1
|
Gignoux-Wolfsohn S, Garcia Ruiz M, Portugal Barron D, Ruiz G, Lohan K. Bivalve microbiomes are shaped by host species, size, parasite infection, and environment. PeerJ 2024; 12:e18082. [PMID: 39399422 PMCID: PMC11468899 DOI: 10.7717/peerj.18082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Many factors affect an organism's microbiome including its environment, proximity to other organisms, and physiological condition. As filter feeders, bivalves have highly plastic microbiomes that are especially influenced by the surrounding seawater, yet they also maintain a unique core set of microbes. Using 16S ribosomal RNA sequencing, we characterized the bacterial microbiomes of four species of bivalves native to the Mid-Atlantic East Coast of North America: Crassostrea virginica, Macoma balthica, Ameritella mitchelli, and Ischadium recurvum and assessed the impact of their external environment, internal parasites, and size on their microbial communities. We found significant differences in bacterial amplicon sequence variants (ASVs) across species, with each species harboring a core ASV present across all individuals. We further found that some C. virginica co-cultured with I. recurvum had high abundances of the I. recurvum core ASV. We identified ASVs associated with infection by the parasites Perkinsus marinus and Zaops ostreum as well others associated with bivalve size. Several of these ASV are candidates for further investigation as potential probiotics, as they were found positively correlated with bivalve size and health. This research represents the first description of the microbiomes of A. mitchelli, I. recurvum, and M. balthica. We document that all four species have highly plastic microbiomes, while maintaining certain core bacteria, with important implications for growth, health, and adaptation to new environments.
Collapse
Affiliation(s)
- Sarah Gignoux-Wolfsohn
- Biological Sciences, University of Massachusetts at Lowell, Lowell, MA, United States
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Monserrat Garcia Ruiz
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Diana Portugal Barron
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer’s Research and Care, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregory Ruiz
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Katrina Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| |
Collapse
|
2
|
Copedo JS, Webb SC, Ragg NLC, Venter L, Alfaro AC. Histopathological investigation of four populations of abalone (Haliotis iris) exhibiting divergent growth performance. J Invertebr Pathol 2024; 202:108042. [PMID: 38103724 DOI: 10.1016/j.jip.2023.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/24/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The black-foot abalone (pāua), Haliotis iris, is a unique and valuable species to New Zealand with cultural importance for Māori. Abalone are marine gastropods that can display a high level of phenotypic variation, including slow-growing or 'stunted' variants. This investigation focused on identifying factors that are associated with growth performance, with particular interest in the slow-growing variants. Tissue alterations in H. iris were examined using histopathological techniques, in relation to growth performance, contrasting populations classified by commercial harvesters as 'stunted' (i.e., slow-growing) and 'non-stunted' (i.e., fast-growing) from four sites around the Chatham Islands (New Zealand). Ten adults and 10 sub-adults were collected from each of the four sites and prepared for histological assessment of condition, tissue alterations, presence of food and presence of parasites. The gut epithelium connective tissue, digestive gland, gill lamellae and right kidney tissues all displayed signs of structural differences between the slow-growing and fast-growing populations. Overall, several factors appear to be correlated to growth performance. The individuals from slow-growing populations were observed to have more degraded macroalgal fragments in the midgut, increased numbers of ceroid granules in multiple tissues, as well as increased prevalence of birefringent mineral crystals and haplosporidian-like parasites in the right kidney. The histopathological approaches presented here complement anecdotal field observations of reduced seaweed availability and increased sand incursion at slow-growing sites, while providing an insight into the health of individual abalone and sub-populations. The approaches described here will ultimately help elucidate the drivers behind variable growth performance which, in turn, supports fisheries management decisions and future surveillance programs.
Collapse
Affiliation(s)
- Joanna S Copedo
- Cawthron Institute, Nelson 7042, New Zealand; Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | | | | | - Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
3
|
Donato G, Lunetta A, Spinelli A, Catanese G, Giacobbe S. Sanctuaries are not inviolable: Haplosporidium pinnae as responsible for the collapse of the Pinna nobilis population in Lake Faro (central Mediterranean). J Invertebr Pathol 2023; 201:108014. [PMID: 37918657 DOI: 10.1016/j.jip.2023.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The rapid spread of the protozoan Haplosporidium pinnae is having a strong negative effect on Pinna nobilis populations. A case study on a residual population in Lake Faro (Sicily, Central Mediterranean), whose long-term monitoring has revealed a dramatic decline following the 2018-2020 mass mortality event, is presented. In the framework of such monitoring, we performed tissue sampling on nine living P. nobilis, detecting the pathogen in seven of them. In contrast, other pathogens associated with P. nobilis disease in other areas, i.e., Mycobacterium spp. and Vibrio mediterranei, were not recorded. The surviving individuals (approximately twenty) showed that brackish areas only weakly mitigate the effects of H. pinnae disease and might not be resolutive. Nevertheless, the results show that Lake Faro may constitute one of the last Mediterranean P. nobilis sanctuaries.
Collapse
Affiliation(s)
- Gemma Donato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Corso Italia, 57, 95129, Catania, Italy
| | - Alessia Lunetta
- Institute for Biological Resources and Marine Biotechnologies, Section of Messina, National Research Council (CNR-IRBIM), Spianata S. Rineri 86, 98122 Messina, Italy.
| | - Andrea Spinelli
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, Oceanogràfic, Ciudad de las Artes y las Ciencias, Carrer d'Eduardo Primo Yúfera, 1, 46013 Valencia, Spain
| | - Gaetano Catanese
- Laboratorio de Investigaciones Marinas y Acuicultura (LIMIA -IRFAP) - Govern de les Illes Balears, Av. Ing. G. Roca, 69. 07157 Port d'Andratx, Balearic Islands, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua - Universidad de las Islas Baleares (INAGEA-UIB), Ctra. De Valldemossa, km 7.5., Palma, Spain
| | - Salvatore Giacobbe
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, ChiBioFarAm, Università Degli Studi di Messina, V.le Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Carella F, Palić D, Šarić T, Župan I, Gorgoglione B, Prado P, Andree KB, Giantsis IA, Michaelidis B, Lattos A, Theodorou JA, Luis Barja Perez J, Rodriguez S, Scarpa F, Casu M, Antuofermo E, Sanna D, Otranto D, Panarese R, Iaria C, Marino F, Vico GD. Multipathogen infections and multifactorial pathogenesis involved in noble pen shell ( Pinna nobilis) mass mortality events: Background and current pathologic approaches. Vet Pathol 2023; 60:560-577. [PMID: 37458195 DOI: 10.1177/03009858231186737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Disease outbreaks in several ecologically or commercially important invertebrate marine species have been reported in recent years all over the world. Mass mortality events (MMEs) have affected the noble pen shell (Pinna nobilis), causing its near extinction. Our knowledge of the dynamics of diseases affecting this species is still unclear. Early studies investigating the causative etiological agent focused on a novel protozoan parasite, Haplosporidium pinnae, although further investigations suggested that concurrent polymicrobial infections could have been pivotal in some MMEs, even in the absence of H. pinnae. Indeed, moribund specimens collected during MMEs in Italy, Greece, and Spain demonstrated the presence of a bacteria from within the Mycobacterium simiae complex and, in some cases, species similar to Vibrio mediterranei. The diagnostic processes used for investigation of MMEs are still not standardized and require the expertise of veterinary and para-veterinary pathologists, who could simultaneously evaluate a variety of factors, from clinical signs to environmental conditions. Here, we review the available literature on mortality events in P. nobilis and discuss approaches to define MMEs in P. nobilis. The proposed consensus approach should form the basis for establishing a foundation for future studies aimed at preserving populations in the wild.
Collapse
Affiliation(s)
| | - Dušan Palić
- Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | - Sergio Rodriguez
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | - Domenico Otranto
- University of Bari, Bari, Italy
- Bu-Ali Sina University, Hamedan, Iran
| | | | | | | | | |
Collapse
|
5
|
Mérou N, Lecadet C, Ubertini M, Pouvreau S, Arzul I. Environmental distribution and seasonal dynamics of Marteilia refringens and Bonamia ostreae, two protozoan parasites of the European flat oyster, Ostrea edulis. Front Cell Infect Microbiol 2023; 13:1154484. [PMID: 37384224 PMCID: PMC10293890 DOI: 10.3389/fcimb.2023.1154484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Marteilia refringens and Bonamia ostreae are protozoan parasites responsible for mortalities of farmed and wild flat oysters Ostrea edulis in Europe since 1968 and 1979, respectively. Despite almost 40 years of research, the life-cycle of these parasites is still poorly known, especially regarding their environmental distribution. Methods We carried out an integrated field study to investigate the dynamics of M. refringens and B. ostreae in Rade of Brest, where both parasites are known to be present. We used real-time PCR to monitor seasonally over four years the presence of both parasites in flat oysters. In addition, we used previously developed eDNA based-approaches to detect parasites in planktonic and benthic compartments for the last two years of the survey. Results M. refringens was detected in flat oysters over the whole sampling period, sometimes with a prevalence exceeding 90%. It was also detected in all the sampled environmental compartments, suggesting their involvement in parasite transmission and overwintering. In contrast, B. ostreae prevalence in flat oysters was low and the parasite was almost never detected in planktonic and benthic compartments. Finally, the analysis of environmental data allowed describing the seasonal dynamics of both parasites in Rade of Brest: M. refringens was more detected in summer and fall than in winter and spring, contrary to B. ostreae which showed higher prevalence in winter and spring. Discussion The present study emphasizes the difference between M. refringens and B. ostreae ecology, the former presenting a wider environmental distribution than the latter, which seems closely associated to flat oysters. Our findings highlight the key role of planktonic and benthic compartments in M. refringens transmission and storage or potential overwintering, respectively. More generally, we provide here a method that could be useful not only to further investigate non cultivable pathogens life-cycle, but also to support the design of more integrated surveillance programs.
