1
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024; 28:857-873. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Hu J, Tian J, Deng X, Liu X, Zhou F, Yu J, Chi R, Xiao C. Heterotrophic nitrification processes driven by glucose and sodium acetate: New insights into microbial communities, functional genes and nitrogen metabolism from metagenomics and metabolomics. BIORESOURCE TECHNOLOGY 2024; 408:131226. [PMID: 39111401 DOI: 10.1016/j.biortech.2024.131226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Heterotrophic nitrification (HN) bacteria use organic carbon sources to remove ammonia nitrogen (NH4+-N); however, the mechanisms of carbon and nitrogen metabolism are unknown. To understand this mechanism, HN functional microbial communities named MG and MA were enriched with glucose and sodium acetate, respectively. The NH4+-N removal efficiencies were 98.87 % and 98.91 %, with 88.06 % and 69.77 % nitrogen assimilation for MG and MA at 22 h and 10 h, respectively. Fungi (52.86 %) were more competitive in MG, and bacteria (99.99 %) were dominant in MA. Metagenomic and metabolomic analyses indicated that HN might be a signaling molecule (NO) in the production and detoxification processes when MG metabolizes glucose (amo, hao, and nosZ were not detected). MA metabolizes sodium acetate to produce less energy and promotes nitrogen oxidation reduction; however, genes (hao, hox, and NOS2) were not detected. These results suggest that NO and energy requirements induce microbial HN.
Collapse
Affiliation(s)
- Jingang Hu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jiaoyang Tian
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiangyi Deng
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xuemei Liu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; Hubei Three Gorges Laboratory, Yichang 443007, PR China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; Hubei Three Gorges Laboratory, Yichang 443007, PR China.
| |
Collapse
|
3
|
Liu YY, Wang RJ, Ru SS, Gao F, Liu W, Zhang X. Comparative analysis of phosphorylated proteomes between plerocercoid and adult Spirometra mansoni reveals phosphoproteomic profiles of the medical tapeworm. Parasit Vectors 2024; 17:371. [PMID: 39217359 PMCID: PMC11366163 DOI: 10.1186/s13071-024-06454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Plerocercoid larvae of the tapeworm Spirometra mansoni can infect both humans and animals, leading to severe parasitic zoonosis worldwide. Despite ongoing research efforts, our understanding of the developmental process of S. mansoni remains inadequate. To better characterize posttranslational regulation associated with parasite growth, development, and reproduction, a comparative phosphoproteomic study was conducted on the plerocercoid and adult stages of S. mansoni. METHODS In this study, site-specific phosphoproteomic analysis was conducted via 4D label-free quantitative analysis technology to obtain primary information about the overall phosphorylation status of plerocercoids and adults. RESULTS A total of 778 differentially abundant proteins (DAPs) were detected between adults and plerocercoids, of which 704 DAPs were upregulated and only 74 were downregulated. DAPs involved in metabolic activity were upregulated in plerocercoid larvae compared with adults, whereas DAPs associated with binding were upregulated in adults. Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) analyses indicated that most DAPs involved in signal transduction and environmental information processing pathways were highly active in adults. DAPs upregulated in the plerocercoid group were enriched mainly in metabolic activities. The kinases PKACA, GSK3B, and smMLCK closely interact, suggesting potential active roles in the growth and development of S. mansoni. CONCLUSIONS The dataset presented in this study offers a valuable resource for forthcoming research on signaling pathways as well as new insights into functional studies on the molecular mechanisms of S. mansoni.
