections in economically important animals and are opportunistic human pathogens. However, the mechanisms of host response to N. bombycis remain unclear. STING (stimulator of interferon genes) is an adapter protein involved in the innate immune response to pathogens. In this study, a transgenic gRNA vector containing BmSTING was constructed and microinjected to generate the transgenic line BmSTINGΔ6bp/WT and BmSTINGΔ5bp/WT in silkworms. The expression of BmSTING was significantly reduced in BmSTINGΔ5bp/WT compared to non-transgenic silkworm. The mortality and LC3 (microtubule-associated protein 1 light chain 3) level in BmSTINGΔ6bp/WT and BmSTINGΔ5bp/WT was significantly decreased in the early infection stage of N. bombycis, but the transgenic silkworms died rapidly in the later stage. Furthermore, both BmSTING and LC3 were increased in BmE cell lines after infection with N. bombycis. This study highlights the role of STING-dependent pathways response to microsporidia in silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Xiaoting Hua
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Wei Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Immune mechanism in silkworm Bombyx mori L. METHODS IN MICROBIOLOGY 2021. [DOI: 10.1016/bs.mim.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Wang RJ, Chen K, Xing LS, Lin Z, Zou Z, Lu Z. Reactive oxygen species and antimicrobial peptides are sequentially produced in silkworm midgut in response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103720. [PMID: 32344046 DOI: 10.1016/j.dci.2020.103720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
The silkworm, Bombyx mori, is utilized as a research model in many aspects of biological studies, including genetics, development and immunology. Previous biochemical and genomic studies have elucidated the silkworm immunity in response to infections elicited by bacteria, fungi, microsporidia, and viruses. The intestine serves as the front line in the battle between insects and ingested harmful microorganisms. In this study, we performed RNA sequencing (RNA-seq) of the larval silkworm midgut after oral infection with the Gram-positive bacterium Bacillus bombysepticus and the Gram-negative bacterium Yersinia pseudotuberculosis. This enables us to get a comprehensive understanding of the midgut responses to bacterial infection. We found that B. bombysepticus induced much stronger immune responses than Y. pseudotuberculosis did. Bacterial infection resulted in more energy consumption including carbohydrates and fatty acids. The midgut immune system was characterized by the generation of reactive oxygen species and antimicrobial peptides. The former played a critical role in eliminating invading bacteria during early stage, while the latter executed during late stage. Our results provide an integrated insight into the midgut systematic responses to bacterial infection.
Collapse
Affiliation(s)
- Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Long-Sheng Xing
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
16
|
Tang X, Zhang Y, Zhou Y, Liu R, Shen Z. Quantitative proteomic analysis of ovaries from Nosema bombycis-infected silkworm (Bombyx mori). J Invertebr Pathol 2020; 172:107355. [DOI: 10.1016/j.jip.2020.107355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/30/2022]
|
17
|
Yu F, Hao P, Ye C, Feng Y, Pang K, Yu X. NlATG1 Gene Participates in Regulating Autophagy and Fission of Mitochondria in the Brown Planthopper, Nilaparvata lugens. Front Physiol 2020; 10:1622. [PMID: 32082181 PMCID: PMC7004972 DOI: 10.3389/fphys.2019.01622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023] Open
Abstract
Autophagy plays multiple roles in regulating various physiological processes in cells. However, we currently lack a systematic analysis of autophagy and the autophagy-related gene 1 ATG1 in the brown planthopper (BPH, Nilaparvata lugens), one of the most destructive of the insect pests of rice. In this study, the full-length cDNA of an autophagy-related gene, NlATG1, was cloned from BPH. Real-time qPCR (RT-qPCR) revealed that this NlATG1 gene was expressed differently across developmental stages, at higher levels in nymphs but lower levels in adults. RNA interference with dsNlATG1 significantly decreased the mRNA level of the target gene to 14.6% at day 4 compared with that of the dsGFP control group. The survival of the dsNlATG1-treated group decreased significantly from day 4 onward, dropping to 48.3% on day 8. Examination using transmission electron microscopy (TEM) showed that epithelial cells of the BPH’s midgut in the dsNlATG1-treated group had less autophagic vacuoles than did the dsGFP control, and knockdown of NlATG1 clearly inhibited the starvation-induced autophagy response in this insect. RNA interference of NlATG1 upregulated the NlFis1 gene involved in mitochondrial fission, leading to reductions in mitochondrial width and area. Furthermore, knockdown of NlATG1 also decreased the ATP content and accumulation of glycogen. Together, these results demonstrate that the NlATG1 gene participates in regulating autophagy and fission of mitochondria in the brown planthopper, making it a potentially promising target for pest control given its key role in autophagy, including maintaining the normal structure and function of mitochondria.