Collapse
Affiliation(s)
- Nicolas Mérou
- Adaptation et Santé des Invertébrés Marins (ASIM), Ifremer, La Tremblade, France
- POS3IDON, R&D Department, Saint Malo, France
| | - Cyrielle Lecadet
- Adaptation et Santé des Invertébrés Marins (ASIM), Ifremer, La Tremblade, France
| | | | - Stéphane Pouvreau
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Unité Mixte de Recherche (UMR) 6539 Ifremer/Université de Bretagne Occidentale (UBO)/Institut de Recherche pour le Développement (IRD)/Centre National de la Recherche Scientifique (CNRS), Ifremer, Argenton-en-Landunvez, France
| | - Isabelle Arzul
- Adaptation et Santé des Invertébrés Marins (ASIM), Ifremer, La Tremblade, France
| |
Collapse
|
6
|
Moro-Martínez I, Vázquez-Luis M, García-March JR, Prado P, Mičić M, Catanese G. Haplosporidium pinnae Parasite Detection in Seawater Samples. Microorganisms 2023; 11:1146. [PMID: 37317120 PMCID: PMC10220642 DOI: 10.3390/microorganisms11051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
In this study, we investigated the presence of the parasite Haplosporidium pinnae, which is a pathogen for the bivalve Pinna nobilis, in water samples from different environments. Fifteen mantle samples of P. nobilis infected by H. pinnae were used to characterize the ribosomal unit of this parasite. The obtained sequences were employed to develop a method for eDNA detection of H. pinnae. We collected 56 water samples (from aquaria, open sea and sanctuaries) for testing the methodology. In this work, we developed three different PCRs generating amplicons of different lengths to determine the level of degradation of the DNA, since the status of H. pinnae in water and, therefore, its infectious capacity are unknown. The results showed the ability of the method to detect H. pinnae in sea waters from different areas persistent in the environment but with different degrees of DNA fragmentation. This developed method offers a new tool for preventive analysis for monitoring areas and to better understand the life cycle and the spread of this parasite.
Collapse
Affiliation(s)
- Irene Moro-Martínez
- LIMIA-IRFAP Laboratorio de Investigaciones Marinas y Acuicultura—Govern de les Illes Balears, 07157 Port d’Andratx, Spain;
| | - Maite Vázquez-Luis
- IEO-CSIC, Centro Oceanográfico de Baleares Instituto Español de Oceanografía, 07010 Palma de Mallorca, Spain;
| | - José Rafael García-March
- IMEDMAR-UCV Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, 03710 Calpe, Spain;
| | | | - Milena Mičić
- Aquarium Pula d.o.o., Ulica Verudella 33, 52100 Pula, Croatia;
| | - Gaetano Catanese
- LIMIA-IRFAP Laboratorio de Investigaciones Marinas y Acuicultura—Govern de les Illes Balears, 07157 Port d’Andratx, Spain;
- INAGEA (UIB)-Instituto de Investigaciones Agroambientales y de Economía del Agua, Universidad de las Islas Baleares, Carretera de Valldemossa, km 7.5, 07122 Palma, Spain
| |
Collapse
|
7
|
Quinn EA, Malkin SH, Thomas JE, Rowley AF, Coates CJ. Histopathological survey of putative parasites and pathogens in non-native slipper limpets Crepidula fornicata. DISEASES OF AQUATIC ORGANISMS 2023; 153:69-79. [PMID: 36861899 DOI: 10.3354/dao03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two populations of the invasive slipper limpet Crepidula fornicata were sampled in Swansea Bay and Milford Haven, Wales, UK, to determine the presence of putative pathogens and parasites known to affect co-located commercially important shellfish (e.g. oysters). A multi-resource screen, including molecular and histological diagnoses, was used to assess 1800 individuals over 12 mo for microparasites, notably haplosporidians, microsporidians and paramyxids. Although initial PCR-based methods suggested the presence of these microparasites, there was no evidence of infection when assessed histologically, or when all PCR amplicons (n = 294) were sequenced. Whole tissue histology of 305 individuals revealed turbellarians in the lumen of the alimentary canal, in addition to unusual cells of unknown origin in the epithelial lining. In total, 6% of C. fornicata screened histologically harboured turbellarians, and approximately 33% contained the abnormal cells-so named due to their altered cytoplasm and condensed chromatin. A small number of limpets (~1%) also had pathologies in the digestive gland including tubule necrosis, haemocytic infiltration and sloughed cells in the tubule lumen. Overall, these data suggest that C. fornicata are not susceptible to substantive infections by microparasites outside of their native range, which may contribute in part to their invasion success.
Collapse
Affiliation(s)
- Emma A Quinn
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | | | | | | | | |
Collapse
|
8
|
Piesz JL, Scro AK, Corbett R, Lundgren KM, Smolowitz R, Gomez-Chiarri M. Development of a multiplex qPCR for the quantification of three protozoan parasites of the eastern oyster Crassostrea virginica. DISEASES OF AQUATIC ORGANISMS 2022; 151:111-121. [PMID: 36300764 DOI: 10.3354/dao03694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A multiplex quantitative PCR (qPCR) assay for the simultaneous detection of 3 eastern oyster Crassostrea virginica parasites, Perkinsus marinus, Haplosporidium nelsoni, and H. costale, was developed using 3 different fluorescently labeled hydrolysis probes. The primers and probe from a previously validated singleplex qPCR for P. marinus detection were combined with newly designed primers and probes specific for H. nelsoni and H. costale. The functionality of the multiplex assay was demonstrated on 2 different platforms by the linear relationship of the standard curves and similar cycle threshold (CT) values between parasites. Efficiency of the multiplex qPCR assay on the Roche and BioRad platforms ranged between 93 and 101%. The sensitivity of detection ranged between 10 and 100 copies of plasmid DNA for P. marinus and Haplosporidium spp., respectively. The concordance between the Roche and BioRad platforms in the identification of the parasites P. marinus, H. nelsoni, and H. costale was 91, 97, and 97%, respectively, with a 10-fold increase in the sensitivity of detection of Haplosporidium spp. on the BioRad thermocycler. The concordance between multiplex qPCR and histology for P. marinus, H. nelsoni, and H. costale was 54, 57, and 87%, respectively. Discordances between detection methods were largely related to localized or low levels of infections in oyster tissues, and qPCR was the more sensitive diagnostic. The multiplex qPCR developed here is a sensitive diagnostic tool for the quantification and surveillance of single and mixed infections in the eastern oyster.
Collapse
Affiliation(s)
- Jessica L Piesz
- Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | | | |
Collapse
|
9
|
Arzul I, Garcia C, Chollet B, Serpin D, Lupo C, Noyer M, Tourbiez D, Berland C, Dégremont L, Travers M. First characterization of the parasite Haplosporidium costale in France and development of a real-time PCR assay for its rapid detection in the Pacific oyster, Crassostrea gigas. Transbound Emerg Dis 2022; 69:e2041-e2058. [PMID: 35353448 PMCID: PMC9790386 DOI: 10.1111/tbed.14541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022]
Abstract
The Pacific cupped oyster Crassostrea gigas is one of the most 'globalized' marine invertebrates and its production is predominant in many parts of the world including Europe. However, it is threatened by mortality events associated with pathogenic microorganisms such as the virus OsHV-1 and the bacteria Vibrio aestuarianus. C. gigas is also a host for protozoan parasites including haplosporidians. In contrast with Haplosporidium nelsoni previously detected in Europe, H. costale was considered exotic although its presence in French oysters was suggested in the 1980s based on ultrastructural examination. Here, a combination of light and transmission electron microscopy, PCR and sequencing allowed characterizing the presence of the parasite in the context of low mortality events which occurred in 2019 in France. Histological observation revealed the presence of uninucleated, plasmodial and spore stages within the connective tissues of some oysters. Ultrastructural features were similar to H. costale ones in particular the presence of axe-shaped haplosporosomes in spore cytoplasms. Three fragments of the genome including partial small subunit rRNA gene, the ITS-1, 5.8S and ITS-2 array and part of the actin gene were successfully sequenced and grouped with H. costale homologous sequences. This is the first time that the presence of H. costale was confirmed in C. gigas in France. Furthermore, a TaqMan real-time PCR assay was developed and validated [DSe = 92.6% (78.2-99.8) and DSp = 95.5% (92.3-98.6)] to enable the rapid and specific detection of the parasite. The application of the PCR assay on archived samples revealed that the parasite has been present in French oyster populations at least since 2008. Considering the little information available on this parasite, the newly developed TaqMan assay will be very helpful to investigate the temporal and geographic distribution and the life cycle of the parasite in France and more generally in C. gigas geographic range.
Collapse
Affiliation(s)
- Isabelle Arzul
- IfremerRBE‐ASIMStation de La TrembladeLa TrembladeFrance
| | - Céline Garcia
- IfremerRBE‐ASIMStation de La TrembladeLa TrembladeFrance
| | - Bruno Chollet
- IfremerRBE‐ASIMStation de La TrembladeLa TrembladeFrance
| | | | - Coralie Lupo
- Réseau d'EpidémioSurveillance en Pathologie EquineSaint‐ContestFrance
| | - Mathilde Noyer
- IfremerRBE‐ASIMStation de La TrembladeLa TrembladeFrance
| | | | - Chloé Berland
- IfremerRBE‐ASIMStation de La TrembladeLa TrembladeFrance
| | | | - Marie‐Agnès Travers
- IHPEUniversité de MontpellierCNRSIfremerUniversité de Perpignan via DomitiaMontpellierFrance
| |
Collapse
|
10
|
Chevignon G, Dotto-Maurel A, Serpin D, Chollet B, Arzul I. De Novo Transcriptome Assembly and Analysis of the Flat Oyster Pathogenic Protozoa Bonamia Ostreae. Front Cell Infect Microbiol 2022; 12:921136. [PMID: 35909967 PMCID: PMC9329632 DOI: 10.3389/fcimb.2022.921136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/22/2022] [Indexed: 12/05/2022] Open
Abstract
The flat oyster Ostrea edulis is an oyster species native to Europe. It has declined to functional extinction in many areas of the NE Atlantic for several decades. Factors explaining this decline include over-exploitation of natural populations and diseases like bonamiosis, regulated across both the EU and the wider world and caused by the intracellular protozoan parasite Bonamia ostreae. To date, very limited sequence data are available for this Haplosporidian species. We present here the first transcriptome of B. ostreae. As this protozoan is not yet culturable, it remains extremely challenging to obtain high-quality -omic data. Thanks to a specific parasite isolation protocol and a dedicated bioinformatic pipeline, we were able to obtain a high-quality transcriptome for an intracellular marine micro-eukaryote, which will be very helpful to better understand its biology and to consider the development of new relevant diagnostic tools.
