1
|
Li L, Zhao Z, Liu Z, Tang Y, Yang T, Gong N, Liao B, Long Y, Nie Y, Yu F. Identification of the optimal reference genes for atrial fibrillation model established by iPSC-derived atrial myocytes. BMC Genomics 2024; 25:1001. [PMID: 39455925 PMCID: PMC11515253 DOI: 10.1186/s12864-024-10922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) stands as a prevalent and detrimental arrhythmic disorder, characterized by intricate pathophysiological mechanisms. The availability of reliable and reproducible AF models is pivotal in unraveling the underlying mechanisms of this complex condition. Unfortunately, the researchers are still confronted with the absence of consistent in vitro AF models, hindering progress in this crucial area of research. METHODS Human induced pluripotent stem cells derived atrial myocytes (hiPSC-AMs) were generated based on the GiWi methods and were verified by whole-cell patch clamp, immunofluorescent staining, and flow cytometry. Then hiPSC-AMs were employed to establish the AF model by HS. Whole-cell patch clamp technique and calcium imaging were used to identify the AF model. The stability of 29 reference genes was evaluated using delta-Ct, GeNorm, NormFinder, and BestKeeper algorithms; RESULTS: HiPSC-AMs displayed atrial myocyte action potentials and expressed the atrial-specific protein MLC-2 A and NR2F2, about 70% of the cardiomyocytes were MLC-2 A positive. After HS, hiPSC-AMs showed a significant increase in beating frequency, a shortened action potential duration, and increased calcium transient frequency. Of the 29 candidate genes, the top five most stably ranked genes were ABL1, RPL37A, POP4, RPL30, and EIF2B1. After normalization using ABL1, KCNJ2 was significantly upregulated in the AF model; Conclusions: In the hiPSC-AMs AF model established by HS, ABL1 provides greater normalization efficiency than commonly used GAPDH.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China
| | - Zijuan Zhao
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zihao Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China
| | - Yuquan Tang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
| | - Tan Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
| | - Nailin Gong
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
| | - Bing Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, China
| | - Yongmei Nie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China.
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China.
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, NO25, Taiping Street, Luzhou City, 646000, China.
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China.
| |
Collapse
|
2
|
Li X, Zhang H, Li W, Tuo H, He B, Jiang H. The role and mechanism of NRG1/ErbB4 in inducing the differentiation of induced pluripotent stem cells into cardiomyocytes. BMC Cardiovasc Disord 2024; 24:559. [PMID: 39407109 PMCID: PMC11481795 DOI: 10.1186/s12872-024-04224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND We aimed to investigate the effect and potential mechanism of enhancing Neuregulin1 (NRG1)/v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 (ErbB4) expression on the differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. METHODS We utilized CRISPR-CAS9 technology to knock in ErbB4 and obtained a single-cell clone IPSN-AAVS1-CMV-ErbB4 (iPSCs-ErbB4). Subsequently, we induced the differentiation of iPSCs into cardiomyocytes and quantified the number of beating embryoid bodies. Furthermore, quantitative real-time PCR assessed the expression of cardiomyocyte markers, including ANP (atrial natriuretic peptide), Nkx2.5 (NK2 transcription factor related locus 5), and GATA4 (GATA binding protein 4). On the 14th day of differentiation, we observed the α-MHC (α-myosin heavy chain)-positive area using immunofluorescent staining and conducted western blotting to detect the expression of cTnT (cardiac troponin) protein and PI3K/Akt signaling pathway-related proteins. Additionally, we intervened the iPSCs-ErbB4 + NRG1 group with the PI3K/Akt inhibitor LY294002 and observed alterations in the expression of cardiomyocyte differentiation-related genes. RESULTS The number of beating embryoid bodies increased after promoting the expression of NRG1/ErbB4 compared to the iPSCs control group. Cardiomyocyte markers ANP, Nkx2.5, and GATA4 significantly increased on day 14 of differentiation, and the positive area of α-MHC was three times that of the iPSCs control group. Moreover, there was a marked increase in cTnT protein expression. However, there was no significant difference in cardiomyocyte differentiation between the iPSCs-ErbB4 group and the iPSCs control group. Akt phosphorylation was significantly increased in the iPSCs-ErbB4 + NRG1 group. LY294002 significantly reversed the enhancing effect of NRG1/ErbB4 overexpression on Akt phosphorylation as well as the increase in α-MHC and cTnT expression. CONCLUSIONS In conclusion, promoting the expression of NRG1/ErbB4 induced the differentiation of iPSC into cardiomyocytes, possibly through modulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Heng Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Wenjing Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Hu Tuo
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Bing He
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China.