Collapse
Affiliation(s)
- Yong Yan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Department of Clinical Microbiology, The People's Hospital of Xixian, Xinyang, 464300, Henan, China
| | - Rui Jie Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Si Si Ru
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fei Gao
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
4
|
Han X, Ashraf M, Shi H, Nkembo AT, Tipparaju SM, Xuan W. Combined Endurance and Resistance Exercise Mitigates Age-Associated Cardiac Dysfunction. Adv Biol (Weinh) 2024:e2400137. [PMID: 38773896 DOI: 10.1002/adbi.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Aging is associated with a decline in cardiac function. Exercise has been shown to effectively reduce the risks of cardiovascular diseases. Here whether a combination of endurance and resistance exercises can improve cardiac function in aged mice during late life is investigated. Through transcriptome analysis, several signaling pathways activated in the hearts of 22-month-old mice after combined exercise, including cardiac muscle contraction, mitophagy, and longevity regulation are identified. Combined exercise training mitigated age-associated pathological cardiac hypertrophy, reduced oxidative stress, cardiac senescence, and enhanced cardiac function. Upstream stimulatory factor 2 (Usf2) is upregulated in the aged mouse hearts with combined exercise compared to sedentary mice. In the human cardiomyocytes senescent model, overexpression of Usf2 led to anti-senescence effects, while knockdown of Usf2 exacerbated cellular senescence. The results suggest that a combination of endurance and resistance exercises, such as swimming and resistance running, can mitigate age-related pathological cardiac remodeling and cardiac dysfunction in late life. These cardioprotective effects are likely due to the activation of Usf2 and its anti-senescence effect. Therefore, Usf2 can potentially be a novel therapeutic target for mitigating age-related cardiac dysfunction.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Muhammad Ashraf
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Hong Shi
- Division of Rheumatology, Department of Internal Medicine, Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Augustine T Nkembo
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
5
|
Wróbel-Nowicka K, Wojciechowska C, Jacheć W, Zalewska M, Romuk E. The Role of Oxidative Stress and Inflammatory Parameters in Heart Failure. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:760. [PMID: 38792942 PMCID: PMC11123446 DOI: 10.3390/medicina60050760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
Heart failure (HF) remains a major medical and social problem. The NT-pro-brain natriuretic peptide (NT-proBNP) and its active form, brain-type natriuretic peptide (BNP), in a simple blood test are the gold-standard biomarkers for HF diagnosis. However, even good biomarkers such as natriuretic peptides fail to predict all the risks associated with HF due to the diversity of the mechanisms involved. The pathophysiology of HF is determined by numerous factors, including oxidative stress, inflammation, neuroendocrine activation, pathological angiogenesis, changes in apoptotic pathways, fibrosis and vascular remodeling. High readmission and mortality rates prompt a search for new markers for the diagnosis, prognosis and treatment of HF. Oxidative-stress-mediated inflammation plays a crucial role in the development of subsequent changes in the failing heart and provides a new insight into this complex mechanism. Oxidative stress and inflammatory biomarkers appear to be a promising diagnostic and prognostic tool in patients with HF. This systematic review provides an overview of the current knowledge about oxidative stress and inflammation parameters as markers of HF.
Collapse
Affiliation(s)
- Karolina Wróbel-Nowicka
- Medical Laboratory of Teresa Fryda, Katowice, Laboratory Branch in Specialist Hospital in Zabrze, 10, M.C-Skłodowska St., 41-800 Zabrze, Poland;
| | - Celina Wojciechowska
- 2nd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10, M.C-Skłodowska St., 41-800 Zabrze, Poland; (C.W.); (W.J.)
| | - Wojciech Jacheć
- 2nd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10, M.C-Skłodowska St., 41-800 Zabrze, Poland; (C.W.); (W.J.)
| | - Marzena Zalewska
- Department of Basic Medical Sciences, Faculty of Public Health in Bytom, Medical University of Silesia, Piekarska St., 41-902 Bytom, Poland;
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19, Jordan St., 41-808 Zabrze, Poland
| |
Collapse
|
6
|
Takenaka Y, Hirasaki M, Bono H, Nakamura S, Kakinuma Y. Transcriptome Analysis Reveals Enhancement of Cardiogenesis-Related Signaling Pathways by S-Nitroso- N -Pivaloyl- d -Penicillamine: Implications for Improved Diastolic Function and Cardiac Performance. J Cardiovasc Pharmacol 2024; 83:433-445. [PMID: 38422186 DOI: 10.1097/fjc.0000000000001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT We previously reported a novel compound called S-nitroso- N -pivaloyl- d -penicillamine (SNPiP), which was screened from a group of nitric oxide donor compounds with a basic chemical structure of S-nitroso- N -acetylpenicillamine, to activate the nonneuronal acetylcholine system. SNPiP-treated mice exhibited improved cardiac output and enhanced diastolic function, without an increase in heart rate. The nonneuronal acetylcholine-activating effects included increased resilience to ischemia, modulation of energy metabolism preference, and activation of angiogenesis. Here, we performed transcriptome analysis of SNPiP-treated mice ventricles to elucidate how SNPiP exerts beneficial effects on cardiac function. A time-course study (24 and 48 hours after SNPiP administration) revealed that SNPiP initially induced Wnt and cyclic guanosine monophosphate-protein kinase G signaling pathways, along with upregulation of genes involved in cardiac muscle tissue development and oxytocin signaling pathway. We also observed enrichment of glycolysis-related genes in response to SNPiP treatment, resulting in a metabolic shift from oxidative phosphorylation to glycolysis, which was suggested by reduced cardiac glucose contents while maintaining adenosine tri-phosphate levels. In addition, SNPiP significantly upregulated atrial natriuretic peptide and sarcolipin, which play crucial roles in calcium handling and cardiac performance. These findings suggest that SNPiP may have therapeutic potential based on the pleiotropic mechanisms elucidated in this study.