Collapse
|
11
|
Appah JKM, Lynch SA, Lim A, O' Riordan R, O'Reilly L, de Oliveira L, Wheeler AJ. A health survey of the reef forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata in a remote submarine canyon on the European continental margin, NE Atlantic. J Invertebr Pathol 2022; 192:107782. [PMID: 35667398 DOI: 10.1016/j.jip.2022.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Monitoring of cold-water corals (CWCs) for pathogens and diseases is limited due to the environment, protected nature of the corals and their habitat and as well as the challenging and sampling effort required. It is recognised that environmental factors such as temperature and pH can expedite the ability of pathogens to cause diseases in cold-water corals therefore the characterisation of pathogen diversity, prevalence and associated pathologies is essential. The present study combined histology and polymerase chain reaction (PCR) diagnostic techniques to screen for two significant pathogen groups (bacteria of the genus Vibrio and the protozoan Haplosporidia) in the dominant NE Atlantic deep-water framework corals Lophelia pertusa (13 colonies) and Madrepora oculata (2 colonies) at three sampling locations (canyon head, south branch and the flank) in the Porcupine Bank Canyon (PBC), NE Atlantic. One M. oculata colony and four L. pertusa colonies were collected from both the canyon flank and the south branch whilst five L. pertusa colonies were collected from the canyon head. No pathogens were detected in the M. oculata samples. Neither histology nor PCR detected Vibrio spp. in L. pertusa, although Illumina technology used in this study to profile the CWCs microbiome, detected V. shilonii (0.03%) in a single L. pertusa individual, from the canyon head, that had also been screened in this study. A macroborer was observed at a prevalence of 0.07% at the canyon head only. Rickettsiales-like organisms (RLOs) were visualised with an overall prevalence of 40% and with a low intensity of 1 to 4 (RLO) colonies per individual polyp by histology. L. pertusa from the PBC canyon head had an RLO prevalence of 13.3% with the highest detection of 26.7% recorded in the south branch corals. Similarly, unidentified cells observed in L. pertusa from the south branch (20%) were more common than those observed in L. pertusa from the canyon head (6.7%). No RLOs or unidentified cells were observed in corals from the flank. Mean particulate organic matter concentration is highest in the south branch (2,612 μg l-1) followed by the canyon head (1,065 μg l-1) and lowest at the canyon flank (494 μg l-1). Although the route of pathogen entry and the impact of RLO infection on L. pertusa is unclear, particulate availability and the feeding strategies employed by the scleractinian corals may be influencing their exposure to pathogens. The absence of a pathogen in M. oculata may be attributed to the smaller number of colonies screened or the narrower diet in M. oculata compared to the unrestricted diet exhibited in L. pertusa, if ingestion is a route of entry for pathogen groups. The findings of this study also shed some light on how environmental conditions experienced by deep sea organisms and their life strategies may be limiting pathogen diversity and prevalence.
Collapse
Affiliation(s)
- J K M Appah
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - S A Lynch
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - A Lim
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland; Green Rebel Marine, Crosshaven Boatyard, Crosshaven, Co Cork, Ireland
| | - R O' Riordan
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - L O'Reilly
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - L de Oliveira
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - A J Wheeler
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland; Irish Centre for Research in Applied Geosciences / Marine & Renewable Energy Institute (MaREI), University College, Cork
| |
Collapse
|
12
|
Santibáñez P, Romalde J, Fuentes D, Figueras A, Figueroa J. Health Status of Mytilus chilensis from Intensive Culture Areas in Chile Assessed by Molecular, Microbiological, and Histological Analyses. Pathogens 2022; 11:pathogens11050494. [PMID: 35631015 PMCID: PMC9145640 DOI: 10.3390/pathogens11050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Shellfish farming is a relevant economic activity in Chile, where the inner sea in Chiloé island concentrates 99% of the production of the mussel Mytilus chilensis. This area is characterized by the presence of numerous human activities, which could harm the quality of seawater. Additionally, the presence of potentially pathogenic microorganisms can influence the health status of mussels, which must be constantly monitored. To have a clear viewpoint of the health status of M. chilensis and to study its potential as a host species for exotic diseases, microbiological, molecular, and histological analyses were performed. This study was carried out in October 2018, where M. chilensis gut were studied for: presence of food-borne bacteria (Vibrio parahaemolyticus, Escherichia coli, Salmonella spp.), exotic bacteria (“Candidatus Xenohaliotis californiensis”), viruses (abalone and Ostreid herpes virus), and protozoa (Marteilia spp., Perkinsus spp. and Bonamia spp.). Additionally, 18S rDNA metabarcoding and histology analyses were included to have a complete evaluation of the health status of M. chilensis. Overall, despite the presence of risk factors, abnormal mortality rates were not reported during the monitoring period and the histological examination did not reveal significant lesions. Pathogens of mandatory notification to World Organization for Animal Health (OIE) and the Chilean National Fisheries and Aquaculture Service (SERNAPESCA) were not detected, which confirms that M. chilensis have a good health status, highlighting the importance of an integrated vision of different disciplines to ensure the sustainability of this important mussel industry in Chile.
Collapse
Affiliation(s)
- Pablo Santibáñez
- Programa de Doctorado en Ciencias de la Acuicultura, Facultad de Ciencias, Universidad Austral de Chile, Los Pinos s/n, Balneario Pelluco, Puerto Montt 5110566, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Bío-Bío 4030000, Chile;
- Correspondence:
| | - Jesús Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Derie Fuentes
- Bio-Computing and Applied Genetics Division, Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago 8580704, Chile;
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Jaime Figueroa
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Bío-Bío 4030000, Chile;
- Department of Biochemistry and Microbiology, Faculty of Biochemistry, University Austral of Chile, Valdivia, Los Ríos 5091000, Chile
| |
Collapse
|
13
|
Giorgio Tiscar P, Rubino F, Paoletti B, Di Francesco CE, Mosca F, Della Salda L, Hattab J, Smoglica C, Morelli S, Fanelli G. New insights about Haplosporidium pinnae and the pen shell Pinna nobilis mass mortality events. J Invertebr Pathol 2022; 190:107735. [PMID: 35247465 DOI: 10.1016/j.jip.2022.107735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/29/2021] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Since early autumn 2016, Mass Mortality Events (MME) have drastically impacted the population of the fan mussel Pinna nobilis in the Mediterranean Sea. Haplosporidium pinnae, a newly described Haplosporidian species, has been considered the causative agent of the mortality outbreaks in association to opportunistic bacterial pathogens. In the present study, we first reported a cytological description of H. pinnae in moribund specimens of P. nobilis which were collected in the Gulf of Taranto (Ionian Sea, Italy) during summer 2018. Different life-cycle stages of the parasite, including uni- and binucleate cells, small plasmodia, big multinucleate plasmodia and sporocysts with spores, were detected in all the examined animals and most of the parasite cells were present in gills, mantle and digestive gland, while the spores were found only in the latter organ. Histology and molecular biology were also performed, confirming the nature of the infectious agent, as already reported in the area. Additionally, molecular study revealed the presence of the Mycobacterium ulcerans - M. marinum complex but no evident macroscopical or microscopical lesions, just as no bacteria referred to Mycobacterium were observed. In conclusion, the present study aimed to provide further contributions to the understanding of the mortality of P. nobilis, pointing on the role of the cytological method of investigation both for diagnostic and epidemiological purposes, and discussing about the current epidemic situation in the Adriatic sea.
Collapse
Affiliation(s)
| | | | - Barbara Paoletti
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | | | - Francesco Mosca
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Leonardo Della Salda
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Jasmine Hattab
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Camilla Smoglica
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Simone Morelli
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | | |
Collapse
|
14
|
Itoïz S, Metz S, Derelle E, Reñé A, Garcés E, Bass D, Soudant P, Chambouvet A. Emerging Parasitic Protists: The Case of Perkinsea. Front Microbiol 2022; 12:735815. [PMID: 35095782 PMCID: PMC8792838 DOI: 10.3389/fmicb.2021.735815] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The last century has witnessed an increasing rate of new disease emergence across the world leading to permanent loss of biodiversity. Perkinsea is a microeukaryotic parasitic phylum composed of four main lineages of parasitic protists with broad host ranges. Some of them represent major ecological and economical threats because of their geographically invasive ability and pathogenicity (leading to mortality events). In marine environments, three lineages are currently described, the Parviluciferaceae, the Perkinsidae, and the Xcellidae, infecting, respectively, dinoflagellates, mollusks, and fish. In contrast, only one lineage is officially described in freshwater environments: the severe Perkinsea infectious agent infecting frog tadpoles. The advent of high-throughput sequencing methods, mainly based on 18S rRNA assays, showed that Perkinsea is far more diverse than the previously four described lineages especially in freshwater environments. Indeed, some lineages could be parasites of green microalgae, but a formal nature of the interaction needs to be explored. Hence, to date, most of the newly described aquatic clusters are only defined by their environmental sequences and are still not (yet) associated with any host. The unveiling of this microbial black box presents a multitude of research challenges to understand their ecological roles and ultimately to prevent their most negative impacts. This review summarizes the biological and ecological traits of Perkinsea-their diversity, life cycle, host preferences, pathogenicity, and highlights their diversity and ubiquity in association with a wide range of hosts.