| |
Collapse
|
3
|
Villalba A. Artificial Gametes and Human Reproduction in the 21st Century: An Ethical Analysis. Reprod Sci 2024; 31:2174-2183. [PMID: 38780744 DOI: 10.1007/s43032-024-01558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Artificial gametes, derived from stem cells, have the potential to enable in vitro fertilization of embryos. Currently, artificial gametes are only being generated in laboratory animals; however, considerable efforts are underway to develop artificial gametes using human cell sources. These artificial gametes are being proposed as a means to address infertility through assisted reproductive technologies. Nonetheless, the availability of artificial gametes obtained from adult organisms can potentially expand the possibilities of reproduction. Various groups, such as same-sex couples, post-menopausal women, and deceased donors, could potentially utilize artificial gametes to conceive genetically related offspring. The advent of artificial gametes raises significant bioethical questions. Should all these reproductive scenarios be accepted? How can we delineate the range of future reproductive choices? A normative bioethical framework may be necessary to establish a consensus regarding the use of human artificial gametes. This review aims to present the current state of research on the biological roadmap for generating artificial gametes, while also summarizing proposed approaches to establish a normative framework that delineates ethically acceptable paths for reproduction.
Collapse
Affiliation(s)
- Adrian Villalba
- Departamento de Filosofía II, Universidad de Granada, Granada, Spain.
| |
Collapse
|
4
|
von Bibra C, Hinkel R. Non-human primate studies for cardiomyocyte transplantation-ready for translation? Front Pharmacol 2024; 15:1408679. [PMID: 38962314 PMCID: PMC11221829 DOI: 10.3389/fphar.2024.1408679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Non-human primates (NHP) are valuable models for late translational pre-clinical studies, often seen as a last step before clinical application. The unique similarity between NHPs and humans is often the subject of ethical concerns. However, it is precisely this analogy in anatomy, physiology, and the immune system that narrows the translational gap to other animal models in the cardiovascular field. Cell and gene therapy approaches are two dominant strategies investigated in the research field of cardiac regeneration. Focusing on the cell therapy approach, several xeno- and allogeneic cell transplantation studies with a translational motivation have been realized in macaque species. This is based on the pressing need for novel therapeutic options for heart failure patients. Stem cell-based remuscularization of the injured heart can be achieved via direct injection of cardiomyocytes (CMs) or patch application. Both CM delivery approaches are in the late preclinical stage, and the first clinical trials have started. However, are we already ready for the clinical area? The present review concentrates on CM transplantation studies conducted in NHPs, discusses the main sources and discoveries, and provides a perspective about human translation.
Collapse
Affiliation(s)
- Constantin von Bibra
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| | - Rabea Hinkel
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| |
Collapse
|
5
|
Gill JK, Rehsia SK, Verma E, Sareen N, Dhingra S. Stem cell therapy for cardiac regeneration: past, present, and future. Can J Physiol Pharmacol 2024; 102:161-179. [PMID: 38226807 DOI: 10.1139/cjpp-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cardiac disorders remain the leading cause of mortality worldwide. Current clinical strategies, including drug therapy, surgical interventions, and organ transplantation offer limited benefits to patients without regenerating the damaged myocardium. Over the past decade, stem cell therapy has generated a keen interest owing to its unique self-renewal and immune privileged characteristics. Furthermore, the ability of stem cells to differentiate into specialized cell types, has made them a popular therapeutic tool against various diseases. This comprehensive review provides an overview of therapeutic potential of different types of stem cells in reference to cardiovascular diseases. Furthermore, it sheds light on the advantages and limitations associated with each cell type. An in-depth analysis of the challenges associated with stem cell research and the hurdles for its clinical translation and their possible solutions have also been elaborated upon. It examines the controversies surrounding embryonic stem cells and the emergence of alternative approaches, such as the use of induced pluripotent stem cells for cardiac therapeutic applications. Overall, this review serves as a valuable resource for researchers, clinicians, and policymakers involved in the field of regenerative medicine, guiding the development of safe and effective stem cell-based therapies to revolutionize patient care.