Collapse
Affiliation(s)
- Yasuhiro Takenaka
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masataka Hirasaki
- Department of Clinical Cancer Genomics, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; and
| | - Shigeo Nakamura
- Department of Chemistry, Nippon Medical School, Tokyo, Japan
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
7
|
Wang Q, Liang S, Qian J, Xu J, Zheng Q, Wang M, Guo X, Min J, Wu G, Zhuang Z, Luo W, Liang G. OTUD1 promotes isoprenaline- and myocardial infarction-induced heart failure by targeting PDE5A in cardiomyocytes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167018. [PMID: 38185350 DOI: 10.1016/j.bbadis.2024.167018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Heart failure represents a major cause of death worldwide. Recent research has emphasized the potential role of protein ubiquitination/deubiquitination protein modification in cardiac pathology. Here, we investigate the role of the ovarian tumor deubiquitinase 1 (OTUD1) in isoprenaline (ISO)- and myocardial infarction (MI)-induced heart failure and its molecular mechanism. OTUD1 protein levels were raised markedly in murine cardiomyocytes after MI and ISO treatment. OTUD1 deficiency attenuated myocardial hypertrophy and cardiac dysfunction induced by ISO infusion or MI operation. In vitro, OTUD1 knockdown in neonatal rat ventricular myocytes (NRVMs) attenuated ISO-induced injuries, while OTUD1 overexpression aggravated the pathological changes. Mechanistically, LC-MS/MS and Co-IP studies showed that OTUD1 bound directly to the GAF1 and PDEase domains of PDE5A. OTUD1 was found to reverse K48 ubiquitin chain in PDE5A through cysteine at position 320 of OTUD1, preventing its proteasomal degradation. PDE5A could inactivates the cGMP-PKG-SERCA2a signaling axis which dysregulate the calcium handling in cardiomyocytes, and leading to the cardiomyocyte injuries. In conclusion, OTUD1 promotes heart failure by deubiquitinating and stabilizing PDE5A in cardiomyocytes. These findings have identified PDE5A as a new target of OTUD1 and emphasize the potential of OTUD1 as a target for treating heart failure.
Collapse
Affiliation(s)
- Qinyan Wang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shiqi Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinfu Qian
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiachen Xu
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingsong Zheng
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, China
| | - Xiaochen Guo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Julian Min
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
8
|
Cheng C, Zhang J, Li X, Xue F, Cao L, Meng L, Sui W, Zhang M, Zhao Y, Xi B, Yu X, Xu F, Yang J, Zhang Y, Zhang C. NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis in ApoE knockout mice. Signal Transduct Target Ther 2023; 8:290. [PMID: 37553374 PMCID: PMC10409771 DOI: 10.1038/s41392-023-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Previous studies suggested a beneficial effect of natriuretic peptides in animal models of cardiovascular disease, but the role of natriuretic peptide receptor C (NPRC) in the pathogenesis of atherosclerosis (AS) remains unknown. This study was designed to test the hypothesis that NPRC may promote AS lesion formation and instability by enhancing oxidative stress, inflammation, and apoptosis via protein kinase A (PKA) signaling. ApoE-/- mice were fed chow or Western diet for 12 weeks and NPRC expression was significantly increased in the aortic tissues of Western diet-fed mice. Systemic NPRC knockout mice were crossed with ApoE-/- mice to generate ApoE-/-NPRC-/- mice, and NPRC deletion resulted in a significant decrease in the size and instability of aortic atherosclerotic lesions in ApoE-/-NPRC-/- versus ApoE-/- mice. In addition, endothelial cell-specific NPRC knockout attenuated atherosclerotic lesions in mice. In contrast, endothelial cell overexpression of NPRC aggravated the size and instability of atherosclerotic aortic lesions in mice. Experiments in vitro showed that NPRC knockdown in human aortic endothelial cells (HAECs) inhibited ROS production, pro-inflammatory cytokine expression and endothelial cell apoptosis, and increased eNOS expression. Furthermore, NPRC knockdown in HAECs suppressed macrophage migration, cytokine expression, and phagocytosis via its effects on endothelial cells. On the contrary, NPRC overexpression in endothelial cells resulted in opposite effects. Mechanistically, the anti-inflammation and anti-atherosclerosis effects of NPRC deletion involved activation of cAMP/PKA pathway, leading to downstream upregulated AKT1 pathway and downregulated NF-κB pathway. In conclusion, NPRC deletion reduced the size and instability of atherosclerotic lesions in ApoE-/- mice via attenuating inflammation and endothelial cell apoptosis and increasing eNOS expression by modulating cAMP/PKA-AKT1 and NF-κB pathways. Thus, targeting NPRC may provide a promising approach to the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Cheng Cheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Jie Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Fei Xue