Collapse
Affiliation(s)
- Sarah Itoïz
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
| | | | | | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, Barcelona, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta, Barcelona, Spain
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
- Biosciences, University of Exeter, Exeter, United Kingdom
| | | | - Aurélie Chambouvet
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, France
- Sorbonne Université, CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Roscoff, France
| |
Collapse
|
15
|
Albuixech-Martí S, Lynch SA, Culloty SC. Connectivity dynamics in Irish mudflats between microorganisms including Vibrio spp., common cockles Cerastoderma edule, and shorebirds. Sci Rep 2021; 11:22159. [PMID: 34773053 PMCID: PMC8589998 DOI: 10.1038/s41598-021-01610-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Shellfish, including the key species the common cockle Cerastoderma edule, living and feeding in waters contaminated by infectious agents can accumulate them within their tissues. It is unknown if microbial pathogens and microparasites can subsequently be transmitted via concomitant predation to their consumers, including shorebirds. The objective of this study was to assess if pathogens associated with C. edule could be detected seasonally in the faeces of shorebirds that feed on C. edule and in the physical environment (sediment) in which C. edule reside, along the Irish and Celtic Seas. Two potentially pathogenic global groups, Vibrio and Haplosporidia, were detected in C. edule. Although Haplosporidia were not detected in the bird faeces nor in the sediment, identical strains of Vibrio splendidus were detected in C. edule and bird faecal samples at sites where the oystercatcher Haematopus ostralegus and other waders were observed to be feeding on cockles. Vibrio spp. prevalence was seasonal and increased in C. edule and bird faecal samples during the warmer months, possibly due to higher seawater temperatures that promote the replication of this bacteria. The sediment samples showed an overall higher prevalence of Vibrio spp. than the bird faecal and C. edule samples, and its detection remained consistently high through the sites and throughout the seasons, which further supports the role of the sediment as a Vibrio reservoir. Our findings shed light on the fact that not all pathogen groups are transmitted from prey to predator via feeding but bacteria such as V. splendidus can be. As most of the wading birds observed in this study are migratory, the results also indicate the potential for this bacterium to be dispersed over greater geographic distances, which will have consequences for areas where it may be introduced.
Collapse
Affiliation(s)
- Sara Albuixech-Martí
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland.
| | - Sharon A Lynch
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland
- Aquaculture and Fisheries Development Centre, University College Cork, Cork, VGV5+95, Ireland
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, VGV5+95, Ireland
- Aquaculture and Fisheries Development Centre, University College Cork, Cork, VGV5+95, Ireland
- MaREI Centre for Climate, Energy and Marine, Environmental Research Institute, University College Cork, Cork, VGV5+95, Ireland
| |
Collapse
|
16
|
Giménez-Romero À, Grau A, Hendriks IE, Matias MA. Modelling parasite-produced marine diseases: The case of the mass mortality event of Pinna nobilis. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Noble Pen Shell (Pinna nobilis) Mortalities along the Eastern Adriatic Coast with a Study of the Spreading Velocity. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9070764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Noble pen shells (Pinna nobilis) along the Eastern Adriatic coast were affected by mass mortalities similarly to the populations across the Mediterranean basin. Samples of live animals and organs originating from sites on Mljet Island on the south and the Istrian peninsula on the north of the Croatian Adriatic coast were analyzed using histology and molecular techniques to detect the presence of the previously described Haplosporidium pinnae and Mycobacterium spp. as possible causes of these mortalities. To obtain more information on the pattern of the spread of the mortalities, a study was undertaken in Mljet National Park, an area with a dense population of noble pen shells. The results of the diagnostic analysis and the velocity of the spread of the mortalities showed a significant correlation between increases in water temperature and the onset of mortality. Moderate to heavy lesions of the digestive glands were observed in specimens infected with H. pinnae. A phylogenetic analysis of the detected Haplosporidium pinnae showed an identity of 99.7 to 99.8% with isolates from other Mediterranean areas, while isolated Mycobacterium spp. showed a higher heterogeneity among isolates across the Mediterranean. The presence of Mycobacterium spp. in clinically healthy animals a few months before the onset of mortality imposes the need for further clarification of its role in mortality events.
Collapse
|
18
|
Egerton S, Lynch SA, Prado-Alvarez M, Flannery G, Brennan E, Hugh-Jones T, Hugh-Jones D, Culloty SC. A Naïve Population of European Oyster Ostrea edulis with Reduced Susceptibility to the Pathogen Bonamia ostreae: Are S-Strategy Life Traits Providing Protection? Integr Comp Biol 2021; 60:249-260. [PMID: 32533837 DOI: 10.1093/icb/icaa071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
European populations of the native flat oyster, Ostrea edulis, have been heavily depleted by two protozoan parasites, Marteila refringens and Bonamia ostreae, with mortalities of up to 90% reported in naïve populations. However, in studies carried out over a 10-year period, researching the parasite-host relationship of B. ostreae and O. edulis in several age cohorts within a naïve O. edulis population from Loch Ryan (LR), Scotland, 1364 specimens were challenged and only 64 (5%), across multiple testing protocols, screened positive for B. ostreae. This article presents a case for the development of S-strategy life traits in the LR population that coincide with enhanced immune function and survival. Oysters are considered typical r-strategists (small in size with fast development and high fecundity) while S-strategists, as outlined in Grime's (1977) competitor-stress tolerant-ruderal (C-S-R) triangle theory, are characterized by slow growth and investment in the durability of individuals. This study hypothesizes that slower growth and reduced reproductive output in LR oysters has resulted in the investment of an enhanced immune function and reduced susceptibility to B. ostreae that is, r-strategists with S-strategy life traits equates to protection from significant pathogens. The findings presented here within provide a strong case study for local adaptation of energy allocation and provides empirical support for the C-S-R triangle theory in a marine organism.
Collapse
Affiliation(s)
- Sian Egerton
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Sharon A Lynch
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Maria Prado-Alvarez
- Marine Molecular Pathobiology Research Group, Institute of Marine Research, Spanish National Research Council (CSIC), Vigo, Pontevedra, Spain
| | | | - Elaine Brennan
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Tristan Hugh-Jones
- Atlantic Shellfish Ltd, Rossmore, Carrigtwohill, Co. Cork, Ireland.,Loch Ryan Oysters, Loch Ryan, Scotland, UK
| | - David Hugh-Jones
- Atlantic Shellfish Ltd, Rossmore, Carrigtwohill, Co. Cork, Ireland.,Loch Ryan Oysters, Loch Ryan, Scotland, UK
| | - Sarah C Culloty
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,MaREI centre, Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Mérou N, Lecadet C, Pouvreau S, Arzul I. An eDNA/eRNA-based approach to investigate the life cycle of non-cultivable shellfish micro-parasites: the case of Bonamia ostreae, a parasite of the European flat oyster Ostrea edulis. Microb Biotechnol 2020; 13:1807-1818. [PMID: 32608578 PMCID: PMC7533330 DOI: 10.1111/1751-7915.13617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Environmental DNA approaches are increasingly used to detect microorganisms in environmental compartments, including water. They show considerable advantages to study non-cultivable microorganisms like Bonamia ostreae, a protozoan parasite inducing significant mortality in populations of flat oyster Ostrea edulis. Although B. ostreae development within the host has been well described, questions remain about its behaviour in the environment. As B. ostreae transmission is direct, seawater appears as an interesting target to develop early detection tools and improve our understanding of disease transmission mechanisms. In this context, we have developed an eDNA/eRNA approach allowing detecting and quantifying B. ostreae 18S rDNA/rRNA as well as monitoring its presence in seawater by real-time PCR. B. ostreae DNA could be detected up to 4 days while RNA could be detected up to 30 days, suggesting a higher sensitivity of the eRNA-based tool. Additionally, more than 90% of shed parasites were no longer detected after 2 days outside the oysters. By allowing B. ostreae detection in seawater, this approach would not only be useful to monitor the presence of the parasite in oyster production areas but also to evaluate the effect of changing environmental factors on parasite survival and transmission.
Collapse
Affiliation(s)
- Nicolas Mérou
- Laboratoire de Génétique et Pathologie des Mollusques MarinsIfremerSG2M‐LGPMMAvenue de Mus de Loup17390La TrembladeFrance
| | - Cyrielle Lecadet
- Laboratoire de Génétique et Pathologie des Mollusques MarinsIfremerSG2M‐LGPMMAvenue de Mus de Loup17390La TrembladeFrance
| | - Stéphane Pouvreau
- Laboratoire des Sciences de l'Environnement MarinUMR 6539, Ifremer/UBO/IRD/CNRSIfremer11 Presqu'île du Vivier29840Argenton‐en‐LandunvezFrance
| | - Isabelle Arzul
- Laboratoire de Génétique et Pathologie des Mollusques MarinsIfremerSG2M‐LGPMMAvenue de Mus de Loup17390La TrembladeFrance
| |
Collapse
|
20
|
Jørgensen LVG, Nielsen JW, Villadsen MK, Vismann B, Dalvin S, Mathiessen H, Madsen L, Kania PW, Buchmann K. A non-lethal method for detection of Bonamia ostreae in flat oyster (Ostrea edulis) using environmental DNA. Sci Rep 2020; 10:16143. [PMID: 32999302 PMCID: PMC7527985 DOI: 10.1038/s41598-020-72715-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
Surveillance and diagnosis of parasitic Bonamia ostreae infections in flat oysters (Ostrea edulis) are prerequisites for protection and management of wild populations. In addition, reliable and non-lethal detection methods are required for selection of healthy brood oysters in aquaculture productions. Here we present a non-lethal diagnostic technique based on environmental DNA (eDNA) from water samples and demonstrate applications in laboratory trials. Forty oysters originating from Limfjorden, Denmark were kept in 30 ppt sea water in individual tanks. Water was sampled 6 days later, after which all oysters were euthanized and examined for infection, applying PCR. Four oysters (10%) were found to be infected with B. ostreae in gill and mantle tissue. eDNA purified from the water surrounding these oysters contained parasite DNA. A subsequent sampling from the field encompassed 20 oysters and 15 water samples from 5 different locations. Only one oyster turned out positive and all water samples proved negative for B. ostreae eDNA. With this new method B. ostreae may be detected by only sampling water from the environment of isolated oysters or isolated oyster populations. This non-lethal diagnostic eDNA method could have potential for future surveys and oyster breeding programs aiming at producing disease-free oysters.