Collapse
Affiliation(s)
- Jaideep Kaur Gill
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sargun Kaur Rehsia
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg MB, R2H2A6, Canada
| |
Collapse
|
6
|
Fei X, Zhu M, Li X. Characterization of Cell Type Abundance and Gene Expression Timeline from Burned Skin Bulk Transcriptomics by Deconvolution. J Burn Care Res 2024; 45:205-215. [PMID: 37956340 DOI: 10.1093/jbcr/irad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 11/15/2023]
Abstract
Currently, no timeline of cell heterogeneity in thermally injured skin has been reported. In this study, we proposed an approach to deconvoluting cell type abundance and expression from skin bulk transcriptomics with cell type signature matrix constructed by combining independent normal skin and peripheral blood scRNA-seq datasets. Using CIBERSORTx group mode deconvolution, we identified perturbed cell type fractions and cell type-specific gene expression in three stages postthermal injury. We found an increase in cell proportions and cell type-specific gene expression perturbation of neutrophils, macrophages, and endothelial cells and a decrease in CD4+ T cells, keratinocytes, melanocyte, and fibroblast cells, and cell type-specific gene expression perturbation postburn injury. Keratinocyte, fibroblast, and macrophage up regulated genes were dynamically enriched in overlapping and distinct Gene Ontology biological processes including acute phase response, leukocyte migration, metabolic, morphogenesis, and development process. Down-regulated genes were enriched in Wnt signaling, mesenchymal cell differentiation, gland and axon development, epidermal morphogenesis, and fatty acid and glucose metabolic process. We noticed an increase in the expression of CCL7, CCL2, CCL20, CCR1, CCR5, CCXL8, CXCL2, CXCL3, MMP1, MMP8, MMP3, IL24, IL6, IL1B, IL18R1, and TGFBR1 and a decrease in expression of CCL27, CCR10, CCR6, CCR8, CXCL9, IL37, IL17, IL7, IL11R, IL17R, TGFBR3, FGFR1-4, and IGFR1 in keratinocytes and/or fibroblasts. The inferred timeline of wound healing and CC and CXC genes in keratinocyte was validated on independent dataset GSE174661 of purified keratinocytes. The timeline of different cell types postburn may facilitate therapeutic timing.
Collapse
Affiliation(s)
- Xiaoyi Fei
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui 230009, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Oncology Translational Medicine Research Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Min Zhu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Oncology Translational Medicine Research Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- School of Mathematics and Computer Science, Tongling University, Tongling, Anhui 244061, People's Republic of China
| | - Xueling Li
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui 230009, People's Republic of China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Oncology Translational Medicine Research Center, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- School of Mathematics and Computer Science, Tongling University, Tongling, Anhui 244061, People's Republic of China
| |
Collapse
|
7
|
Hu L, Liang M, Jiang Q, Jie Y, Chen L, Zhang F. Proteomic analysis of neonatal mouse hearts shows PKA functions as a cardiomyocyte replication regulator. Proteome Sci 2023; 21:16. [PMID: 37821903 PMCID: PMC10566114 DOI: 10.1186/s12953-023-00219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The ability of the adult mammalian heart to regenerate can save the cardiac muscle from a loss of function caused by injury. Cardiomyocyte regeneration is a key aspect of research for the treatment of cardiovascular diseases. The mouse heart shows temporary regeneration in the first week after birth; thus, the newborn mouse heart is an ideal model to study heart muscle regeneration. In this study, proteomic analysis was used to investigate the differences in protein expression in the hearts of neonatal mice at days 1 (P1 group), 4 (P4 group), and 7 (P7 group). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed changes in several groups of proteins, including the protein kinase A (PKA) signaling pathway. Moreover, it was found that PKA inhibitors and agonists regulated cardiomyocyte replication in neonatal mouse hearts. These findings suggest that PKA may be a target for the regulation of the cardiomyocyte cell cycle.
