1
|
Gao X, Zang H, Liu X, Guo S, Ye D, Liu Z, Jing X, Niu Q, Wu Y, Lü Y, Chen D, Guo R. Unraveling the modulatory manner and function of circRNAs in the Asian honey bee larval guts. Front Cell Dev Biol 2024; 12:1391717. [PMID: 39045457 PMCID: PMC11263028 DOI: 10.3389/fcell.2024.1391717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) that can participate in biological processes such as gene expression, growth, and development. However, little has been explored about the function of circRNAs in the development of Apis cerana larval guts. By using our previously gained deep sequencing data from the guts of A. cerana worker larvae at 4-, 5-, and 6-day-old (Ac4, Ac5, and Ac6 groups), the expression pattern and regulatory role of circular RNAs (circRNAs) during the development process was comprehensively investigated, with a focus on differentially expressed circRNAs (DEcircRNAs) relevant to immunity pathways and developmental signaling pathways, followed by validation of the binding relationships among a key competing endogenous RNA (ceRNA) axis. Here, 224 (158) DEcircRNAs were detected in the Ac4 vs. Ac5 (Ac5 vs. Ac6) comparison group. It's suggested that 172 (123) parental genes of DEcircRNAs were involved in 26 (20) GO terms such as developmental process and metabolic process and 138 (136) KEGG pathways like Hippo and Wnt signaling pathways. Additionally, ceRNA network analysis indicated that 21 (11) DEcircRNAs could target seven (three) DEmiRNAs, further targeting 324 (198) DEmRNAs. These DEmRNAs can be annotated to 33 (26) GO terms and 168 (200) KEGG pathways, including 12 (16) cellular and humoral immune pathways (endocytosis, lysosome, Jak-STAT, etc.) and 10 (nine) developmental signaling pathways (Hippo, mTOR, Hedgehog, etc.). Interestingly, DEcircRNAs in these two comparison groups could target the same ace-miR-6001-y, forming complex sub-networks. The results of PCR and Sanger sequencing confirmed the back-splicing sites within four randomly selected DEcircRNAs. RT-qPCR detection of these four DEcircRNAs verified the reliability of the used transcriptome data. The results of dual-luciferase reporter assay verified the binding relationships between novel_circ_001627 and ace-miR-6001-y and between ace-miR-6001-y and apterous-like. Our data demonstrated that DEcircRNAs were likely to modulate the developmental process of the A. cerana worker larval guts via regulation of parental gene transcription and ceRNA network, and novel_circ_001627/ace-miR-6001-y/apterous-like was a potential regulatory axis in the larval gut development. Findings from this work offer a basis and a candidate ceRNA axis for illustrating the circRNA-modulated mechanisms underlying the A. cerana larval guts.
Collapse
Affiliation(s)
- Xuze Gao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daoyou Ye
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, China
| | - Ying Wu
- Apiculture Science Institute of Jilin Province, Jilin, China
| | - Yang Lü
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
2
|
Fan X, Gao X, Zang H, Liu Z, Jing X, Liu X, Guo S, Jiang H, Wu Y, Huang Z, Chen D, Guo R. Transcriptional dynamics and regulatory function of milRNAs in Ascosphaera apis invading Apis mellifera larvae. Front Microbiol 2024; 15:1355035. [PMID: 38650880 PMCID: PMC11033319 DOI: 10.3389/fmicb.2024.1355035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
In the present study, small RNA (sRNA) data from Ascosphaera apis were filtered from sRNA-seq datasets from the gut tissues of A. apis-infected Apis mellifera ligustica worker larvae, which were combined with the previously gained sRNA-seq data from A. apis spores to screen differentially expressed milRNAs (DEmilRNAs), followed by trend analysis and investigation of the DEmilRNAs in relation to significant trends. Additionally, the interactions between the DEmilRNAs and their target mRNAs were verified using a dual-luciferase reporter assay. In total, 974 A. apis milRNAs were identified. The first base of these milRNAs was biased toward U. The expression of six milRNAs was confirmed by stem-loop RT-PCR, and the sequences of milR-3245-y and milR-10285-y were validated using Sanger sequencing. These miRNAs grouped into four significant trends, with the target mRNAs of DEmilRNAs involving 42 GO terms and 120 KEGG pathways, such as the fungal-type cell wall and biosynthesis of secondary metabolites. Further investigation demonstrated that 299 DEmilRNAs (novel-m0011-3p, milR-10048-y, bantam-y, etc.) potentially targeted nine genes encoding secondary metabolite-associated enzymes, while 258 (milR-25-y, milR-14-y, milR-932-x, etc.) and 419 (milR-4561-y, milR-10125-y, let-7-x, etc.) DEmilRNAs putatively targeted virulence factor-encoded genes and nine genes involved in the MAPK signaling pathway, respectively. Additionally, the interaction between ADM-B and milR-6882-x, as well as between PKIA and milR-7009-x were verified. Together, these results not only offer a basis for clarifying the mechanisms underlying DEmilRNA-regulated pathogenesis of A. apis and a novel insight into the interaction between A. apis and honey bee larvae, but also provide candidate DEmilRNA-gene axis for further investigation.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuze Gao
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitan Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Jing
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyu Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sijia Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibin Jiang
- Jilin Apicultural Research Institute, Jilin, China
| | - Ying Wu
- Jilin Apicultural Research Institute, Jilin, China
| | - Zhijian Huang
- Animal Husbandry Terminus of Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, China
| |
Collapse
|
3
|