Collapse
Affiliation(s)
- Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Science, University of Copenhagen, Stigbøjlen 7, 1870, Frederiksberg C, Denmark.
| | | | | | - Bent Vismann
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Sussie Dalvin
- Institute of Marine Research, Nordnesgaten 50, Bergen, Norway
| | - Heidi Mathiessen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Science, University of Copenhagen, Stigbøjlen 7, 1870, Frederiksberg C, Denmark
| | - Lone Madsen
- National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800, Lyngby, Denmark
| | - Per Walter Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Science, University of Copenhagen, Stigbøjlen 7, 1870, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Science, University of Copenhagen, Stigbøjlen 7, 1870, Frederiksberg C, Denmark
| |
Collapse
|
21
|
Hine PM. Haplosporidian host:parasite interactions. FISH & SHELLFISH IMMUNOLOGY 2020; 103:190-199. [PMID: 32437861 DOI: 10.1016/j.fsi.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/06/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
The host:parasite interactions of the 3 serious haplosporidian pathogens of oysters, on which most information exists, are reviewed. They are Bonamia ostreae in Ostrea spp. and Crassostrea gigas; Bonamia exitiosa in Ostrea spp.; and Haplosporidium nelsoni in Crassostrea spp. Understanding the haemocytic response to pathogens is constrained by lack of information on haematopoiesis, haemocyte identity and development. Basal haplospridians in spot prawns are probably facultative parasites. H. nelsoni and a species infecting Haliotis iris in New Zealand (NZAP), which have large extracellular plasmodia that eject haplosporosomes or their contents, lyse surrounding cells and are essentially extracellular parasites. Bonamia spp. have small plasmodia that are phagocytosed, haplosporosomes are not ejected and they are intracellular obligate parasites. Phagocytosis by haemocytes is followed by formation of a parasitophorous vacuole, blocking of haemocyte lysosomal enzymes and the endolysosomal pathway. Reactive oxygen species (ROS) are blocked by antioxidants, and host cell apoptosis may occur. Unlike susceptible O. edulis, the destruction of B. ostreae by C. gigas may be due to higher haemolymph proteins, higher rates of granulocyte binding and phagocytosis, production of ROS, the presence of plasma β-glucosidase, antimicrobial peptides and higher levels of haemolymph and haemocyte enzymes. In B.exitiosa infection of Ostrea chilensis, cytoplasmic lipid bodies (LBs) containing lysosomal enzymes accumulate in host granulocytes and in B. exitiosa following phagocytosis. Their genesis and role in innate immunity and inflammation appears to be the same as in vertebrate granulocytes and macrophages, and other invertebrates. If so, they are probably the site of eicosanoid synthesis from arachidonic acid, and elevated numbers of LBs are probably indicative of haemocyte activation. It is probable that the molecular interaction, and role of LBs in the synthesis and storage of eicosanoids from arachidonic acid, is conserved in innate immunity in vertebrates and invertebrates. However, it seems likely that haplosporidians are more diverse than realized, and that there are many variations in host parasite interactions and life cycles.
Collapse
Affiliation(s)
- P M Hine
- 73, rue de la Fée au Bois, 17450, Fouras, France.
| |
Collapse
|
22
|
Lassudrie M, Hégaret H, Wikfors GH, da Silva PM. Effects of marine harmful algal blooms on bivalve cellular immunity and infectious diseases: A review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103660. [PMID: 32145294 DOI: 10.1016/j.dci.2020.103660] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Bivalves were long thought to be "symptomless carriers" of marine microalgal toxins to human seafood consumers. In the past three decades, science has come to recognize that harmful algae and their toxins can be harmful to grazers, including bivalves. Indeed, studies have shown conclusively that some microalgal toxins function as active grazing deterrents. When responding to marine Harmful Algal Bloom (HAB) events, bivalves can reject toxic cells to minimize toxin and bioactive extracellular compound (BEC) exposure, or ingest and digest cells, incorporating nutritional components and toxins. Several studies have reported modulation of bivalve hemocyte variables in response to HAB exposure. Hemocytes are specialized cells involved in many functions in bivalves, particularly in immunological defense mechanisms. Hemocytes protect tissues by engulfing or encapsulating living pathogens and repair tissue damage caused by injury, poisoning, and infections through inflammatory processes. The effects of HAB exposure observed on bivalve cellular immune variables have raised the question of possible effects on susceptibility to infectious disease. As science has described a previously unrecognized diversity in microalgal bioactive substances, and also found a growing list of infectious diseases in bivalves, episodic reports of interactions between harmful algae and disease in bivalves have been published. Only recently, studies directed to understand the physiological and metabolic bases of these interactions have been undertaken. This review compiles evidence from studies of harmful algal effects upon bivalve shellfish that establishes a framework for recent efforts to understand how harmful algae can alter infectious disease, and particularly the fundamental role of cellular immunity, in modulating these interactions. Experimental studies reviewed here indicate that HABs can modulate bivalve-pathogen interactions in various ways, either by increasing bivalve susceptibility to disease or conversely by lessening infection proliferation or transmission. Alteration of immune defense and global physiological distress caused by HAB exposure have been the most frequent reasons identified for these effects on disease. Only few studies, however, have addressed these effects so far and a general pattern cannot be established. Other mechanisms are likely involved but are under-studied thus far and will need more attention in the future. In particular, the inhibition of bivalve filtration by HABs and direct interaction between HABs and infectious agents in the seawater likely interfere with pathogen transmission. The study of these interactions in the field and at the population level also are needed to establish the ecological and economical significance of the effects of HABs upon bivalve diseases. A more thorough understanding of these interactions will assist in development of more effective management of bivalve shellfisheries and aquaculture in oceans subjected to increasing HAB and disease pressures.
Collapse
Affiliation(s)
| | - Hélène Hégaret
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Gary H Wikfors
- NOAA Fisheries Service, Northeast Fisheries Science Center, Milford, CT, 0640, USA
| | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates, Department of Molecular Biology, Federal University of Paraíba (UFPB), Paraíba, Brazil
| |
Collapse
|
23
|
Diagnosis and prevalence of two new species of haplosporidians infecting shore crabs Carcinus maenas: Haplosporidium carcini n. sp., and H. cranc n. sp. Parasitology 2020; 147:1229-1237. [PMID: 32539882 PMCID: PMC7443749 DOI: 10.1017/s0031182020000980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study provides a morphological and phylogenetic characterization of two novel species of the order Haplosporida (Haplosporidium carcini n. sp., and H. cranc n. sp.) infecting the common shore crab Carcinus maenas collected at one location in Swansea Bay, South Wales, UK. Both parasites were observed in the haemolymph, gills and hepatopancreas. The prevalence of clinical infections (i.e. parasites seen directly in fresh haemolymph preparations) was low, at ~1%, whereas subclinical levels, detected by polymerase chain reaction, were slightly higher at ~2%. Although no spores were found in any of the infected crabs examined histologically (n = 334), the morphology of monokaryotic and dikaryotic unicellular stages of the parasites enabled differentiation between the two new species. Phylogenetic analyses of the new species based on the small subunit (SSU) rDNA gene placed H. cranc in a clade of otherwise uncharacterized environmental sequences from marine samples, and H. carcini in a clade with other crustacean-associated lineages.
Collapse
|
24
|
Albuixech-Martí S, Lynch SA, Culloty SC. Biotic and abiotic factors influencing haplosporidian species distribution in the cockle Cerastoderma edule in Ireland. J Invertebr Pathol 2020; 174:107425. [PMID: 32553639 DOI: 10.1016/j.jip.2020.107425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023]
Abstract
The Phylum Haplosporidia consists of four genera (Minchinia, Haplosporidium, Urosporidium and Bonamia) that are endoparasitic protists of a wide range of marine invertebrates including commercial bivalve species. Characterization of haplosporidian species remains a challenge due to their patchy spatial and temporal distributions, host-restricted occurrence, and poorly known life cycles. However, they are commonly associated with significant mortality events in bivalves. Due to the recent sporadic mortality events that have occurred in cockles in Europe, the objectives of this study were to determine the diversity, distribution and seasonality of haplosporidian species in Cerastoderma edule populations at several Irish sites. The role of abiotic (temperature, salinity and dissolved oxygen in water) and biotic (cockle size and age) factors as drivers or inhibitors of haplosporidian infection were also assessed. Cockles (n = 998) from the intertidal were sampled from April/July 2018 to April 2019 at three sites with no commercial fishing activity on the south coast (Celtic Sea) and one site on the northeast coast (Irish Sea) with an active commercial fishery. Screening of the cockles by molecular techniques (PCR, Sanger sequencing) and by histopathology was carried out. Two species were identified and confirmed in Irish C. edule for the first time, Minchinia mercenariae -like (14.8%) and Minchinia tapetis (29.6%). Similar to other haplosporidian parasites, the Minchinia spp. detected in our study were present year-round at all sites, except for M. tapetis in Youghal Bay (Celtic Sea). Coinfection of both Minchinia species was only observed in Cork Harbour (Celtic Sea) and Dundalk Bay (Irish Sea), where Minchinia spp. showed a higher presence compared to Youghal Bay and Dungarvan Harbour (Celtic Sea). Moreover, haplosporidians detected with generic primers, were present at all of the sample sites throughout the year but had a higher occurrence during the winter months and were positively correlated with dissolved oxygen. Likewise, smaller and older C.edule seemed to be more vulnerable to the haplosporidian infection. Furthermore, haplosporidian distribution displayed spatial variability between and within sample sites, with the highest presence being observed in cockles at one of the commercially fished Dundalk beds, while the lowest presence was observed in cockles at the second Dundalk bed that was more influenced by freshwater runoff when the tide was out. Findings from this study provide additional information on the distribution and seasonal presence of novel haplosporidian species and their potential abiotic and biotic drivers/inhibitors of infection.
Collapse
Affiliation(s)
- S Albuixech-Martí
- School of Biological, Earth & Environmental Sciences, Environmental Research Institute, University College Cork, The Cooperage, Distillery Fields, North Mall, Cork, Ireland.
| | - S A Lynch
- School of Biological, Earth & Environmental Sciences, Environmental Research Institute, University College Cork, The Cooperage, Distillery Fields, North Mall, Cork, Ireland; Aquaculture & Fisheries Development Centre, Environmental Research Institute, and University College Cork, The Cooperage, Distillery Fields, North Mall, Cork, Ireland
| | - S C Culloty
- School of Biological, Earth & Environmental Sciences, Environmental Research Institute, University College Cork, The Cooperage, Distillery Fields, North Mall, Cork, Ireland; Aquaculture & Fisheries Development Centre, Environmental Research Institute, and University College Cork, The Cooperage, Distillery Fields, North Mall, Cork, Ireland; MaREI Centre for Marine and Renewable Energy, Environmental Research Institute, University College Cork, The Cooperage, Distillery Fields, North Mall, Cork, Ireland
| |
Collapse
|
25
|
Carballal MJ, Cao A, Iglesias D, González AI, Villalba A. Temporal dynamics of infection of cockles Cerastoderma edule with the protistan parasite Minchinia tapetis (Rhizaria: Haplosporida) in Galicia (NW Spain). J Invertebr Pathol 2020; 172:107349. [PMID: 32119954 DOI: 10.1016/j.jip.2020.107349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
Uninucleate and binucleate cells and multinucleate plasmodia of a haplosporidan-like protist associated with heavy haemocytic infiltration were observed in histological sections of cockles, Cerastoderma edule, from the Ría de Noia (Galicia, NW Spain) in the course of a cockle health surveillance programme. Molecular assays provided identification of this protist as Minchinia tapetis, which we thus record from a new host. Prevalence of M. tapetis as high as 93% was recorded but infection intensity was low to moderate, never heavy, and abnormally high cockle mortality was not observed in the ria by shellfishers. A significant positive correlation was found between M. tapetis prevalence and sea water temperature. Sea water temperature increase associated with climate change might contribute to increase the prevalence of this infection in cockles and, as a consequence, this parasite may be considered a threat for cockle production.