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Cao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Meng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuxia Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
9
|
Fedorova OV, Shilova VY, Zernetkina V, Juhasz O, Wei W, Lakatta EG, Bagrov AY. Silencing of PKG1 Gene Mimics Effect of Aging and Sensitizes Rat Vascular Smooth Muscle Cells to Cardiotonic Steroids: Impact on Fibrosis and Salt Sensitivity. J Am Heart Assoc 2023; 12:e028768. [PMID: 37301747 PMCID: PMC10356040 DOI: 10.1161/jaha.122.028768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/23/2023] [Indexed: 06/12/2023]
Abstract
Background Marinobufagenin, NKA (Na/K-ATPase) inhibitor, causes vasoconstriction and induces fibrosis via inhibition of Fli1 (Friend leukemia integration-1), a negative regulator of collagen synthesis. In vascular smooth muscle cells (VSMC), ANP (atrial natriuretic peptide), via a cGMP/PKG1 (protein kinase G1)-dependent mechanism, reduces NKA sensitivity to marinobufagenin. We hypothesized that VSMC from old rats, due to downregulation of ANP/cGMP/PKG-dependent signaling, would exhibit heightened sensitivity to the profibrotic effect of marinobufagenin. Methods and Results Cultured VSMC from the young (3-month-old) and old (24-month-old) male Sprague-Dawley rats and young VSMC with silenced PKG1 gene were treated with 1 nmol/L ANP, or with 1 nmol/L marinobufagenin, or with a combination of ANP and marinobufagenin. Collagen-1, Fli1, and PKG1 levels were assessed by Western blotting analyses. Vascular PKG1 and Fli1 levels in the old rats were reduced compared with their young counterparts. ANP prevented inhibition of vascular NKA by marinobufagenin in young VSMC but not in old VSMC. In VSMC from the young rats, marinobufagenin induced downregulation of Fli1 and an increase in collagen-1 level, whereas ANP blocked this effect. Silencing of the PKG1 gene in young VSMC resulted in a reduction in levels of PKG1 and Fli1; marinobufagenin additionally reduced Fli1 and increased collagen-1 level, and ANP failed to oppose these marinobufagenin effects, similar to VSMC from the old rats with the age-associated reduction in PKG1. Conclusions Age-associated reduction in vascular PKG1 and the resultant decline in cGMP signaling lead to the loss of the ability of ANP to oppose marinobufagenin-induced inhibition of NKA and fibrosis development. Silencing of the PKG1 gene mimicked these effects of aging.
Collapse
Affiliation(s)
- Olga V. Fedorova
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
| | - Victoria Y. Shilova
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
- Present address:
Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
| | - Valentina Zernetkina
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
| | - Ondrej Juhasz
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
| | - Wen Wei
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
| | - Edward G. Lakatta
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
| | - Alexei Y. Bagrov
- Laboratory of Cardiovascular ScienceNational Institute on Aging, NIHBaltimoreMDUSA
- Padakonn PharmaNarvaEstonia
| |
Collapse
|
10
|
Zhu Q, Luo Y, Wen Y, Wang D, Li J, Fan Z. Semaglutide inhibits ischemia/reperfusion-induced cardiomyocyte apoptosis through activating PKG/PKCε/ERK1/2 pathway. Biochem Biophys Res Commun 2023; 647:1-8. [PMID: 36706596 DOI: 10.1016/j.bbrc.2023.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Apoptosis is a major pathophysiological change following myocardial ischemia/reperfusion (I/R) injury. Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are widely expressed in the cardiovascular system and GLP-1/GLP-1R activates the protein kinase G (PKG)-related signaling pathway. Therefore, this study tested whether semaglutide, a new GLP-1 analog, inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. We induced myocardial I/R injury in rats and hypoxia/reoxygenation (H/R) injury in H9C2 cells and detected the effects of semaglutide, a PKG analog (8-Br-cGMP), and a PKG inhibitor (KT-5823) on the PKG/PKCε/ERK1/2 pathway and cardiomyocyte apoptosis. We found that semaglutide upregulated GLP-1R levels, and both semaglutide and 8-Br-cGMP activated the PKG/PKCε/ERK1/2 pathway, inhibited myocardial infarction (MI), decreased hs-cTNT levels, increased NT-proBNP levels, and suppressed cardiomyocyte apoptosis in I/R rats and H/R H9C2 cells. However, KT-5823 exerted contrasting effects with semaglutide and 8-Br-cGMP, and KT-5823 weakened the cardioprotective effects of semaglutide. In conclusion, semaglutide inhibits I/R injury-induced cardiomyocyte apoptosis by activating the PKG/PKCε/ERK1/2 pathway. The beneficial effect of GLP-1/GLP-1R, involved in the activation of the PKG/PKCε/ERK1/2 pathway, may provide a novel treatment method for myocardial I/R injury.