Collapse
Affiliation(s)
- Lizhi Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Jiang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Jie
- Department of Cardiovascular Diseases, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Jia Z, Liu Q, Xie Y, Wei J, Sun X, Meng F, Zhao B, Yu Z, Zhao L, Xing Z. Klotho/FGF23 Axis Regulates Cardiomyocyte Apoptosis and Cytokine Release through ERK/MAPK Pathway. Cardiovasc Toxicol 2023; 23:317-328. [PMID: 37704925 DOI: 10.1007/s12012-023-09805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Coronary artery disease (CAD) as a major cardiovascular disease is the leading global cause of mortality, Klotho/FGF23 axis involved in development of cardiovascular disease, while the function and underlying mechanism of Klotho/FGF23 axis in CAD is unclear. Blood samples from 67 CAD patients with coronary artery bypass graft (CABG) surgery were collected, and the level of Klotho and FGF23 of those patients was measured by using an ELISA kit. Cardiomyocyte was isolated from 0 to 3 days Sprague Dawley (SD) rats. Expression of Klotho, FGF23 and the cardiomyocyte marker α-sarcomeric actin (α-SA), myosin heavy chain (MHC) and cardiac troponin I (cTnI) was assessed by immunofluorescence staining. Expression of Klotho and FGF23 mRNA was detected by qRT-PCR. Apoptosis and cell cycle were measured by flow cytometry. Cell viability was detected by using CCK-8. The protein expression of ERK/MAPK pathway related protein and cytokines production was measured by western blotting. The levels of Klotho in CAD patients increased after CABG surgery, while FGF23 decreased. Isolated cardiomyocyte morphology and structure were completed, and with stabilized beating within culture for 15 days, besides, α-SA, MHC, and cTnI proved positive. After transfected Lenti-Klotho and Lenti-FGF23 into isolated cardiomyocyte, fluorescence staining showed that the transfection was successful, and qRT-PCR results showed that the expression levels of Klotho and FGF23 mRNA significant increased compared with NEG (empty vector) group. Immunofluorescence staining results showed that compared with NEG group, there was a higher Klotho positive rate and lower FGF23 positive rate in Klotho overexpression (Klotho) group, while, there was a higher FGF23 positive rate and lower Klotho positive rate in FGF23 overexpression (FGF23) group. In addition, the expression of p-ERK1/2 and p-P38 increased in Klotho group but decreased in FGF23 group. Furthermore, overexpression of Klotho inhibited cardiomyocyte apoptosis, increased S phase fraction, promoted proliferation and elevated expression of transforming growth factor β1 (TGF-β1), nuclear factor-kappa B (NF-κB), angiotensin-II (AT-II), and activator protein-1 (AP-1), overexpression of FGF23 showed the opposite effect, however, ERK agonist (TPA) and inhibitor (U0126) reversed the effect caused by overexpression of Klotho and FGF23 separately. Klotho/FGF23 axis play a critical role in CAD progression through regulating ERK/MAPK pathway in Cardiomyocyte.
Collapse
Affiliation(s)
- Zheng Jia
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, NO. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Qian Liu
- Department of Geriatric Cardiovascular, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ying Xie
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, NO. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Jie Wei
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, NO. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Xiaolin Sun
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, NO. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Fandi Meng
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, NO. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Bin Zhao
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, NO. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Zhenkun Yu
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, NO. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China
| | - Li Zhao
- Department of Cardiovascular Ultrasound, Yan'an Hospital Affiliated to Kunming Medical University, NO. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China.
| | - Zhengjiang Xing
- Department of Cardiovascular Surgery, Yan'an Hospital Affiliated to Kunming Medical University, NO. 245 Renmin East Road, Panlong District, Kunming, 650051, Yunnan, China.