Collapse
Affiliation(s)
- María J Carballal
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | - David Iglesias
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | - Ana I González
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain; Departament of Life Sciences, University of Alcalá, 28871 Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620 Plentzia, Basque Country, Spain.
| |
Collapse
|
26
|
Lattos A, Giantsis IA, Karagiannis D, Michaelidis B. First detection of the invasive Haplosporidian and Mycobacteria parasites hosting the endangered bivalve Pinna nobilis in Thermaikos Gulf, North Greece. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104889. [PMID: 32072991 DOI: 10.1016/j.marenvres.2020.104889] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Mycobacterium sp. and Haplosporidium pinnae constitute invasive parasite species of bivalves, reported for the first time in the present study in the Aegean Sea and Thermaikos Gulf, respectively. During the last years, the endangered fan mussel (Pinna nobilis) experienced several mortality events in the Mediterranean Sea that caused deaths to 90% or more of their populations and have been attributed to infections by these pathogens. In Greece, two mass mortality events have been recently reported, namely in the Gulf of Kalloni and in Limnos island. In the present study we investigated the presence of both pathogens in P. nobilis from these marine areas as well as from Thermaikos Gulf using both histopathological microscopy and molecular markers. The detected parasite DNA was further quantified in the three populations utilizing a real time qPCR. Histopathological results indicated the presence of a Mycobacterium species alongside with the existence of the Haplosporidian parasite, which was identified in all mortality events in the Mediterranean Sea. The parasite was present in different phases mostly on the digestive gland epithelium. Phylogenetic analysis confirmed the taxonomy of the Haplosporidian parasite as the recently described Haplosporidium pinnae, whereas it failed to identify the Mycobacteria parasite at species level. While Mycobacterium sp. was detected in all examined specimens, H. pinnae was not detected in all diseased fan mussels. Interestingly, monitoring of P. nobilis population from Thermaikos Gulf, an estuary of extremely high importance for bivalve production, revealed the presence of both pathogens in a few specimens in higher quantity but with no symptoms of the disease. Besides, all the specimens from Thermaikos Gulf had inflammatory responses similarly to moribund specimens from mortality events.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece.
| | - Dimitrios Karagiannis
- National Reference Laboratory for Mollusc Diseases, Ministry of Rural Development and Food, 7 Frixou street, 54627, Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
27
|
Buss JJ, Wiltshire KH, Harris JO, Tanner JE, Deveney MR. Infection dynamics of Bonamia exitiosa on intertidal Ostrea angasi farms. JOURNAL OF FISH DISEASES 2020; 43:359-369. [PMID: 31918456 DOI: 10.1111/jfd.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Bonamia spp. cause epizootics in oysters worldwide. In southern Australia, Bonamia exitiosa Hine, Cochennac and Berthe, 2001 threatens aquaculture of Ostrea angasi Sowerby, 1871. Bonamia spp. infections can display strong seasonality, but seasonal dynamics of B. exitiosa-O. angasi are unknown. Ostrea angasi naïve to B. exitiosa infection were stocked onto farms in three growing regions, and B. exitiosa was monitored seasonally for one year. Environmental parameters we measured did not correlate with B. exitiosa prevalence or infection intensities. Extreme temperatures suggest O. angasi culture systems need development. Bonamia exitiosa prevalence increased over time. After three months, O. angasi had B. exitiosa prevalence of 0.08-0.4, and after one year, the prevalence was 0.57-0.88. At some sites, O. angasi had >0.5 B. exitiosa prevalence in >6 months, but at other sites, >9 months passed before prevalence was >0.5. Bonamia exitiosa infection intensities were low with no seasonal pattern but were affected by the interaction of site, season and oyster meat:shell ratio. Understanding infection and initiating a breeding programme for resistance would provide benefits for O. angasi industry expansion.
Collapse
Affiliation(s)
- Jessica Jamuna Buss
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI), Aquatic Sciences Centre and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - Kathryn Helen Wiltshire
- South Australian Research and Development Institute (SARDI), Aquatic Sciences Centre and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - James Owen Harris
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI), Aquatic Sciences Centre and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - Jason Elliot Tanner
- South Australian Research and Development Institute (SARDI), Aquatic Sciences Centre and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - Marty Robert Deveney
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI), Aquatic Sciences Centre and Marine Innovation Southern Australia, West Beach, SA, Australia
| |
Collapse
|
28
|
Buss JJ, Harris JO, Elliot Tanner J, Helen Wiltshire K, Deveney MR. Rapid transmission of Bonamia exitiosa by cohabitation causes mortality in Ostrea angasi. JOURNAL OF FISH DISEASES 2020; 43:227-237. [PMID: 31755142 DOI: 10.1111/jfd.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The haplosporidian Bonamia was first detected in Australian shellfish in 1991. Australian isolates in Ostrea angasi Sowerby, 1871 were identified as Bonamia exitiosa Hine, Cochennac and Berthe, 2001, which threatens development of an O. angasi aquaculture industry. European field data suggest that Bonamia ostreae Pichot, Comps, Tigé, Grizel and Rabouin, 1980 infections in Ostrea edulis Linnaeus, 1758 build slowly, but infection dynamics of B. exitiosa in O. angasi are unknown. We investigated B. exitiosa infection in O. angasi by cohabiting uninfected juvenile O. angasi with adults infected with B. exitiosa. Oysters were sampled at 10, 21 and 40 days after cohabitation, and B. exitiosa prevalence and intensity were assessed. Bonamia exitiosa rapidly infected and caused disease in O. angasi. Mortalities began at 12 days, with ˜50% mortality by day 21 and >85% mortality by day 40. Mortalities displayed pathology consistent with clinical B. exitiosa infection. Time to first infection is likely influenced by a combination of parasite infectivity, host exposure and host immune capacity. Host death is not required for transmission, but probably facilitates release of parasites from decaying tissue. Understanding B. exitiosa transmission informs design and interpretation of field studies and aids development of management strategies for oyster aquaculture.
Collapse
Affiliation(s)
- Jessica Jamuna Buss
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI) Aquatic Sciences and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - James Owen Harris
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI) Aquatic Sciences and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - Jason Elliot Tanner
- South Australian Research and Development Institute (SARDI) Aquatic Sciences and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - Kathryn Helen Wiltshire
- South Australian Research and Development Institute (SARDI) Aquatic Sciences and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - Marty Robert Deveney
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI) Aquatic Sciences and Marine Innovation Southern Australia, West Beach, SA, Australia
| |
Collapse
|
29
|
Is pallial mucus involved in Ostrea edulis defenses against the parasite Bonamia ostreae? J Invertebr Pathol 2019; 169:107259. [PMID: 31805287 DOI: 10.1016/j.jip.2019.107259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 02/04/2023]
Abstract
Bonamia ostreae is an intrahemocytic parasite that has been responsible for severe mortalities in the flat oyster Ostrea edulis since the 1970́s. The Pacific oyster Crassostrea gigas is considered to be resistant to the disease and appears to have mechanisms to avoid infection. Most studies carried out on the invertebrate immune system focus on the role of hemolymph, although mucus, which covers the body surface of molluscs, could also act as a barrier against pathogens. In this study, the in vitro effect of mucus from the oyster species Ostrea edulis and C. gigas on B. ostreae was investigated using flow cytometry. Results showed an increase in esterase activities and mortality rate of parasites exposed to mucus from both oyster species. In order to better understand the potential role of mucus in the defense of the oyster against parasites such as B. ostreae, liquid chromatography and tandem mass spectrometry were used to describe and compare mucus protein composition from both species. In all oyster species, pallial mucus contains a high level of proteins; however, O. edulis mucus produced a variety of proteins that could be involved in the immune response against the parasite, including Cu/Zn extracellular superoxide dismutase, thioxiredoxin, peroxiredon VI, heat shock protein 90 as well as several hydrolases. Conversely, a different set of antioxidant proteins, hydrolases and stress related proteins were identified in mucus from C. gigas. Our results suggest an innate immunity adaptation of oysters to develop a specific response against their respective pathogens. The mucosal protein composition also provides new insights for further investigations into the immune response in oysters.
Collapse
|
30
|
Detection of haplosporidian protistan parasites supports an increase to their known diversity, geographic range and bivalve host specificity. Parasitology 2019; 147:584-592. [PMID: 31727189 PMCID: PMC7174706 DOI: 10.1017/s0031182019001628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Haplosporidian protist parasites are a major concern for aquatic animal health, as they have been responsible for some of the most significant marine epizootics on record. Despite their impact on food security, aquaculture and ecosystem health, characterizing haplosporidian diversity, distributions and host range remains challenging. In this study, water filtering bivalve species, cockles Cerastoderma edule, mussels Mytilus spp. and Pacific oysters Crassostrea gigas, were screened using molecular genetic assays using deoxyribonucleic acid (DNA) markers for the Haplosporidia small subunit ribosomal deoxyribonucleic acid region. Two Haplosporidia species, both belonging to the Minchinia clade, were detected in C. edule and in the blue mussel Mytilus edulis in a new geographic range for the first time. No haplosporidians were detected in the C. gigas, Mediterranean mussel Mytilus galloprovincialis or Mytilus hybrids. These findings indicate that host selection and partitioning are occurring amongst cohabiting bivalve species. The detection of these Haplosporidia spp. raises questions as to whether they were always present, were introduced unintentionally via aquaculture and or shipping or were naturally introduced via water currents. These findings support an increase in the known diversity of a significant parasite group and highlight that parasite species may be present in marine environments but remain undetected, even in well-studied host species.