Collapse
Affiliation(s)
- Feifei Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chenglong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yalin Feng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kun Pang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
18
|
Song Y, Tang Y, Yang Q, Li T, He Z, Wu Y, He Q, Li T, Li C, Long M, Chen J, Wei J, Bao J, Shen Z, Meng X, Pan G, Zhou Z. Proliferation characteristics of the intracellular microsporidian pathogen Nosema bombycis in congenitally infected embryos. J Invertebr Pathol 2019; 169:107310. [PMID: 31862268 DOI: 10.1016/j.jip.2019.107310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/14/2019] [Accepted: 12/14/2019] [Indexed: 12/18/2022]
Abstract
Nosema bombycis is an obligate intracellular pathogen that can be transmitted vertically from infected females to eggs, resulting in congenital infections in embryos. Here we investigated the proliferation characteristics of N. bombycis in silkworm embryos using a histopathological approach and deep RNA sequencing. We found that N. bombycis proliferated mainly around yolk granules at the early stage of the embryonic development, 1-2 days post oviposition (dpo). At 4-6 dpo, a portion of N. bombycis in different stages adjacent to the embryo were packaged into the newly formed intestinal lumen, while the remaining parasites continued to proliferate around yolk granules. In the newly hatched larvae (9 dpo), the newly formed spores accumulated in the gut lumen and immediately were released into the environment via the faeces. Transcriptional profiling of N. bombycis further confirmed multiplication of N. bombycis throughout every stage of embryonic development. Additionally, the increased transcriptional level of spore wall proteins and polar tube proteins from 4 dpo indicated an active formation of mature spores. Taken together, our results have provided a characterization of the proliferation of this intracellular microsporidian pathogen in congenitally infected embryos leading to vertical transmission.
Collapse
Affiliation(s)
- Yue Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Yunlin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Qiong Yang
- Sericulture and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tangxin Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Zhangshuai He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Yujiao Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Zigang Shen
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China.
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
19
|
Li G, Shi M, Zhao S, Long Y, Zhu Y. Toxicity response of silkworm intestine to Bacillus cereus SW7-1 pathogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1282-1290. [PMID: 31539960 DOI: 10.1016/j.scitotenv.2019.07.349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/20/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Bacillus cereus is a foodborne pathogen that causes gastrointestinal disease in hosts. The interactions between pathogenic bacteria and silkworms (Bombyx mori L.) involve complex processes. This study aimed to investigate the potential genetic traits of B. cereus SW7-1 and profile the toxicity response of silkworm intestine upon infection by the SW7-1 pathogen. Bacterial genome sequencing and polymerase chain reaction (PCR) detection indicated that B. cereus SW7-1 possesses multiple antibiotic-resistant genes and nine virulence factor genes. Then, silkworm larvae were infected with SW7-1. Comparative transcriptomic analysis revealed that 273 differentially expressed genes (DEGs) with known functions were successfully annotated to the silkworm reference genome. Specifically, 18 DEGs were up-regulated, and 255 DEGs were down-regulated. Compared with the control group, the treated group revealed down-regulated DEGs that are related to stress reactions, immunity, autophagy and apoptosis, DNA replication, ribosomal stress, and carbohydrate metabolism. Quantitative real time PCR analysis showed that many key genes in the Toll pathway, immune deficiency pathway, Janus kinase/signal transducers and activators of transcription pathway, and melanization reaction were up-regulated. Thus, B. cereus SW7-1 pathogen could damage the silkworm intestine, as confirmed by the histological section assay. In addition, SW7-1 can affect the normal physiological functions of intestinal cells. This study contributes toward an improved understanding of the toxicity response of silkworm to the B. cereus pathogen and provides new insights into the molecular mechanisms of the complex interactions between pathogenic microbes and silkworms.