| |
Collapse
|
9
|
Tang Q. Regulatory T cells aid stem-cell therapy for Parkinson's disease. Nature 2023:10.1038/d41586-023-02177-5. [PMID: 37438628 DOI: 10.1038/d41586-023-02177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
|
10
|
Sridharan D, Pracha N, Rana SJ, Ahmed S, Dewani AJ, Alvi SB, Mergaye M, Ahmed U, Khan M. Preclinical Large Animal Porcine Models for Cardiac Regeneration and Its Clinical Translation: Role of hiPSC-Derived Cardiomyocytes. Cells 2023; 12:cells12071090. [PMID: 37048163 PMCID: PMC10093073 DOI: 10.3390/cells12071090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Myocardial Infarction (MI) occurs due to a blockage in the coronary artery resulting in ischemia and necrosis of cardiomyocytes in the left ventricular heart muscle. The dying cardiac tissue is replaced with fibrous scar tissue, causing a decrease in myocardial contractility and thus affecting the functional capacity of the myocardium. Treatments, such as stent placements, cardiac bypasses, or transplants are beneficial but with many limitations, and may decrease the overall life expectancy due to related complications. In recent years, with the advent of human induced pluripotent stem cells (hiPSCs), newer avenues using cell-based approaches for the treatment of MI have emerged as a potential for cardiac regeneration. While hiPSCs and their derived differentiated cells are promising candidates, their translatability for clinical applications has been hindered due to poor preclinical reproducibility. Various preclinical animal models for MI, ranging from mice to non-human primates, have been adopted in cardiovascular research to mimic MI in humans. Therefore, a comprehensive literature review was essential to elucidate the factors affecting the reproducibility and translatability of large animal models. In this review article, we have discussed different animal models available for studying stem-cell transplantation in cardiovascular applications, mainly focusing on the highly translatable porcine MI model.
Collapse
Affiliation(s)
- Divya Sridharan
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nooruddin Pracha
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Schaza Javed Rana
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, Northeast Georgia Medical Center, Gainesville, GA 30501, USA
| | - Salmman Ahmed
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Lake Erie College of Osteopathic Medicine (LECOM), Erie, PA 16509, USA
| | - Anam J Dewani
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Syed Baseeruddin Alvi
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Muhamad Mergaye
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Uzair Ahmed
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Constantin A, Comarița IK, Alexandru N, Filippi A, Bojin F, Gherghiceanu M, Vîlcu A, Nemecz M, Niculescu LS, Păunescu V, Georgescu A. Stem cell‐derived extracellular vesicles reduce the expression of molecules involved in cardiac hypertrophy—In a model of human-induced pluripotent stem cell-derived cardiomyocytes. Front Pharmacol 2022; 13:1003684. [PMID: 36299891 PMCID: PMC9589060 DOI: 10.3389/fphar.2022.1003684] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Cardiac pathological hypertrophy is the major risk factor that usually progresses to heart failure. We hypothesized that extracellular vesicles (EVs), known to act as important mediators in regulating physiological and pathological functions, could have the potential to reduce the cardiac hypertrophy and the ensuing cardiovascular diseases. Herein, the effects of mesenchymal stem cell-derived extracellular vesicles (EV-MSCs) on cardiac hypertrophy were investigated. EVs were isolated from the secretome of human adipose tissue-derived stem cells (EV-ADSCs) or bone marrow-derived stem cells (EV-BMMSCs). Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were stimulated with AngII and TGF-β1, in absence or presence of EVs. The results showed that exposure of hiPSC-CMs to AngII and TGF-β1 generated in vitro model of hypertrophic cardiomyocytes characterized by increases in surface area, reactive oxygen species production, protein expression of cardiac-specific biomarkers atrial natriuretic factor, migration inhibitory factor, cTnI, COL1A1, Cx43, α-SMA and signalling molecules SMAD2 and NF-kBp50. The presence of EV-ADSCs or EV-BMMSCs in the hiPSC-CM culture along with hypertrophic stimuli reduced the protein expressions of hypertrophic specific markers (ANF, MIF, cTnI, COL1A1) and the gene expressions of IL-6 molecule involved in inflammatory process associated with cardiac hypertrophy and transcription factors SMAD2, SMAD3, cJUN, cFOS with role in cardiomyocyte hypertrophic response induced by AngII and TGF-β1. The EV-ADSCs were more effective in reducing the protein expressions of hypertrophic and inflammatory markers, while EV-BMMSCs in reducing the gene expressions of transcription factors. Notably, neither EV-ADSCs nor EV-BMMSCs induced significant changes in cardiac biomarkers Cx43, α-SMA and fibronectin. These different effects of stem cell-derived EVs could be attributed to their miRNA content: some miRNAs (miR-126-3p, miR-222-3p, miR-30e-5p, miR-181b-5p, miR-124-3p, miR-155-5p, miR-210-3p hsa-miR-221-3p) were expressed in both types of EVs and others only in EV-ADSCs (miR-181a-5p, miR-185-5p, miR-21-5p) or in EV-BMMSCs (miR-143-3p, miR-146a-5p, miR-93-5p), some of these attenuating the cardiac hypertrophy while others enhance it. In conclusion, in hiPSC-CMs the stem cell-derived EVs through their cargo reduced the expression of hypertrophic specific markers and molecules involved in inflammatory process associated with cardiac hypertrophy. The data suggest the EV potential to act as therapeutic mediators to reduce cardiac hypertrophy and possibly the subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alina Constantin