Yang L, Li J, Yang L, Wang X, Xiao S, Xiong S, Xu X, Xu J, Ye G. Altered Gene Expression of the Parasitoid Pteromalus puparum after Entomopathogenic Fungus Beauveria bassiana Infection. Int J Mol Sci 2023; 24:17030. [PMID: 38069352 PMCID: PMC10707577 DOI: 10.3390/ijms242317030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Both parasitoids and entomopathogenic fungi are becoming increasingly crucial for managing pest populations. Therefore, it is essential to carefully consider the potential impact of entomopathogenic fungi on parasitoids due to their widespread pathogenicity and the possible overlap between these biological control tools during field applications. However, despite their importance, little research has been conducted on the pathogenicity of entomopathogenic fungi on parasitoids. In our study, we aimed to address this knowledge gap by investigating the interaction between the well-known entomopathogenic fungus Beauveria bassiana, and the pupal endoparasitoid Pteromalus puparum. Our results demonstrated that the presence of B. bassiana significantly affected the survival rates of P. puparum under laboratory conditions. The pathogenicity of B. bassiana on P. puparum was dose- and time-dependent, as determined via through surface spraying or oral ingestion. RNA-Seq analysis revealed that the immune system plays a primary and crucial role in defending against B. bassiana. Notably, several upregulated differentially expressed genes (DEGs) involved in the Toll and IMD pathways, which are key components of the insect immune system, and antimicrobial peptides were rapidly induced during both the early and late stages of infection. In contrast, a majority of genes involved in the activation of prophenoloxidase and antioxidant mechanisms were downregulated. Additionally, we identified downregulated DEGs related to cuticle formation, olfactory mechanisms, and detoxification processes. In summary, our study provides valuable insights into the interactions between P. puparum and B. bassiana, shedding light on the changes in gene expression during fungal infection. These findings have significant implications for the development of more effective and sustainable strategies for pest management in agriculture.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinting Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Zhang Y, Fan X, Zang H, Liu X, Feng P, Ye D, Zhu L, Wu Y, Jiang H, Chen D, Guo R. Novel Insights into the circRNA-Modulated Developmental Mechanism of Western Honey Bee Larval Guts. INSECTS 2023; 14:897. [PMID: 37999096 PMCID: PMC10671861 DOI: 10.3390/insects14110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Circular RNAs (circRNAs) are a class of novel non-coding RNAs (ncRNAs) that play essential roles in the development and growth of vertebrates through multiple manners. However, the mechanism by which circRNAs modulate the honey bee gut development is currently poorly understood. Utilizing the transcriptome data we obtained earlier, the highly expressed circRNAs in the Apis mellifera worker 4-, 5-, and 6-day-old larval guts were analyzed, which was followed by an in-depth investigation of the expression pattern of circRNAs during the process of larval guts development and the potential regulatory roles of differentially expressed circRNAs (DEcircRNAs). In total, 1728 expressed circRNAs were detected in the A. mellifera larval guts. Among the most highly expressed 10 circRNAs, seven (novel_circ_000069, novel_circ_000027, novel_circ_000438, etc.) were shared by the 4-, 5-, and 6-day-old larval guts. In addition, 21 (46) up-regulated and 22 (27) down-regulated circRNAs were, respectively, screened in the Am4 vs. Am5 (Am5 vs. Am6) comparison groups. Additionally, nine DEcircRNAs, such as novel_circ_000340, novel_circ_000758 and novel_circ_001116, were shared by these two comparison groups. These DEcircRNAs were predicted to be transcribed from 14 and 29 parental genes; these were respectively annotated to 15 and 22 GO terms such as biological regulation and catalytic activity as well as 16 and 21 KEGG pathways such as dorsoventral axis formation and apoptosis. Moreover, a complicated competing endogenous RNA (ceRNA) network was observed; novel_circ_000838 in the Am4 vs. Am5 comparison group potentially targeted ame-miR-6000a-3p, further targeting 518 mRNAs engaged in several developmental signaling pathways (e.g., TGF-beta, hedgehog, and wnt signaling pathway) and immune pathways (e.g., phagosome, lysosome, and MAPK signaling pathway). The results demonstrated that the novel_circ_000838-ame-miR-6000a-3p axis may plays a critical regulatory part in the larval gut development and immunity. Furthermore, back-splicing sites of six randomly selected DEcircRNAs were amplified and verified by PCR; an RT-qPCR assay of these six DEcircRNAs confirmed the reliability of the used high-throughput sequencing data. Our findings provide a novel insight into the honey bee gut development and pave a way for illustration of the circRNA-modulated developmental mechanisms underlying the A. mellifera worker larval guts.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (X.F.); (H.Z.); (X.L.); (P.F.); (D.Y.); (L.Z.); (D.C.)
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (X.F.); (H.Z.); (X.L.); (P.F.); (D.Y.); (L.Z.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - He Zang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (X.F.); (H.Z.); (X.L.); (P.F.); (D.Y.); (L.Z.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Xiaoyu Liu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (X.F.); (H.Z.); (X.L.); (P.F.); (D.Y.); (L.Z.); (D.C.)
| | - Peilin Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (X.F.); (H.Z.); (X.L.); (P.F.); (D.Y.); (L.Z.); (D.C.)
| | - Daoyou Ye
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (X.F.); (H.Z.); (X.L.); (P.F.); (D.Y.); (L.Z.); (D.C.)
| | - Leran Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (X.F.); (H.Z.); (X.L.); (P.F.); (D.Y.); (L.Z.); (D.C.)
| | - Ying Wu
- Jilin Institute of Apicultural Research, Jilin 132013, China; (Y.W.); (H.J.)
| | - Haibin Jiang
- Jilin Institute of Apicultural Research, Jilin 132013, China; (Y.W.); (H.J.)
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (X.F.); (H.Z.); (X.L.); (P.F.); (D.Y.); (L.Z.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (X.F.); (H.Z.); (X.L.); (P.F.); (D.Y.); (L.Z.); (D.C.)