Collapse
Affiliation(s)
- Guannan Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Min Shi
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Shan Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yaohang Long
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Yong Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Dong Z, Long J, Huang L, Hu Z, Chen P, Hu N, Zheng N, Huang X, Lu C, Pan M. Construction and application of an HSP70 promoter-inducible genome editing system in transgenic silkworm to induce resistance to Nosema bombycis. Appl Microbiol Biotechnol 2019; 103:9583-9592. [DOI: 10.1007/s00253-019-10135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
|
21
|
Nosema bombycis suppresses host hemolymph melanization through secreted serpin 6 inhibiting the prophenoloxidase activation cascade. J Invertebr Pathol 2019; 168:107260. [DOI: 10.1016/j.jip.2019.107260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 01/09/2023]
|
22
|
Liu F, Chen J, Dang X, Meng X, Wang R, Bao J, Long M, Li T, Ma Q, Huang J, Pan G, Zhou Z. Nbseptin2 Expression Pattern and Its Interaction with Nb
PTP
1 during Microsporidia
Nosema bombycis
Polar Tube Extrusion. J Eukaryot Microbiol 2019; 67:45-53. [DOI: 10.1111/jeu.12752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Fangyan Liu
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Xiaoqun Dang
- Laboratory of Animal Biology Chongqing Normal University Chongqing 400047 China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Rong Wang
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Qiang Ma
- Research Laboratory Center Chongqing Three Gorges Medical College Chongqing 404120 China
| | - Jun Huang
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
- Laboratory of Animal Biology Chongqing Normal University Chongqing 400047 China
| |
Collapse
|
23
|
Ning M, Wei P, Shen H, Wan X, Jin M, Li X, Shi H, Qiao Y, Jiang G, Gu W, Wang W, Wang L, Meng Q. Proteomic and metabolomic responses in hepatopancreas of whiteleg shrimp Litopenaeus vannamei infected by microsporidian Enterocytozoon hepatopenaei. FISH & SHELLFISH IMMUNOLOGY 2019; 87:534-545. [PMID: 30721776 DOI: 10.1016/j.fsi.2019.01.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 05/14/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) causes hepatopancreatic microsporidiosis (HPM) in shrimp. HPM is not normally associated with shrimp mortality, but is associated with significant growth retardation. In this study, the responses induced by EHP were investigated in hepatopancreas of shrimp Litopenaeus vannamei using proteomics and metabolomics. Among differential proteins identified, several (e.g., peritrophin-44-like protein, alpha2 macroglobulin isoform 2, prophenoloxidase-activating enzymes, ferritin, Rab11A and cathepsin C) were related to pathogen infection and host immunity. Other proteomic biomarkers (i.e., farnesoic acid o-methyltransferase, juvenile hormone esterase-like carboxylesterase 1 and ecdysteroid-regulated protein) resulted in a growth hormone disorder that prevented the shrimp from molting. Both proteomic KEGG pathway (e.g., "Glycolysis/gluconeogenesis" and "Glyoxylate and dicarboxylate metabolism") and metabolomic KEGG pathway (e.g., "Galactose metabolism" and "Biosynthesis of unsaturated fatty acids") data indicated that energy metabolism pathway was down-regulated in the hepatopancreas when infected by EHP. More importantly, the changes of hormone regulation and energy metabolism could provide much-needed insight into the underlying mechanisms of stunted growth in shrimp after EHP infection. Altogether, this study demonstrated that proteomics and metabolomics could provide an insightful view into the effects of microsporidial infection in the shrimp L. vannamei.