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Ioana Karla Comarița
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Nicoleta Alexandru
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Alexandru Filippi
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
| | - Florina Bojin
- Immuno-Physiology and Biotechnology Center (CIFBIOTECH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Timisoara, Romania
| | - Mihaela Gherghiceanu
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- “Victor Babeș” National Institute of Pathology, Bucharest, Romania
| | - Alexandra Vîlcu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Miruna Nemecz
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Loredan Stefan Niculescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Virgil Păunescu
- Immuno-Physiology and Biotechnology Center (CIFBIOTECH), Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- Center for Gene and Cellular Therapies in the Treatment of Cancer Timisoara-OncoGen, Clinical Emergency County Hospital “Pius Brinzeu” Timisoara, Timisoara, Romania
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
- *Correspondence: Adriana Georgescu,
| |
Collapse
|
12
|
Fang J, Li JJ, Zhong X, Zhou Y, Lee RJ, Cheng K, Li S. Engineering stem cell therapeutics for cardiac repair. J Mol Cell Cardiol 2022; 171:56-68. [PMID: 35863282 DOI: 10.1016/j.yjmcc.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular disease is the leading cause of death in the world. Stem cell-based therapies have been widely investigated for cardiac regeneration in patients with heart failure or myocardial infarction (MI) and surged ahead on multiple fronts over the past two decades. To enhance cellular therapy for cardiac regeneration, numerous engineering techniques have been explored to engineer cells, develop novel scaffolds, make constructs, and deliver cells or their derivatives. This review summarizes the state-of-art stem cell-based therapeutics for cardiac regeneration and discusses the emerged bioengineering approaches toward the enhancement of therapeutic efficacy of stem cell therapies in cardiac repair. We cover the topics in stem cell source and engineering, followed by stem cell-based therapies such as cell aggregates and cell sheets, and biomaterial-mediated stem cell therapies such as stem cell delivery with injectable hydrogel, three-dimensional scaffolds, and microneedle patches. Finally, we discuss future directions and challenges of engineering stem cell therapies for clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jennifer J Li
- Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Xintong Zhong
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Ke Cheng
- Department of Biomedical Engineering, North Carolina State University, NC, USA
| | - Song Li
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
13
|
Bouten CVC, Cheng C, Vermue IM, Gawlitta D, Passier R. Cardiovascular tissue engineering and regeneration: A plead for further knowledge convergence. Tissue Eng Part A 2022; 28:525-541. [PMID: 35382591 DOI: 10.1089/ten.tea.2021.0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular tissue engineering and regeneration strive to provide long-term, effective solutions for a growing group of patients in need of myocardial repair, vascular (access) grafts, heart valves, and regeneration of organ microcirculation. In the past two decades, ongoing convergence of disciplines and multidisciplinary collaborations between cardiothoracic surgeons, cardiologists, bioengineers, material scientists, and cell biologists have resulted in better understanding of the problems at hand and novel regenerative approaches. As a side effect, however, the field has become strongly organized and differentiated around topical areas at risk of reinvention of technologies and repetition of approaches and across the areas. A better integration of knowledge and technologies from the individual topical areas and regenerative approaches and technologies may pave the way towards faster and more effective treatments to cure the cardiovascular system. This review summarizes the evolution of research and regenerative approaches in the areas of myocardial regeneration, heart valve and vascular tissue engineering, and regeneration of microcirculations and discusses previous and potential future integration of these individual areas and developed technologies for improved clinical impact. Finally, it provides a perspective on the further integration of research organization, knowledge implementation, and valorization as a contributor to advancing cardiovascular tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Carlijn V C Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ijsbrand M Vermue