- National & Local United Engineering Laboratory of Natural Biotoxin, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
5
|
Guo R, Wang S, Guo S, Fan X, Zang H, Gao X, Jing X, Liu Z, Na Z, Zou P, Chen D. Regulatory Roles of Long Non-Coding RNAs Relevant to Antioxidant Enzymes and Immune Responses of Apis cerana Larvae Following Ascosphaera apis Invasion. Int J Mol Sci 2023; 24:14175. [PMID: 37762477 PMCID: PMC10532054 DOI: 10.3390/ijms241814175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an essential part in controlling gene expression and a variety of biological processes such as immune defense and stress-response. However, whether and how lncRNAs regulate responses of Apis cerana larvae to Ascosphaera apis invasion has remained unclear until now. Here, the identification and structural analysis of lncRNAs in the guts of A. cerana worker larvae were conducted, and the expression profile of larval lncRNAs during the A. apis infection process was then analyzed, followed by an investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in the host response. In total, 76 sense lncRNAs, 836 antisense lncRNAs, 184 intron lncRNAs, 362 bidirectional lncRNAs, and 2181 intron lncRNAs were discovered in the larval guts. Additionally, 30 known and 9 novel lncRNAs were potential precursors for 36 and 11 miRNAs, respectively. In the three comparison groups, 386, 351, and 272 DElncRNAs were respectively identified, indicating the change in the overall expression pattern of host lncRNAs following the A. apis invasion. Analysis of cis-acting effect showed that DElncRNAs in the 4-, 5-, and 6-day-old comparison groups putatively regulated 55, 30, and 20 up- and down-stream genes, respectively, which were involved in a series of crucial functional terms and pathways, such as MAPK signaling pathway, and cell process. Analysis showed that 31, 8, and 11 DElncRNAs as potential antisense lncRNAs may interact with 26, 8, and 9 sense-strand mRNAs. Moreover, investigation of the competing endogenous RNA (ceRNA) network indicated that 148, 283, and 257 DElncRNAs were putatively regulated. The expression of target genes by targeting corresponding DEmiRNAs included those associated with antioxidant enzymes and immune responses. These results suggested that DElncRNAs played a potential part in the larval guts responding to the A. apis infection through a cis-acting manner and ceRNA mechanisms. Our findings deepen our understanding of interactions between A. cerana larvae and A. apis and offer a basis for clarifying the DElncRNA-mediated mechanisms underlying the host response to fungal invasion.
Collapse
Affiliation(s)
- Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyi Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - He Zang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xuze Gao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Xin Jing
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Zhitan Liu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Zhihao Na
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Peiyuan Zou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.G.); (S.W.); (S.G.); (X.F.); (H.Z.); (X.G.); (X.J.); (Z.L.); (Z.N.); (P.Z.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Fan X, Zhang W, Guo S, Zhu L, Zhang Y, Zhao H, Gao X, Jiang H, Zhang T, Chen D, Guo R, Niu Q. Expression Profile, Regulatory Network, and Putative Role of microRNAs in the Developmental Process of Asian Honey Bee Larval Guts. INSECTS 2023; 14:insects14050469. [PMID: 37233097 DOI: 10.3390/insects14050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
MiRNAs, as a kind of key regulators in gene expression, play vital roles in numerous life activities from cellular proliferation and differentiation to development and immunity. However, little is known about the regulatory manner of miRNAs in the development of Asian honey bee (Apis cerana) guts. Here, on basis of our previously gained high-quality transcriptome data, transcriptome-wide identification of miRNAs in the larval guts of Apis cerana cerana was conducted, followed by investigation of the miRNAs' differential expression profile during the gut development. In addition to the regulatory network, the potential function of differentially expressed miRNAs (DEmiRNAs) was further analyzed. In total, 330, 351, and 321 miRNAs were identified in the 4-, 5-, and 6-day-old larval guts, respectively; among these, 257 miRNAs were shared, while 38, 51, and 36 ones were specifically expressed. Sequences of six miRNAs were confirmed by stem-loop RT-PCR and Sanger sequencing. Additionally, in the "Ac4 vs. Ac5" comparison group, there were seven up-regulated and eight down-regulated miRNAs; these DEmiRNAs could target 5041 mRNAs, involving a series of GO terms and KEGG pathways associated with growth and development, such as cellular process, cell part, Wnt, and Hippo. Comparatively, four up-regulated and six down-regulated miRNAs detected in the "Ac5 vs. Ac6" comparison group and the targets were associated with diverse development-related terms and pathways, including cell, organelle, Notch and Wnt. Intriguingly, it was noticed that miR-6001-y presented a continuous up-regulation trend across the developmental process of larval guts, implying that miR-6001-y may be a potential essential modulator in the development process of larval guts. Further investigation indicated that 43 targets in the "Ac4 vs. Ac5" comparison group and 31 targets in the "Ac5 vs. Ac6" comparison group were engaged in several crucial development-associated signaling pathways such as Wnt, Hippo, and Notch. Ultimately, the expression trends of five randomly selected DEmiRNAs were verified using RT-qPCR. These results demonstrated that dynamic expression and structural alteration of miRNAs were accompanied by the development of A. c. cerana larval guts, and DEmiRNAs were likely to participate in the modulation of growth as well as development of larval guts by affecting several critical pathways via regulation of the expression of target genes. Our data offer a basis for elucidating the developmental mechanism underlying Asian honey bee larval guts.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Leran Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuze Gao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jilin 132000, China