Collapse
Affiliation(s)
- Mingxiao Ning
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Panpan Wei
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Hui Shen
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Xihe Wan
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Mingjian Jin
- Rudong Center for Control and Prevention of Aquatic Animal Infectious Disease, 25# Changjiang Road, Rudong, 226400, China
| | - Xiangqian Li
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hao Shi
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yi Qiao
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Ge Jiang
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Wen Wang
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Li Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
24
|
Zhou Y, Wang Y, Li X, Peprah FA, Wang X, Liu H, Lin F, Gu J, Yu F, Shi H. Applying microarray-based technique to study and analyze silkworm (Bombyx mori) transcriptomic response to long-term high iron diet. Genomics 2018; 111:1504-1513. [PMID: 30391296 DOI: 10.1016/j.ygeno.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
To investigate the biological processes affected by long-term iron supplementation, newly hatched silkworms were exposed to high iron mulberry diet (10 and 100 ppm) and its effect on silkworm transcriptom was determined. The results showed that the silkworm was responsive to iron by increasing iron concentration and ferritin levels in the hemolymph and by regulating the expression of many other genes. A total of 523 and 326 differentially expressed genes were identified in 10 and 100 ppm Fe group compared to the control, respectively. Of these genes, 249 were shared between in both the 10 ppm and 100 ppm Fe group, including 152 up-regulated and 97 down-regulated genes. These shared genes included 19 known Fe regulated, 24 immune-related, 12 serine proteases and serine proteases homologs, 41 cuticular and cuticle genes. Ten genes (carboxypeptidases A, serine protease homologs 85, fibrohexamerin/P25, transferrin, sex-specific storage-protein 2, fungal protease inhibitor F, insect intestinal mucin, peptidoglycan recognition protein B, cuticle protein CPH45, unknown gene) were involved in the regulation of iron overload responses.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Yingying Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Xiaofeng Li
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Xiaochen Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haitao Liu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, PR China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
25
|
Pan G, Bao J, Ma Z, Song Y, Han B, Ran M, Li C, Zhou Z. Invertebrate host responses to microsporidia infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:104-113. [PMID: 29428490 DOI: 10.1016/j.dci.2018.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 05/06/2023]
Abstract
Microsporidia are a group of fungi-like intracellular and unicellular parasites, which infect nearly all animals. As "master parasites", over 1400 microsporidian species have been described to date. Microsporidia infections in economical invertebrates (e.g., silkworm, shrimp) cause huge financial losses, while other microsporidia infections in daphnia, nematode, locust, honeybee and mosquito play important roles in the regulation of their population size. Research investigating invertebrate host responses following microsporidia infections has yielded numerous interesting results, especially pertaining to the innate immune response to these pathogens. In this review, we comparatively summarize the invertebrate host responses to various microsporidia infections. We discuss numerous critical events in host responses including ubiquitin-mediated resistance, production of reactive oxygen species, melanization and innate immune pathways, and the increased basic metabolism and the accumulation of juvenile hormone in infected hosts. Recent studies progressing our understanding of microsporidia infection are also highlighted. Collectively, these advances shed more light on general rules of invertebrate host immune responses and pathogenesis mechanisms of microsporidia, and concurrently offer valuable clues for further research on the crosstalk between hosts and intracellular pathogens.
Collapse
Affiliation(s)
- Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zhengang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yue Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Bing Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, PR China; College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
26
|
Li Z, Pan G, Ma Z, Han B, Sun B, Ni Q, Chen J, Li T, Liu T, Long M, Li C, Zhou Z. Comparative proteomic analysis of differentially expressed proteins in the Bombyx mori fat body during the microsporidia Nosema bombycis infection. J Invertebr Pathol 2017; 149:36-43. [DOI: 10.1016/j.jip.2017.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/02/2023]
|
27
|
Hu J, Zhu W, Li Y, Guan Q, Yan H, Yu J, Fu Z, Lu X, Tian J. SWATH-based quantitative proteomics reveals the mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance in silkworm reared on UV-B treated mulberry leaves. Proteomics 2017; 17. [PMID: 28556443 DOI: 10.1002/pmic.201600383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most acute infectious diseases in silkworm, which has led to great economic loss in sericulture. Previous study showed that the content of secondary metabolites in mulberry leaves, particularly for moracin N, was increased after UV-B irradiation. In this study, the BmNPV resistance of silkworms reared on UV-B treated and moracin N spread mulberry leaves was improved. To uncover the mechanism of enhanced BmNPV resistance, silkworm midguts from UV-B treated mulberry leaves (BUM) and moracin N (BNM) groups were analyzed by SWATH-based proteomic technique. Of note, the abundance of ribosomal proteins in BUM and BNM groups was significantly changed to maintain the synthesis of total protein levels and cell survival. While, cytochrome c oxidase subunit II, calcium ATPase and programmed cell death 4 involved in apoptotic process were up-regulated in BNM group. Expressions of lipase-1, serine protease precursor, Rab1 protein, and histone genes were increased significantly in BNM group. These results suggest that moracin N might be the main active component in UV-B treated mulberry leaves which could improve the BmNPV-resistance of silkworm through promoting apoptotic cell death, enhancing the organism immunity, and regulating the intercellular environment of cells in silkworm. It also presents an innovative process to reduce the mortality rate of silkworms infected with BmNPV.