Collapse
|
31
|
Cabanellas-Reboredo M, Vázquez-Luis M, Mourre B, Álvarez E, Deudero S, Amores Á, Addis P, Ballesteros E, Barrajón A, Coppa S, García-March JR, Giacobbe S, Casalduero FG, Hadjioannou L, Jiménez-Gutiérrez SV, Katsanevakis S, Kersting D, Mačić V, Mavrič B, Patti FP, Planes S, Prado P, Sánchez J, Tena-Medialdea J, de Vaugelas J, Vicente N, Belkhamssa FZ, Zupan I, Hendriks IE. Tracking a mass mortality outbreak of pen shell Pinna nobilis populations: A collaborative effort of scientists and citizens. Sci Rep 2019; 9:13355. [PMID: 31527825 PMCID: PMC6746856 DOI: 10.1038/s41598-019-49808-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 08/16/2019] [Indexed: 11/23/2022] Open
Abstract
A mass mortality event is devastating the populations of the endemic bivalve Pinna nobilis in the Mediterranean Sea from early autumn 2016. A newly described Haplosporidian endoparasite (Haplosporidium pinnae) is the most probable cause of this ecological catastrophe placing one of the largest bivalves of the world on the brink of extinction. As a pivotal step towards Pinna nobilis conservation, this contribution combines scientists and citizens' data to address the fast- and vast-dispersion and prevalence outbreaks of the pathogen. Therefore, the potential role of currents on parasite expansion was addressed by means of drift simulations of virtual particles in a high-resolution regional currents model. A generalized additive model was implemented to test if environmental factors could modulate the infection of Pinna nobilis populations. The results strongly suggest that the parasite has probably dispersed regionally by surface currents, and that the disease expression seems to be closely related to temperatures above 13.5 °C and to a salinity range between 36.5-39.7 psu. The most likely spread of the disease along the Mediterranean basin associated with scattered survival spots and very few survivors (potentially resistant individuals), point to a challenging scenario for conservation of the emblematic Pinna nobilis, which will require fast and strategic management measures and should make use of the essential role citizen science projects can play.
Collapse
Affiliation(s)
- Miguel Cabanellas-Reboredo
- Oceanography and Global Change Department, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Mallorca, Spain
| | - Maite Vázquez-Luis
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Baptiste Mourre
- Balearic Islands Coastal Observing and Forecasting System (SOCIB), Palma, Spain
| | - Elvira Álvarez
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Salud Deudero
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Ángel Amores
- Oceanography and Global Change Department, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Mallorca, Spain
| | - Piero Addis
- University of Cagliari, Department of Environmental and Life Science, Via Fiorelli 1, 09126, Cagliari, Italy
| | - Enric Ballesteros
- Centre d'Estudis Avançats de Blanes-CSIC, 17300, Blanes, Girona, Spain
| | - Agustín Barrajón
- Agencia de Medio Ambiente y Agua, Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía, Spain
| | - Stefania Coppa
- Consiglio Nazionale delle Ricerche-Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (CNR - IAS), Oristano, Italy
| | - José Rafael García-March
- IMEDMAR-UCV, Institute of Environment and Marine Science Research, Universidad Católica de Valencia SVM, Calpe, Alicante, Spain
| | - Salvatore Giacobbe
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d'Alcontres 31, 98166, Messina, Italy
| | | | - Louis Hadjioannou
- Enalia Physis Environmental Research Centre, Acropoleos 2, 2101, Aglantzia, Nicosia, Cyprus
| | | | | | - Diego Kersting
- Working Group on Geobiology and Anthropocene Research, Institute of Geological Sciences, Freie Universität Berlin, 12249, Berlin, Germany
| | - Vesna Mačić
- Institute of marine biology, University of Montenegro, Kotor, Montenegro
| | - Borut Mavrič
- National Institute of Biology, Marine Biology Station, Piran, Slovenia
| | - Francesco Paolo Patti
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
- Laboratoire d'Excellence CORAIL, BP 1013, 98729, Papetoai, Moorea, French Polynesia
| | - Patricia Prado
- IRTA-Marine and Continental Waters. Ctra. Poble Nou Km 5.5, 43540, Sant Carles de la Ràpita Tarragona, Spain
| | - Jordi Sánchez
- SUBMON: Divulgació, Estudi i Conservació de l'Entorn Natural, Barcelona, Spain
| | - José Tena-Medialdea
- IMEDMAR-UCV, Institute of Environment and Marine Science Research, Universidad Católica de Valencia SVM, Calpe, Alicante, Spain
| | - Jean de Vaugelas
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Parc Valrose 28, Avenue Valrose, 06108, Nice, France
| | - Nardo Vicente
- IMBE (Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale), Aix-Marseille Univ., Avignon Univ., CNRS, IRD; and Institut Océanographique Paul Ricard, Ile des Embiez, 83140-Six Fours les Plages, France, Ile des Embiez, France
| | - Fatima Zohra Belkhamssa
- Laboratory of Protection, Valorisation and Management of Marine and Littoral Resources & Molecular Systematics, Department of Marine Sciences and Aquaculture, Faculty of Natural Science and Life, Abdelhamid Ibn Badis University of Mostaganem, Mostaganem, 27000, PO Box 300, Algeria
| | - Ivan Zupan
- University of Zadar, Department of Ecology, Agronomy and Aquaculture, Zadar, Croatia
| | - Iris E Hendriks
- Oceanography and Global Change Department, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Mallorca, Spain.
| |
Collapse
|
32
|
Panarese R, Tedesco P, Chimienti G, Latrofa MS, Quaglio F, Passantino G, Buonavoglia C, Gustinelli A, Tursi A, Otranto D. Haplosporidium pinnae associated with mass mortality in endangered Pinna nobilis (Linnaeus 1758) fan mussels. J Invertebr Pathol 2019; 164:32-37. [DOI: 10.1016/j.jip.2019.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 10/27/2022]
|
33
|
A mycobacterial disease is associated with the silent mass mortality of the pen shell Pinna nobilis along the Tyrrhenian coastline of Italy. Sci Rep 2019; 9:2725. [PMID: 30804364 PMCID: PMC6389904 DOI: 10.1038/s41598-018-37217-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/04/2018] [Indexed: 11/28/2022] Open
Abstract
Disease is an increasing threat for marine bivalves worldwide. Recently, a mass mortality event (MME) impacting the bivalve Pinna nobilis was detected across a wide geographical area of the Spanish Mediterranean Sea and linked to a haplosporidian parasite. In 2017–2018, mass mortality events affecting the pen shell Pinna nobilis were recorded in two different regions of Italy, Campania and Sicily, in the Tyrrhenian Sea (Mediterranean Sea). Histopathological and molecular examinations of specimens showed the presence of Haplosporidium sp. in only one specimen in one area. Conversely, in all of the surveyed moribund animals, strong inflammatory lesions at the level of connective tissue surrounding the digestive system and gonads and linked to the presence of intracellular Zhiel-Neelsen-positive bacteria were observed. Molecular analysis of all of the diseased specimens (13) confirmed the presence of a Mycobacterium. Blast analysis of the sequences from all of the areas revealed that they were grouped together with the human mycobacterium M. sherrisii close to the group including M. shigaense, M. lentiflavum and M. simiae. Based on pathological and molecular findings, it is proposed that a mycobacterial disease is associated with the mortality episodes of Pinna nobilis, indicating that, at this time, Haplosporidium sp. is not responsible for these events in Campanian and Sicilian waters.
Collapse
|
34
|
Ward GM, Feist SW, Noguera P, Marcos-López M, Ross S, Green M, Urrutia A, Bass D. Detection and characterisation of haplosporidian parasites of the blue mussel Mytilus edulis, including description of the novel parasite Minchinia mytili n. sp. DISEASES OF AQUATIC ORGANISMS 2019; 133:57-68. [PMID: 31089003 DOI: 10.3354/dao03326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The edible mussel Mytilus edulis is a major aquaculture commodity in Europe, with 168000 t produced in 2015. A number of abundant, well characterised parasites of the species are known, though none are considered to cause significant mortality. Haplosporida (Rhizaria, Endomyxa) is an order of protistan parasites of aquatic invertebrates, the best studied of which are the oyster pathogens Haplosporidium nelsoni and Bonamia ostreae. While these species are well characterised within their hosts, the diversity, life-cycle and modes of transmission of haplosporidians are very poorly understood. Haplosporidian parasites have previously been reported from Mytilus spp., however the majority of these remain uncharacterised, and no molecular data exist for any species. In this study, we identified 2 novel haplosporidian parasites of M. edulis present in the UK. The first of these, observed by light microscopy and in situ hybridisation infecting the gills, mantle, gonadal tubules and digestive connective tissues of mussels in the Tamar estuary, England, we describe as Minchinia mytili on the basis of 18S sequence data. The second, observed infecting a single archive specimen collected in Loch Spelve, Mull, Scotland, infects the foot muscle, gills and connective tissue of the digestive gland. Sequence data places this parasite in an uncharacterised clade of sequences amplified from tropical bivalve guts and water samples, sister to H. nelsoni. Screening of water and sediment samples collected at the sample site in the Tamar estuary revealed the presence of both sequence types in the water column, suggesting host-free or planktonic life stages.
Collapse
Affiliation(s)
- Georgia M Ward
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Buss JJ, Wiltshire KH, Prowse TAA, Harris JO, Deveney MR. Bonamia in Ostrea angasi: Diagnostic performance, field prevalence and intensity. JOURNAL OF FISH DISEASES 2019; 42:63-74. [PMID: 30324720 DOI: 10.1111/jfd.12906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Bonamia spp. parasites threaten flat oyster (Ostrea spp.) farming worldwide. Understanding test performance is important for designing surveillance and interpreting diagnostic results. Following a pilot survey which found low Bonamia sp. intensity in farmed Ostrea angasi, we tested further oysters (n = 100-150) from each of three farms for Bonamia sp. using heart smear, histology and qPCR. We used a Bayesian Latent Class Model to assess diagnostic sensitivity (DSe) and specificity (DSp) of these tests individually or in combination, and to assess prevalence. Histology was the best individual test (DSe 0.76, DSp 0.93) compared to quantitative polymerase chain reaction (qPCR) (DSe 0.69, DSp 0.93) and heart smear (DSe 0.61, DSp 0.60). Histology combined with qPCR and defining a positive from either test as an infected case maximized test performance (DSe 0.91, DSp 0.88). Prevalence was higher at two farms in a high-density oyster growing region than at a farm cultivating oysters at lower density. Parasite intensities were lower than in New Zealand and European studies, and this is probably contributed to differences in the performance of test when compared to other studies. Understanding diagnostic test performance in different populations can support the development of improved Bonamia surveillance programs.