| | - Tianze Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin 132000, China
| |
Collapse
|
7
|
Wang Z, Wang S, Fan X, Zhang K, Zhang J, Zhao H, Gao X, Zhang Y, Guo S, Zhou D, Li Q, Na Z, Chen D, Guo R. Systematic Characterization and Regulatory Role of lncRNAs in Asian Honey Bees Responding to Microsporidian Infestation. Int J Mol Sci 2023; 24:ijms24065886. [PMID: 36982959 PMCID: PMC10058195 DOI: 10.3390/ijms24065886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are pivotal regulators in gene expression and diverse biological processes, such as immune defense and host-pathogen interactions. However, little is known about the roles of lncRNAs in the response of the Asian honey bee (Apis cerana) to microsporidian infestation. Based on our previously obtained high-quality transcriptome datasets from the midgut tissues of Apis cerana cerana workers at 7 days post inoculation (dpi) and 10 dpi with Nosema ceranae (AcT7 and AcT10 groups) and the corresponding un-inoculated midgut tissues (AcCK7 and AcCK10 groups), the transcriptome-wide identification and structural characterization of lncRNAs were conducted, and the differential expression pattern of lncRNAs was then analyzed, followed by investigation of the regulatory roles of differentially expressed lncRNAs (DElncRNAs) in host response. Here, 2365, 2322, 2487, and 1986 lncRNAs were, respectively, identified in the AcCK7, AcT7, AcCK7, and AcT10 groups. After removing redundant ones, a total of 3496 A. c. cerana lncRNAs were identified, which shared similar structural characteristics with those discovered in other animals and plants, such as shorter exons and introns than mRNAs. Additionally, 79 and 73 DElncRNAs were screened from the workers' midguts at 7 dpi and 10 dpi, respectively, indicating the alteration of the overall expression pattern of lncRNAs in host midguts after N. ceranae infestation. These DElncRNAs could, respectively, regulate 87 and 73 upstream and downstream genes, involving a suite of functional terms and pathways, such as metabolic process and Hippo signaling pathway. Additionally, 235 and 209 genes co-expressed with DElncRNAs were found to enrich in 29 and 27 terms, as well as 112 and 123 pathways, such as ABC transporters and the cAMP signaling pathway. Further, it was detected that 79 (73) DElncRNAs in the host midguts at 7 (10) dpi could target 321 (313) DEmiRNAs and further target 3631 (3130) DEmRNAs. TCONS_00024312 and XR_001765805.1 were potential precursors for ame-miR-315 and ame-miR-927, while TCONS_00006120 was the putative precursor for both ame-miR-87-1 and ame-miR-87-2. These results together suggested that DElncRNAs are likely to play regulatory roles in the host response to N. ceranae infestation through the regulation of neighboring genes via a cis-acting effect, modulation of co-expressed mRNAs via trans-acting effect, and control of downstream target genes' expression via competing endogenous RNA networks. Our findings provide a basis for disclosing the mechanism underlying DElncRNA-mediated host N. ceranae response and a new perspective into the interaction between A. c. cerana and N. ceranae.
Collapse
Affiliation(s)
- Zixin Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyi Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaiyao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaxin Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuze Gao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiming Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihao Na
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
8
|
Effect of Ascosphaera apis Infestation on the Activities of Four Antioxidant Enzymes in Asian Honey Bee Larval Guts. Antioxidants (Basel) 2023; 12:antiox12010206. [PMID: 36671067 PMCID: PMC9854781 DOI: 10.3390/antiox12010206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Ascosphaera apis infects exclusively bee larvae and causes chalkbrood, a lethal fungal disease that results in a sharp reduction in adult bees and colony productivity. However, little is known about the effect of A. apis infestation on the activities of antioxidant enzymes in bee larvae. Here, A. apis spores were purified and used to inoculate Asian honey bee (Apis cerana) larvae, followed by the detection of the host survival rate and an evaluation of the activities of four major antioxidant enzymes. At 6 days after inoculation (dpi) with A. apis spores, obvious symptoms of chalkbrood disease similar to what occurs in Apis mellifera larvae were observed. PCR identification verified the A. apis infection of A. cerana larvae. Additionally, the survival rate of larvae inoculated with A. apis was high at 1−2 dpi, which sharply decreased to 4.16% at 4 dpi and which reached 0% at 5 dpi, whereas that of uninoculated larvae was always high at 1~8 dpi, with an average survival rate of 95.37%, indicating the negative impact of A. apis infection on larval survival. As compared with those in the corresponding uninoculated groups, the superoxide dismutase (SOD) and catalase (CAT) activities in the 5- and 6-day-old larval guts in the A. apis−inoculated groups were significantly decreased (p < 0.05) and the glutathione S-transferase (GST) activity in the 4- and 5-day-old larval guts was significantly increased (p < 0.05), which suggests that the inhibition of SOD and CAT activities and the activation of GST activity in the larval guts was caused by A. apis infestation. In comparison with that in the corresponding uninoculated groups, the polyphenol oxidase (PPO) activity was significantly increased (p < 0.05) in the 5-day-old larval gut but significantly reduced (p < 0.01) in the 6-day-old larval gut, indicating that the PPO activity in the larval guts was first enhanced and then suppressed. Our findings not only unravel the response of A. cerana larvae to A. apis infestation from a biochemical perspective but also offer a valuable insight into the interaction between Asian honey bee larvae and A. apis.