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center, Utrecht, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Mitrečić D, Hribljan V, Jagečić D, Isaković J, Lamberto F, Horánszky A, Zana M, Foldes G, Zavan B, Pivoriūnas A, Martinez S, Mazzini L, Radenovic L, Milasin J, Chachques JC, Buzanska L, Song MS, Dinnyés A. Regenerative Neurology and Regenerative Cardiology: Shared Hurdles and Achievements. Int J Mol Sci 2022; 23:855. [PMID: 35055039 PMCID: PMC8776151 DOI: 10.3390/ijms23020855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 02/05/2023] Open
Abstract
From the first success in cultivation of cells in vitro, it became clear that developing cell and/or tissue specific cultures would open a myriad of new opportunities for medical research. Expertise in various in vitro models has been developing over decades, so nowadays we benefit from highly specific in vitro systems imitating every organ of the human body. Moreover, obtaining sufficient number of standardized cells allows for cell transplantation approach with the goal of improving the regeneration of injured/disease affected tissue. However, different cell types bring different needs and place various types of hurdles on the path of regenerative neurology and regenerative cardiology. In this review, written by European experts gathered in Cost European action dedicated to neurology and cardiology-Bioneca, we present the experience acquired by working on two rather different organs: the brain and the heart. When taken into account that diseases of these two organs, mostly ischemic in their nature (stroke and heart infarction), bring by far the largest burden of the medical systems around Europe, it is not surprising that in vitro models of nervous and heart muscle tissue were in the focus of biomedical research in the last decades. In this review we describe and discuss hurdles which still impair further progress of regenerative neurology and cardiology and we detect those ones which are common to both fields and some, which are field-specific. With the goal to elucidate strategies which might be shared between regenerative neurology and cardiology we discuss methodological solutions which can help each of the fields to accelerate their development.
Collapse
Affiliation(s)
- Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Valentina Hribljan
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | | | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Alex Horánszky
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
| | - Gabor Foldes
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain
| | - Letizia Mazzini
- ALS Center, Department of Neurology, Maggiore della Carità Hospital, University of Piemonte Orientale, 28100 Novara, Italy
| | - Lidija Radenovic
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Milasin
- Laboratory for Stem Cell Research, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan Carlos Chachques
- Laboratory of Biosurgical Research, Pompidou Hospital, University of Paris, 75006 Paris, France
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Min Suk Song
- Omnion Research International Ltd., 10000 Zagreb, Croatia
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str. 26, 2100 Gordillo, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, 2100 Godollo, Hungary
- HCEMM-USZ Stem Cell Research Group, Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Chen J, Liu HF, Qiao LB, Wang FB, Wang L, Lin Y, Liu J. Global RNA editing identification and characterization during human pluripotent-to-cardiomyocyte differentiation. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:879-891. [PMID: 34760335 PMCID: PMC8551472 DOI: 10.1016/j.omtn.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/05/2021] [Accepted: 10/01/2021] [Indexed: 01/19/2023]
Abstract
RNA editing is widely involved in stem cell differentiation and development; however, RNA editing events during human cardiomyocyte differentiation have not yet been characterized and elucidated. Here, we identified genome-wide RNA editing sites and systemically characterized their genomic distribution during four stages of human cardiomyocyte differentiation. It was found that the expression level of ADAR1 affected the global number of adenosine to inosine (A-to-I) editing sites but not the editing degree. Next, we identified 43, 163, 544, and 141 RNA editing sites that contribute to changes in amino acid sequences, variation in alternative splicing, alterations in miRNA-target binding, and changes in gene expression, respectively. Generally, RNA editing showed a stage-specific pattern with 211 stage-shared editing sites. Interestingly, cardiac muscle contraction and heart-disease-related pathways were enriched by cardio-specific editing genes, emphasizing the connection between cardiomyocyte differentiation and heart diseases from the perspective of RNA editing. Finally, it was found that these RNA editing sites are also related to several congenital and noncongenital heart diseases. Together, our study provides a new perspective on cardiomyocyte differentiation and offers more opportunities to understand the mechanisms underlying cell fate determination, which can promote the development of cardiac regenerative medicine and therapies for human heart diseases.