Collapse
Affiliation(s)
- Qiuxia Zhu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China
| | - Yong Luo
- Department of Cardiology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260, Chongqing, China
| | - Yuetao Wen
- Department of Neurosurgery, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Number 725, Jiangzhou Avenue, Jiangjin District, 402260, Chongqing, China
| | - Ding Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China
| | - Jing Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Number 25, Taiping Street. Jiangyang District, 400042, Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Zhang D, Lü J, Ren Z, Zhang X, Wu H, Sa R, Wang X, Wang Y, Lin Z, Zhang B. Potential cardiotoxicity induced by Euodiae Fructus: In vivo and in vitro experiments and untargeted metabolomics research. Front Pharmacol 2022; 13:1028046. [PMID: 36353487 PMCID: PMC9637925 DOI: 10.3389/fphar.2022.1028046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 09/16/2023] Open
Abstract
Background: Euodiae Fructus, a well-known herbal medicine, is widely used in Asia and has also gained in popularity in Western countries over the last decades. It has known side effects, which have been observed in clinical settings, but few studies have reported on its cardiotoxicity. Methods: In the present study, experiments using techniques of untargeted metabolomics clarify the hazardous effects of Euodiae Fructus on cardiac function and metabolism in rats in situations of overdosage and unsuitable syndrome differentiation. In vitro assays are conducted to observe the toxic effects of evodiamine and rutaecarpine, two main chemical constituents of Euodiae Fructus, in H9c2 and neonatal rat cardiomyocytes (NRCMs), with their signaling mechanisms analyzed accordingly. Results: The cardiac cytotoxicity of evodiamine and rutaecarpine in in vivo experiments is associated with remarkable alterations in lactate dehydrogenase, creatine kinase, and mitochondrial membrane potential; also with increased intensity of calcium fluorescence, decreased protein expression of the cGMP-PKG pathway in H9c2 cells, and frequency of spontaneous beat in NRCMs. Additionally, the results in rats with Yin deficiency receiving a high-dosage of Euodiae Fructus suggest obvious cardiac physiological dysfunction, abnormal electrocardiogram, pathological injuries, and decreased expression of PKG protein. At the level of endogenous metabolites, the cardiac side effects of overdose and irrational usage of Euodiae Fructus relate to 34 differential metabolites and 10 metabolic pathways involving among others, the purine metabolism, the glycerophospholipid metabolism, the glycerolipid metabolism, and the sphingolipid metabolism. Conclusion: These findings shed new light on the cardiotoxicity induced by Euodiae Fructus, which might be associated with overdose and unsuitable syndrome differentiation, that comes from modulating the cGMP-PKG pathway and disturbing the metabolic pathways of purine, lipid, and amino acid. Continuing research is needed to ensure pharmacovigilance for the safe administration of Chinese herbs in the future.