Collapse
|
9
|
Wu Y, Guo Y, Fan X, Zhao H, Zhang Y, Guo S, Jing X, Liu Z, Feng P, Liu X, Zou P, Li Q, Na Z, Zhang K, Chen D, Guo R. ame-miR-34 Modulates the Larval Body Weight and Immune Response of Apis mellifera Workers to Ascosphara apis Invasion. Int J Mol Sci 2023; 24:ijms24021214. [PMID: 36674732 PMCID: PMC9863880 DOI: 10.3390/ijms24021214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
MiRNAs are critical regulators of numerous physiological and pathological processes. Ascosphaera apis exclusively infects bee larvae and causes chalkbrood disease. However, the function and mechanism of miRNAs in the bee larval response to A. apis infection is poorly understood. Here, ame-miR-34, a previously predicted miRNA involved in the response of Apis mellifera larvae to A. apis invasion, was subjected to molecular validation, and overexpression and knockdown were then conducted to explore the regulatory functions of ame-miR-34 in larval body weight and immune response. Stem-loop RT-PCR and Sanger sequencing confirmed the authenticity of ame-miR-34 in the larval gut of A. mellifera. RT-qPCR results demonstrated that compared with that in the uninfected larval guts, the expression level of ame-miR-34 was significantly downregulated (p < 0.001) in the guts of A. apis-infected 4-, 5-, and 6-day-old larvae, indicative of the remarkable suppression of host ame-miR-34 due to A. apis infection. In comparison with the corresponding negative control (NC) groups, the expression level of ame-miR-34 in the larval guts in the mimic-miR-34 group was significantly upregulated (p < 0.001), while that in the inhibitor-miR-34 group was significantly downregulated (p < 0.01). Similarly, effective overexpression and knockdown of ame-miR-34 were achieved. In addition, the body weights of 5- and 6-day-old larvae were significantly increased compared with those in the mimic-NC group; the weights of 5-day-old larvae in the inhibitor-miR-34 group were significantly decreased in comparison with those in the inhibitor-NC group, while the weights of 4- and 6-day-old larvae in the inhibitor-miR-34 group were significantly increased, indicating the involvement of ame-miR-34 in modulating larval body weight. Furthermore, the expression levels of both hsp and abct in the guts of A. apis-infected 4-, 5-, and 6-day-old larvae were significantly upregulated after ame-miR-34 overexpression. In contrast, after ame-miR-34 knockdown, the expression levels of the aforementioned two key genes in the A. apis-infected 4-, 5-, and 6-day-old larval guts were significantly downregulated. Together, the results demonstrated that effective overexpression and knockdown of ame-miR-34 in both noninfected and A. apis-infected A. mellifera larval guts could be achieved by the feeding method, and ame-miR-34 exerted a regulatory function in the host immune response to A. apis invasion through positive regulation of the expression of hsp and abct. Our findings not only provide a valuable reference for the functional investigation of bee larval miRNAs but also reveal the regulatory role of ame-miR-34 in A. mellifera larval weight and immune response. Additionally, the results of this study may provide a promising molecular target for the treatment of chalkbrood disease.
Collapse
Affiliation(s)
- Ying Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilong Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Jing
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhitan Liu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peilin Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyu Liu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiyuan Zou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiming Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihao Na
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kuihao Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
- Correspondence: (D.C.); (R.G.); Tel./Fax: +86-0591-87640197 (D.C. & R.G.)
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
- Correspondence: (D.C.); (R.G.); Tel./Fax: +86-0591-87640197 (D.C. & R.G.)
| |
Collapse
|
10
|
Ye Y, Fan X, Cai Z, Wu Y, Zhang W, Zhao H, Guo S, Feng P, Li Q, Zou P, Chen M, Fan N, Chen D, Guo R. Unveiling the circRNA-Mediated Immune Responses of Western Honey Bee Larvae to Ascosphaera apis Invasion. Int J Mol Sci 2022; 24:613. [PMID: 36614055 PMCID: PMC9820429 DOI: 10.3390/ijms24010613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Western honey bee (Apis mellifera), a eusocial insect with a superior economic and ecological value, is widely used in the beekeeping industry throughout the world. As a new class of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) participate in the modulation of considerable biological processes, such as the immune response via diverse manners. Here, the identification, characteristic investigation, and molecular verification of circRNAs in the Apis mellifera ligustica larval guts were conducted, and the expression pattern of larval circRNAs during the Ascosphaera apis infection was analyzed, followed by the exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 2083 circRNAs in the larval guts of A. m. ligustcia were identified, with a length distribution ranging from 106 nt to 92,798 nt. Among these, exonic circRNAs were the most abundant type and LG1 was the most distributed chromosome. Additionally, 25, 14, and 30 up-regulated circRNAs as well as 26, 25, and 62 down-regulated ones were identified in the A. apis-inoculated 4-, 5-, and 6-day-old larval guts in comparison with the corresponding un-inoculated larval guts. These DEcircRNAs were predicted to target 35, 70, and 129 source genes, which were relative to 12, 23, and 20 GO terms as well as 11, 10, and 27 KEGG pathways, including 5 cellular and humoral immune pathways containing apoptosis, autophagy, endocytosis, MAPK, Toll, and Imd signaling pathways. Furthermore, complex competing endogenous RNA (ceRNA) regulatory networks were detected to be formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The Target DEmRNAs were engaged in 24, 20, and 25 functional terms as well as 62, 80, and 159 pathways, including several vital immune defense-associated pathways, namely the lysosome, endocytosis, phagosome, autophagy, apoptosis, MAPK, Jak-STAT, Toll, and Imd signaling pathways. Finally, back-splicing sites within 15 circRNAs and the difference in the 9 DEcircRNAs' expression between un-inoculated and A. apis-inoculated larval guts were confirmed utilizing molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions, but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. m. ligustica larvae against A. apis invasion.