Collapse
Affiliation(s)
- Jessica J Buss
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
- South Australian Research and Development Institute (SARDI) Aquatic Sciences and Marine Innovation Southern Australia, Adelaide, SA, 5024, Australia
| | - Kathryn H Wiltshire
- South Australian Research and Development Institute (SARDI) Aquatic Sciences and Marine Innovation Southern Australia, Adelaide, SA, 5024, Australia
| | - Thomas A A Prowse
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - James O Harris
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Marty R Deveney
- South Australian Research and Development Institute (SARDI) Aquatic Sciences and Marine Innovation Southern Australia, Adelaide, SA, 5024, Australia
| |
Collapse
|
37
|
Catanese G, Grau A, Valencia JM, Garcia-March JR, Vázquez-Luis M, Alvarez E, Deudero S, Darriba S, Carballal MJ, Villalba A. Haplosporidium pinnae sp. nov., a haplosporidan parasite associated with mass mortalities of the fan mussel, Pinna nobilis, in the Western Mediterranean Sea. J Invertebr Pathol 2018; 157:9-24. [DOI: 10.1016/j.jip.2018.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 10/28/2022]
|
38
|
Ramilo A, Abollo E, Villalba A, Carballal MJ. A Minchinia mercenariae-like parasite infects cockles Cerastoderma edule in Galicia (NW Spain). JOURNAL OF FISH DISEASES 2018; 41:41-48. [PMID: 28707705 DOI: 10.1111/jfd.12668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
The cockle Cerastoderma edule fishery has traditionally been the most important shellfish species in terms of biomass in Galicia (NW Spain). In the course of a survey of the histopathological conditions affecting this species in the Ria of Arousa, a haplosporidan parasite that had not been observed in Galicia was detected in one of the most productive cockle beds of Galicia. Uni- and binucleate cells and multinucleate plasmodia were observed in the connective tissue mainly in the digestive area, gills and gonad. The parasite showed low prevalence, and it was not associated with abnormal cockle mortality. Molecular identification showed that this parasite was closely related to the haplosporidan Minchinia mercenariae that had been reported infecting hard clams Mercenaria mercenaria from the Atlantic coast of the United States. The molecular characterization of its SSU rDNA region allowed obtaining a fragment of 1,796 bp showing 98% homology with M. mercenariae parasite. Phylogenetic analysis supported this identification as this parasite was clustered in the same clade as M. mercenariae from the United States and other M. mercenariae-like sequences from the UK, with bootstrap value of 99%. The occurrence of M. mercenariae-like parasites infecting molluscs outside the United States is confirmed.
Collapse
Affiliation(s)
- A Ramilo
- Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, Vilanova de Arousa, Spain
| | - E Abollo
- Centro Tecnológico del Mar - Fundación CETMAR, Vigo, Spain
| | - A Villalba
- Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, Vilanova de Arousa, Spain
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - M J Carballal
- Centro de Investigacións Mariñas, Consellería do Mar da Xunta de Galicia, Vilanova de Arousa, Spain
| |
Collapse
|
39
|
Morga B, Renault T, Faury N, Lerond S, Garcia C, Chollet B, Joly JP, Lapègue S, Harrang E, Arzul I. Contribution of in Vivo Experimental Challenges to Understanding Flat Oyster Ostrea edulis Resistance to Bonamia ostreae. Front Cell Infect Microbiol 2017; 7:433. [PMID: 29057216 PMCID: PMC5635048 DOI: 10.3389/fcimb.2017.00433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/21/2017] [Indexed: 12/28/2022] Open
Abstract
Bonamiosis due to the parasite Bonamia ostreae has been associated with massive mortality outbreaks in European flat oyster stocks in Europe. As eradication and treatment are not possible, the control of the disease mainly relies on transfer restriction. Moreover, selection has been applied to produce resistant flat oyster families, which present better survival and lower prevalence than non-selected oysters. In order to better understand the mechanisms involved in resistance to bonamiosis, cellular and molecular responses of 2 oyster groups (selected oysters and wild-type oysters) were analyzed in the context of experimental injection and cohabitation infections. Cellular responses including non-specific esterases detection, ROS production and phagocytosis activity were analyzed by flow cytometry. Four genes homologous to those shown to be involved in immunity were selected (Inhibitor of apotosis OeIAP, Fas ligand OeFas-ligand, Oe-SOD, and OeEc-SOD) and monitored by quantitative reverse-transcription PCR (qRT-PCR). Infected oysters showed higher phagocytosis activity than controls. Infected selected oyster show a lower phagocytosis activity which might be a protection against the parasite infection. The expression of OeIAP and OeFas-ligand gene was significantly increased in selected oysters at 5 days post-injection. OeIAP gene expression appeared to be significantly increased in wild-type oysters at 8 days post-injection. Our results suggest that resistance to bonamiosis partly relies on the ability of the oysters to modulate apoptosis.
Collapse
Affiliation(s)
- Benjamin Morga
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER Institut Français de Recherche pour l'Exploitation de la Mer, La Tremblade, France
| | - Tristan Renault
- Département Ressources Biologiques et Environnement, IFREMER Institut Français de Recherche pour l'Exploitation de la Mer, Nantes, France
| | - Nicole Faury
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER Institut Français de Recherche pour l'Exploitation de la Mer, La Tremblade, France
| | - Sophie Lerond
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER Institut Français de Recherche pour l'Exploitation de la Mer, La Tremblade, France
| | - Céline Garcia
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER Institut Français de Recherche pour l'Exploitation de la Mer, La Tremblade, France
| | - Bruno Chollet
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER Institut Français de Recherche pour l'Exploitation de la Mer, La Tremblade, France
| | - Jean-Pierre Joly
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER Institut Français de Recherche pour l'Exploitation de la Mer, La Tremblade, France
| | - Sylvie Lapègue
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER Institut Français de Recherche pour l'Exploitation de la Mer, La Tremblade, France
| | - Estelle Harrang
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER Institut Français de Recherche pour l'Exploitation de la Mer, La Tremblade, France
| | - Isabelle Arzul
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER Institut Français de Recherche pour l'Exploitation de la Mer, La Tremblade, France
| |
Collapse
|
40
|
Darriba S. First haplosporidan parasite reported infecting a member of the Superfamily Pinnoidea ( Pinna nobilis ) during a mortality event in Alicante (Spain, Western Mediterranean). J Invertebr Pathol 2017; 148:14-19. [DOI: 10.1016/j.jip.2017.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 11/26/2022]
|
41
|
Guo X, Ford SE. Infectious diseases of marine molluscs and host responses as revealed by genomic tools. Philos Trans R Soc Lond B Biol Sci 2016; 371:rstb.2015.0206. [PMID: 26880838 DOI: 10.1098/rstb.2015.0206] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
More and more infectious diseases affect marine molluscs. Some diseases have impacted commercial species including MSX and Dermo of the eastern oyster, QPX of hard clams, withering syndrome of abalone and ostreid herpesvirus 1 (OsHV-1) infections of many molluscs. Although the exact transmission mechanisms are not well understood, human activities and associated environmental changes often correlate with increased disease prevalence. For instance, hatcheries and large-scale aquaculture create high host densities, which, along with increasing ocean temperature, might have contributed to OsHV-1 epizootics in scallops and oysters. A key to understanding linkages between the environment and disease is to understand how the environment affects the host immune system. Although we might be tempted to downplay the role of immunity in invertebrates, recent advances in genomics have provided insights into host and parasite genomes and revealed surprisingly sophisticated innate immune systems in molluscs. All major innate immune pathways are found in molluscs with many immune receptors, regulators and effectors expanded. The expanded gene families provide great diversity and complexity in innate immune response, which may be key to mollusc's defence against diverse pathogens in the absence of adaptive immunity. Further advances in host and parasite genomics should improve our understanding of genetic variation in parasite virulence and host disease resistance.
Collapse
Affiliation(s)
- Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Susan E Ford
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| |
Collapse
|
42
|
Abstract
SUMMARYParasites can exert strong effects on population to ecosystem level processes, but data on parasites are limited for many global regions, especially tropical marine systems. Characterizing parasite diversity and distributions are the first steps towards understanding the potential impacts of parasites. The Panama Canal serves as an interesting location to examine tropical parasite diversity and distribution, as it is a conduit between two oceans and a hub for international trade. We examined metazoan and protistan parasites associated with ten oyster species collected from both Panamanian coasts, including the Panama Canal and Bocas del Toro. We found multiple metazoan taxa (pea crabs, Stylochus spp., Urastoma cyrinae). Our molecular screening for protistan parasites detected four species of Perkinsus (Perkinsus marinus, Perkinsus chesapeaki, Perkinsus olseni, Perkinsus beihaiensis) and several haplosporidians, including two genera (Minchinia, Haplosporidium). Species richness was higher for the protistan parasites than for the metazoans, with haplosporidian richness being higher than Perkinsus richness. Perkinsus species were the most frequently detected and most geographically widespread among parasite groups. Parasite richness and overlap differed between regions, locations and oyster hosts. These results have important implications for tropical parasite richness and the dispersal of parasites due to shipping associated with the Panama Canal.
Collapse
|
43
|
The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs. J Invertebr Pathol 2015; 131:177-211. [PMID: 26341124 DOI: 10.1016/j.jip.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/22/2022]
Abstract
Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to complex relationships between diseases and cultivated and natural molluscan populations. Further, in some instances the enhancement or restoration of valued ecosystem services may be contingent on management of molluscan disease. The application of newly emerging molecular tools and remote sensing techniques to the study of molluscan disease will be important in identifying how changes at varying spatial and temporal scales with global change are modifying host-parasite systems.
Collapse
|