Collapse
Affiliation(s)
- Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hui-Fang Liu
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Li-Bo Qiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fang-Bin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.,Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
16
|
Naumova N, Iop L. Bioengineering the Cardiac Conduction System: Advances in Cellular, Gene, and Tissue Engineering for Heart Rhythm Regeneration. Front Bioeng Biotechnol 2021; 9:673477. [PMID: 34409019 PMCID: PMC8365186 DOI: 10.3389/fbioe.2021.673477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Heart rhythm disturbances caused by different etiologies may affect pediatric and adult patients with life-threatening consequences. When pharmacological therapy is ineffective in treating the disturbances, the implantation of electronic devices to control and/or restore normal heart pacing is a unique clinical management option. Although these artificial devices are life-saving, they display many limitations; not least, they do not have any capability to adapt to somatic growth or respond to neuroautonomic physiological changes. A biological pacemaker could offer a new clinical solution for restoring heart rhythms in the conditions of disorder in the cardiac conduction system. Several experimental approaches, such as cell-based, gene-based approaches, and the combination of both, for the generation of biological pacemakers are currently established and widely studied. Pacemaker bioengineering is also emerging as a technology to regenerate nodal tissues. This review analyzes and summarizes the strategies applied so far for the development of biological pacemakers, and discusses current translational challenges toward the first-in-human clinical application.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
17
|
Extracellular Vesicle-Based Therapeutics for Heart Repair. NANOMATERIALS 2021; 11:nano11030570. [PMID: 33668836 PMCID: PMC7996323 DOI: 10.3390/nano11030570] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are constituted by a group of heterogeneous membrane vesicles secreted by most cell types that play a crucial role in cell–cell communication. In recent years, EVs have been postulated as a relevant novel therapeutic option for cardiovascular diseases, including myocardial infarction (MI), partially outperforming cell therapy. EVs may present several desirable features, such as no tumorigenicity, low immunogenic potential, high stability, and fine cardiac reparative efficacy. Furthermore, the natural origin of EVs makes them exceptional vehicles for drug delivery. EVs may overcome many of the limitations associated with current drug delivery systems (DDS), as they can travel long distances in body fluids, cross biological barriers, and deliver their cargo to recipient cells, among others. Here, we provide an overview of the most recent discoveries regarding the therapeutic potential of EVs for addressing cardiac damage after MI. In addition, we review the use of bioengineered EVs for targeted cardiac delivery and present some recent advances for exploiting EVs as DDS. Finally, we also discuss some of the most crucial aspects that should be addressed before a widespread translation to the clinical arena.
Collapse
|
18
|
The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021; 10:cells10020240. [PMID: 33513719 PMCID: PMC7912181 DOI: 10.3390/cells10020240] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
The rapid progress in the field of stem cell research has laid strong foundations for their use in regenerative medicine applications of injured or diseased tissues. Growing evidences indicate that some observed therapeutic outcomes of stem cell-based therapy are due to paracrine effects rather than long-term engraftment and survival of transplanted cells. Given their ability to cross biological barriers and mediate intercellular information transfer of bioactive molecules, extracellular vesicles are being explored as potential cell-free therapeutic agents. In this review, we first discuss the state of the art of regenerative medicine and its current limitations and challenges, with particular attention on pluripotent stem cell-derived products to repair organs like the eye, heart, skeletal muscle and skin. We then focus on emerging beneficial roles of extracellular vesicles to alleviate these pathological conditions and address hurdles and operational issues of this acellular strategy. Finally, we discuss future directions and examine how careful integration of different approaches presented in this review could help to potentiate therapeutic results in preclinical models and their good manufacturing practice (GMP) implementation for future clinical trials.
Collapse
|