Collapse
Affiliation(s)
- Yaping Ye
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zongbing Cai
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peilin Feng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiming Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiyuan Zou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengjun Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nian Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
11
|
Ye Y, Fan X, Long Q, Wang J, Zhang W, Cai Z, Sun M, Gu X, Zou P, Chen D, Guo R. Comprehensive investigation and regulatory function of lncRNAs engaged in western honey bee larval immune response to Ascosphaera apis invasion. Front Physiol 2022; 13:1082522. [PMID: 36589426 PMCID: PMC9800914 DOI: 10.3389/fphys.2022.1082522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Ascosphaera apis is a fungal pathogen that exclusively infects bee larvae, causing chalkbrood disease, which results in severe damage for beekeeping industry. Long non-coding RNAs (lncRNAs) are versatile regulators in various biological processes such as immune defense and host-pathogen interaction. However, expression pattern and regulatory role of lncRNAs involved in immune response of bee host to A. apis invasion is still very limited. Here, the gut tissues of Apis mellifera ligustica 4-, 5-, and 6-day-old larvae inoculated by A. apis spores (AmT1, AmT2, and AmT3 groups) and corresponding un-inoculated larval guts (AmCK1, AmCK2, and AmCK3 groups) were prepared and subjected to deep sequencing, followed by identification of lncRNAs, analysis of differentially expressed lncRNAs (DElncRNAs), and investigation of competing endogenous RNA (ceRNA) network. In total, 3,746 A. m. ligustica lncRNAs were identified, including 78 sense lncRNAs, 891 antisense lncRNAs, 1,893 intergenic lncRNAs, 346 bidirectional lncRNAs, and 210 intronic lncRNAs. In the 4-, 5-, and 6- comparison groups, 357, 236, and 505 DElncRNAs were discovered. Additionally, 217, 129, and 272 DElncRNAs were respectively predicted to regulate neighboring genes via cis-acting manner, and these targets were associated with a series of GO terms and KEGG pathways of great importance, such as response to stimulus and Jak-STAT signaling pathway. Moreover, 197, 95, and 356 DElncRNAs were observed to target 10, eight, and 21 DEmiRNAs and further target 147, 79, and 315 DEmRNAs, forming complex regulatory networks. Further investigation suggested that these targets were engaged in several key cellular and humoral immune pathways, such as phagosome and MAPK signaling pathway. Ultimately, the expression trends of nine randomly selected DElncRNAs were verified by RT-qPCR, confirming the authenticity and reliability of our transcriptome data. Findings in this current work not only provide candidate DElncRNAs for functional study, but also lay a foundation for unclosing the mechanism underlying DElncRNA-regulated larval immune responses to A. apis invasion.
Collapse
Affiliation(s)
- Yaping Ye
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zongbing Cai
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Minghui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyu Gu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Peiyuan Zou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Zhao X, Liu Y. Current Knowledge on Bee Innate Immunity Based on Genomics and Transcriptomics. Int J Mol Sci 2022; 23:ijms232214278. [PMID: 36430757 PMCID: PMC9692672 DOI: 10.3390/ijms232214278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
As important pollinators, bees play a critical role in maintaining the balance of the ecosystem and improving the yield and quality of crops. However, in recent years, the bee population has significantly declined due to various pathogens and environmental stressors including viruses, bacteria, parasites, and increased pesticide application. The above threats trigger or suppress the innate immunity of bees, their only immune defense system, which is essential to maintaining individual health and that of the colony. In addition, bees can be divided into solitary and eusocial bees based on their life traits, and eusocial bees possess special social immunities, such as grooming behavior, which cooperate with innate immunity to maintain the health of the colony. The omics approach gives us an opportunity to recognize the distinctive innate immunity of bees. In this regard, we summarize innate bee immunity from a genomic and transcriptomic perspective. The genetic characteristics of innate immunity were revealed by the multiple genomes of bees with different kinds of sociality, including honeybees, bumblebees, wasps, leaf-cutter bees, and so on. Further substantial transcriptomic data of different tissues from diverse bees directly present the activation or suppression of immune genes under the infestation of pathogens or toxicity of pesticides.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- College of Engineering, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanjie Liu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence:
| |
Collapse
|
13
|
StcU-2 Gene Mutation via CRISPR/Cas9 Leads to Misregulation of Spore-Cyst Formation in Ascosphaera apis. Microorganisms 2022; 10:microorganisms10102088. [PMID: 36296364 PMCID: PMC9607276 DOI: 10.3390/microorganisms10102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Ascosphaera apis is the causative agent of honey bee chalkbrood disease, and spores are the only known source of infections. Interference with sporulation is therefore a promising way to manage A. apis. The versicolorin reductase gene (StcU-2) is a ketoreductase protein related to sporulation and melanin biosynthesis. To study the StcU-2 gene in ascospore production of A. apis, CRISPR/Cas9 was used, and eight hygromycin B antibiotic-resistant transformants incorporating enhanced green fluorescent protein (EGFP) were made and analyzed. PCR amplification, gel electrophoresis, and sequence analysis were used for target gene editing analysis and verification. The CRISPR/Cas9 editing successfully knocked out the StcU-2 gene in A. apis. StcU-2 mutants had shown albino and non-functional spore-cyst development and lost effective sporulation. In conclusion, editing of StcU-2 gene has shown direct relation with sporulation and melanin biosynthesis of A. apis; this effective sporulation reduction would reduce the spread and pathogenicity of A. apis to managed honey bee. To the best of our knowledge, this is the first time CRISPR/Cas9-mediated gene editing has been efficiently performed in A. apis, a fungal honey bee brood pathogen, which offers a comprehensive set of procedural references that contributes to A. apis gene function studies and consequent control of chalkbrood disease.
Collapse
|
14
|
Lin D, Sutherland D, Aninta SI, Louie N, Nip KM, Li C, Yanai A, Coombe L, Warren RL, Helbing CC, Hoang LMN, Birol I. Mining Amphibian and Insect Transcriptomes for Antimicrobial Peptide Sequences with rAMPage. Antibiotics (Basel) 2022; 11:antibiotics11070952. [PMID: 35884206 PMCID: PMC9312091 DOI: 10.3390/antibiotics11070952] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance is a global health crisis increasing in prevalence every day. To combat this crisis, alternative antimicrobial therapeutics are urgently needed. Antimicrobial peptides (AMPs), a family of short defense proteins, are produced naturally by all organisms and hold great potential as effective alternatives to small molecule antibiotics. Here, we present rAMPage, a scalable bioinformatics discovery platform for identifying AMP sequences from RNA sequencing (RNA-seq) datasets. In our study, we demonstrate the utility and scalability of rAMPage, running it on 84 publicly available RNA-seq datasets from 75 amphibian and insect species—species known to have rich AMP repertoires. Across these datasets, we identified 1137 putative AMPs, 1024 of which were deemed novel by a homology search in cataloged AMPs in public databases. We selected 21 peptide sequences from this set for antimicrobial susceptibility testing against Escherichia coli and Staphylococcus aureus and observed that seven of them have high antimicrobial activity. Our study illustrates how in silico methods such as rAMPage can enable the fast and efficient discovery of novel antimicrobial peptides as an effective first step in the strenuous process of antimicrobial drug development.