Collapse
Affiliation(s)
- Jin Hu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Yaohan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Qijie Guan
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Haijian Yan
- Chun'an Country Cocoon & Silk Company, Hangzhou, P. R. China
| | - Jiaojiao Yu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Zhirong Fu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Xingmeng Lu
- College of Animal Science, Zhejiang University, Hangzhou, P. R. China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
28
|
Liu H, Li M, He X, Cai S, He X, Lu X. Transcriptome sequencing and characterization of ungerminated and germinated spores of Nosema bombycis. Acta Biochim Biophys Sin (Shanghai) 2016; 48:246-56. [PMID: 26837419 DOI: 10.1093/abbs/gmv140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/21/2015] [Indexed: 12/23/2022] Open
Abstract
Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori. Germination, an indispensible process through which microsporidia infect the host cells, is regarded as a key developmental turning point for microsporidia from dormant state to reproduction state. Thus, elucidating the transcriptome changes before and after germination is crucial for parasite control. However, the molecular basis of germination of microsporidia remains unknown. To investigate this germination process, the transcriptome of N. bombycis ungerminated spores and germinated spores were sequenced and analyzed. More than 60 million high-quality transcript reads were generated from these two groups using RNA-Seq technology. After assembly, 2756 and 2690 unigenes were identified, respectively, and subsequently annotated based on known proteins. After analysis of differentially expressed genes, 66 genes were identified to be differentially expressed (P ≤ 0.05) between these two groups. A protein phosphatase-associated gene was first identified to be significantly up-regulated as determined by RNA-Seq and immunoblot analysis, indicating that dephosphorylation might potentially contribute to microsporidia germination. The DEGs that encode proteins involved in glycometabolism, spore wall proteins and ricin B lectin of N. bombycis were also analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed genes responsible for some specific biological functions and processes. The datasets generated in this study provide a basic characterization of the transcriptome changes in N. bombycis during germination. The analysis of transcriptome data and identification of certain functional genes which are robust candidate genes related to germination will help to provide a deep understanding of spore germination and invasion.
Collapse
Affiliation(s)
- Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqian Li
- Tongde Hospital of Zhejiang Province, Hangzhou 310058, China
| | - Xinyi He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shunfeng Cai
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangkang He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Li Z, Lu Z, Wang X, Zhang S, Zhang Q, Liu X. Digital gene expression analysis of Helicoverpa armigera in the early stage of infection with Helicoverpa armigera nucleopolyhedrovirus. J Invertebr Pathol 2015; 132:66-76. [PMID: 26296928 DOI: 10.1016/j.jip.2015.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) is an obligatory and lethal parasite of the cotton bollworm and has been extensively used in China for the control of this notorious pest. Digital gene expression (DGE) analysis was adopted for an overall comparison of transcriptome profiling between HearNPV-infected and control healthy Helicoverpa armigera larvae during an early stage post-inoculation. A total of 908 differentially expressed genes (DEGs) were identified, of which 136 were up-regulated and 597 were down-regulated. GO category and KEGG pathway analysis demonstrated that the identified DEGs involved in ribosome biogenesis, aminoacyl-tRNA biosynthesis, protein processing in endoplasmic reticulum, biosynthesis of valine, leucine, isoleucine and the spliceosome were significantly down-regulated, whereas genes involved in pancreatic secretion, protein digestion and absorption and salivary secretion showed obviously up-regulated transcription. The DEGs were verified by quantitative real-time PCR, and genes that participated in defensive response, nutritional digestion and developmental regulation exhibited specific expression patterns in a continuous time-course assessment. These results provide basic data for future research on the molecular mechanism of HearNPV infection and the interactions between lepidopteran hosts and their specific NPV parasites.
Collapse
Affiliation(s)
- Zhen Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhenqiang Lu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiu Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Songdou Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Microsporidia-host interactions. Curr Opin Microbiol 2015; 26:10-6. [PMID: 25847674 DOI: 10.1016/j.mib.2015.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 11/23/2022]
Abstract
Microsporidia comprise one of the largest groups of obligate intracellular pathogens and can infect virtually all animals, but host response to these fungal-related microbes has been poorly understood. Several new studies of the host transcriptional response to microsporidia infection have found infection-induced regulation of genes involved in innate immunity, ubiquitylation, metabolism, and hormonal signaling. In addition, microsporidia have recently been shown to exploit host recycling endocytosis for exit from intestinal cells, and to interact with host degradation pathways. Microsporidia infection has also been shown to profoundly affect behavior in insect hosts. Altogether, these and other recent findings are providing much-needed insight into the underlying mechanisms of microsporidia interaction with host animals.
Collapse
|