Collapse
Affiliation(s)
- Diana Lin
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Darcy Sutherland
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sambina Islam Aninta
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Nathan Louie
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Ka Ming Nip
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chenkai Li
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anat Yanai
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - René L. Warren
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Linda M. N. Hoang
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence:
| |
Collapse
|
15
|
Xing W, Zhou D, Long Q, Sun M, Guo R, Wang L. Immune Response of Eastern Honeybee Worker to Nosema ceranae Infection Revealed by Transcriptomic Investigation. INSECTS 2021; 12:insects12080728. [PMID: 34442293 PMCID: PMC8396959 DOI: 10.3390/insects12080728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Currently, knowledge regarding Apis cerana–Nosema ceranae interaction is very limited, though A. cerana is the original host of N. ceranae. Apis cerana cerana is a subspecies of A. cerana and a major bee species used in the beekeeping industry in China and other countries. Here, the effective infection of A. c. cerana workers by N. ceranae was verified, followed by transcriptomic investigation of host responses. Furthermore, immune responses between A. c. cerana and Apis mellifera ligustica were deeply compared and discussed. In total, 1127 and 957 N. ceranae-responsive genes were identified in the infected midguts at 7 d post-inoculation (dpi) and 10 dpi, respectively. Additionally, DEGs in workers’ midguts at both 7 dpi and 10 dpi were associated with six cellular immune pathways and three humoral immune pathways. Noticeably, one up-regulated gene was enriched in the NF-κB signaling pathway in the midgut at 10 dpi. Further analysis indicated that different cellular and humoral immune responses were employed by A. c. cerana and A. m. ligustica workers to combat N. ceranae. Our findings provide a foundation for clarifying the mechanisms regulating the immune response of A. c. cerana workers to N. ceranae invasion and developing new approaches to control bee microsporidiosis. Abstract Here, a comparative transcriptome investigation was conducted based on high-quality deep sequencing data from the midguts of Apis cerana cerana workers at 7 d post-inoculation (dpi) and 10 dpi with Nosema ceranae and corresponding un-inoculated midguts. PCR identification and microscopic observation of paraffin sections confirmed the effective infection of A. c. cerana worker by N. ceranae. In total, 1127 and 957 N. ceranae-responsive genes were identified in the infected midguts at 7 dpi and 10 dpi, respectively. RT-qPCR results validated the reliability of our transcriptome data. GO categorization indicated the differentially expressed genes (DEGs) were respectively engaged in 34 and 33 functional terms associated with biological processes, cellular components, and molecular functions. Additionally, KEGG pathway enrichment analysis showed that DEGs at 7 dpi and 10 dpi could be enriched in 231 and 226 pathways, respectively. Moreover, DEGs in workers’ midguts at both 7 dpi and 10 dpi were involved in six cellular immune pathways such as autophagy and phagosome and three humoral immune pathways such as the Toll/Imd signaling pathway and Jak-STAT signaling pathway. In addition, one up-regulated gene (XM_017055397.1) was enriched in the NF-κB signaling pathway in the workers’ midgut at 10 dpi. Further investigation suggested the majority of these DEGs were engaged in only one immune pathway, while a small number of DEGs were simultaneously involved in two immune pathways. These results together demonstrated that the overall gene expression profile in host midgut was altered by N. ceranae infection and some of the host immune pathways were induced to activation during fungal infection, whereas some others were suppressed via host–pathogen interaction. Our findings offer a basis for clarification of the mechanism underlying the immune response of A. c. cerana workers to N. ceranae infection, but also provide novel insights into eastern honeybee-microsporodian interaction.
Collapse
Affiliation(s)
- Wenhao Xing
- College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Qi Long
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Minghui Sun
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Z.); (Q.L.); (M.S.)
- Apitherapy Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel./Fax: +86-0591-8764-0197
| | - Limei Wang
- Dongying Vocational Institute, Dongying 257000, China;
| |
Collapse
|
16
|
Ye MH, Fan SH, Li XY, Tarequl IM, Yan CX, Wei WH, Yang SM, Zhou B. Microbiota dysbiosis in honeybee ( Apis mellifera L .) larvae infected with brood diseases and foraging bees exposed to agrochemicals. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201805. [PMID: 33614099 PMCID: PMC7890499 DOI: 10.1098/rsos.201805] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 06/01/2023]
Abstract
American foulbrood (AFB) disease and chalkbrood disease (CBD) are important bacterial and fungal diseases, respectively, that affect honeybee broods. Exposure to agrochemicals is an abiotic stressor that potentially weakens honeybee colonies. Gut microflora alterations in adult honeybees associated with these biotic and abiotic factors have been investigated. However, microbial compositions in AFB- and CBD-infected larvae and the profile of whole-body microbiota in foraging bees exposed to agrochemicals have not been fully studied. In this study, bacterial and fungal communities in healthy and diseased (AFB/CBD) honeybee larvae were characterized by amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacer1 region, respectively. The bacterial and fungal communities in disordered foraging bees poisoned by agrochemicals were analysed. Our results revealed that healthy larvae were significantly enriched in bacterial genera Lactobacillus and Stenotrophomonas and the fungal genera Alternaria and Aspergillus. The enrichment of these microorganisms, which had antagonistic activities against the etiologic agents for AFB and CBD, respectively, may protect larvae from potential infection. In disordered foraging bees, the relative abundance of bacterial genus Gilliamella and fungal species Cystofilobasidium macerans were significantly reduced, which may compromise hosts' capacities in nutrient absorption and immune defence against pathogens. Significantly higher frequency of environmentally derived fungi was observed in disordered foraging bees, which reflected the perturbed microbiota communities of hosts. Results from PICRUSt and FUNGuild analyses revealed significant differences in gene clusters of bacterial communities and fungal function profiles. Overall, results of this study provide references for the composition and function of microbial communities in AFB- and CBD-infected honeybee larvae and foraging bees exposed to agrochemicals.
Collapse
Affiliation(s)
- Man-Hong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Shu-Hang Fan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Xiao-Yuan Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Islam Mohd Tarequl
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Chun-Xiang Yan
- Chunxiang Professional Beekeeping Cooperatives, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Wan-Hong Wei
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Sheng-Mei Yang
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| | - Bin Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu Province, People's Republic of China
| |
Collapse
|
17
|
Chen D, Du Y, Fan X, Zhu Z, Jiang H, Wang J, Fan Y, Chen H, Zhou D, Xiong C, Zheng Y, Xu X, Luo Q, Guo R. Reconstruction and functional annotation of Ascosphaera apis full-length transcriptome utilizing PacBio long reads combined with Illumina short reads. J Invertebr Pathol 2020; 176:107475. [PMID: 32976816 DOI: 10.1016/j.jip.2020.107475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 01/19/2023]
Abstract
Ascosphaera apis is a widespread fungal pathogen of honeybee larvae that results in chalkbrood disease, leading to heavy losses for the beekeeping industry in China and many other countries. This work was aimed at generating a full-length transcriptome of A. apis using PacBio single-molecule real-time (SMRT) sequencing. Here, more than 23.97 Gb of clean reads was generated from long-read sequencing of A. apis mycelia, including 464,043 circular consensus sequences (CCS) and 394,142 full-length non-chimeric (FLNC) reads. In total, we identified 174,095 high-confidence transcripts covering 5141 known genes with an average length of 2728 bp. We also discovered 2405 genic loci and 11,623 isoforms that have not been annotated yet within the current reference genome. Additionally, 16,049, 10,682, 4520 and 7253 of the discovered transcripts have annotations in the Non-redundant protein (Nr), Clusters of Eukaryotic Orthologous Groups (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Moreover, 1205 long non-coding RNAs (lncRNAs) were identified, which have less exons, shorter exon and intron lengths, shorter transcript lengths, lower GC percent, lower expression levels, and fewer alternative splicing (AS) evens, compared with protein-coding transcripts. A total of 253 members from 17 transcription factor (TF) families were identified from our transcript datasets. Finally, the expression of A. apis isoforms was validated using a molecular approach. Overall, this is the first report of a full-length transcriptome of entomogenous fungi including A. apis. Our data offer a comprehensive set of reference transcripts and hence contributes to improving the genome annotation and transcriptomic study of A. apis.
Collapse
Affiliation(s)
- Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Yu Du
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Zhiwei Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Haibin Jiang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Jie Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Yuanchan Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Huazhi Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Dingding Zhou
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Cuiling Xiong
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Yanzhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China
| | - Xijian Xu
- Jiangxi Province Institute of Apiculture, 330201 Nanchang, Jiangxi, China
| | - Qun Luo
- Jiangxi Province Institute of Apiculture, 330201 Nanchang, Jiangxi, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, China; Engineering Research Center of Processing and Application of Bee Products of Ministry of Education, Fuzhou 350002, Fujian Province, China.
| |
Collapse
|
18
|
Chen D, Du Y, Chen H, Fan Y, Fan X, Zhu Z, Wang J, Xiong C, Zheng Y, Hou C, Diao Q, Guo R. Comparative Identification of MicroRNAs in Apis cerana cerana Workers' Midguts in Responseto Nosema ceranae Invasion. INSECTS 2019; 10:E258. [PMID: 31438582 PMCID: PMC6780218 DOI: 10.3390/insects10090258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023]
Abstract
Here, the expression profiles and differentially expressed miRNAs (DEmiRNAs) in the midguts of Apis cerana cerana workers at 7 d and 10 d post-inoculation (dpi) with N. ceranae were investigated via small RNA sequencing and bioinformatics. Five hundred and twenty nine (529) known miRNAs and 25 novel miRNAs were identified in this study, and the expression of 16 predicted miRNAs was confirmed by Stem-loop RT-PCR. A total of 14 DEmiRNAs were detected in the midgut at 7 dpi, including eight up-regulated and six down-regulated miRNAs, while 12 DEmiRNAs were observed in the midgut at 10 dpi, including nine up-regulated and three down-regulated ones. Additionally, five DEmiRNAs were shared, while nine and seven DEmiRNAs were specifically expressed in midguts at 7 dpi and 10 dpi. Gene ontology analysis suggested some DEmiRNAs and corresponding target mRNAs were involved in various functions including immune system processes and response to stimulus. KEGG pathway analysis shed light on the potential functions of some DEmiRNAs in regulating target mRNAs engaged in material and energy metabolisms, cellular immunity and the humoral immune system. Further investigation demonstrated a complex regulation network between DEmiRNAs and their target mRNAs, with miR-598-y, miR-252-y, miR-92-x and miR-3654-y at the center. Our results can facilitate future exploration of the regulatory roles of miRNAs in host responses to N. ceranae, and provide potential candidates for further investigation of the molecular mechanisms underlying eastern honeybee-microsporidian interactions.
Collapse
Affiliation(s)
- Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Du
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huazhi Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanchan Fan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiwei Zhu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Wang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiling Xiong
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|