Collapse
Affiliation(s)
- Dan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jintao Lü
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huanzhang Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rina Sa
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Gansu Provincial Hospital, Lanzhou, China
| | - Xiaofang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Centre for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Wu LF, Wang DP, Shen J, Gao LJ, Zhou Y, Liu QH, Cao JM. Global profiling of protein lysine malonylation in mouse cardiac hypertrophy. J Proteomics 2022; 266:104667. [PMID: 35788409 DOI: 10.1016/j.jprot.2022.104667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/06/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Lysine malonylation, a novel identified protein posttranslational modification (PTM), is conservative and present in both eukaryotic and prokaryotic cells. Previous studies have reported that malonylation plays an important role in inflammation, angiogenesis, and diabetes. However, its potential role in cardiac remodeling remains unknown. Here, we observed a reduced lysine malonylation in hypertrophic mice hearts created by transverse aortic constriction (TAC) for 8 weeks. We also detected a decreased lysine malonylation in hypertrophic H9C2 cardiomyocytes induced by angiotensin II for 48 h. Using a proteomic method based on affinity purification and LC-MS/MS, we identified total 679 malonylated sites in 330 proteins in the hearts of sham mice and TAC mice. Bioinformatic analysis of the proteomic data revealed enrichment of malonylated proteins involved in cardiac structure and contraction, cGMP-PKG pathway, and metabolism. Specifically, we detected a decreased lysine malonylation in myocardial isocitrate dehydrogenase 2 (IDH2) by immunoprecipitation coupled with Western blotting both in vivo and in vitro. Together, our work suggests an important role and implication of protein lysine malonylation in cardiac hypertrophy, especially the IDH2. SIGNIFICANCE: Heart failure is the terminal stage of cardiac hypertrophy, which imposes an enormous clinical and economic burden worldwide. Despite our knowledge on the pathophysiology of the disease, current therapeutic approaches are still largely limited. Cardiac hypertrophy can be regulated at post-translational modifications (PTMs), and several PTMs have been reported in cardiac hypertrrophy and heart failure. In our study, we first reported a novel PTMs, lysine malonylation, in cardiac hypertophy. we found a reduced lysine malonylation in hypertrophic mice hearts in vivo and H9C2 cardiomyocytes after stimulating with angiotensinII for 48 h in vitro. Using affinity purification and LC-MS/MS, we identified 679 malonylated sites in 330 proteins in the hearts of sham and TAC mice. Compared to the sham group, 5 sites in 2 proteins were quantified as downregulated targets using a 2-fold threshold (downregulation <0.5-fold, P < 0.05). Functional analysis showed a significant enrichment in cardiac structure and contraction, cGMP-PKG pathway and metabolism. Notably, we identified a decreased Kmal level in isocitrate dehydrogenase 2 (IDH2), but the protein level of IDH2 has no changed in cardiac hypertrophy, These results highlight that lysine malonylation is associated with cardiac hypertrophy, and may be a new therapeutic target of the disease.
Collapse
Affiliation(s)
- Li-Fei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Li-Juan Gao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ying Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Qing-Hua Liu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China; Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
13
|
Physiological and Pathophysiological Effects of C-Type Natriuretic Peptide on the Heart. BIOLOGY 2022; 11:biology11060911. [PMID: 35741432 PMCID: PMC9219612 DOI: 10.3390/biology11060911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
Simple Summary C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), CNP was not previously regarded as an important cardiac modulator. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with its cognate natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. In this review, I introduce the history of research on CNP in the cardiac field. Abstract C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike other members, i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are cardiac hormones secreted from the atrium and ventricle of the heart, respectively, CNP is regarded as an autocrine/paracrine regulator with broad expression in the body. Because of its low expression levels compared to ANP and BNP, early studies failed to show its existence and role in the heart. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with the distribution of its specific natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. NPR-B generates intracellular cyclic guanosine 3′,5′-monophosphate (cGMP) upon CNP binding, followed by various molecular effects including the activation of cGMP-dependent protein kinases, which generates diverse cytoprotective actions in cardiomyocytes, as well as in cardiac fibroblasts. CNP exerts negative inotropic and positive lusitropic responses in both normal and failing heart models. Furthermore, osteocrin, the intrinsic and specific ligand for the clearance receptor for natriuretic peptides, can augment the effects of CNP and may supply a novel therapeutic strategy for cardiac protection.
Collapse
|
14
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
15
|
Gu M, Zhou X, Zhu L, Gao Y, Gao L, Bai C, Yang L, Li G. Myostatin Mutation Promotes Glycolysis by Increasing Phosphorylation of Phosphofructokinase via Activation of PDE5A-cGMP-PKG in Cattle Heart. Front Cell Dev Biol 2022; 9:774185. [PMID: 35155444 PMCID: PMC8831326 DOI: 10.3389/fcell.2021.774185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Myostatin (MSTN) is a primary negative regulator of skeletal muscle mass and causes multiple metabolic changes. However, whether MSTN mutation affects heart morphology and physiology remains unclear. Myostatin mutation (MT) had no effect on cattle cardiac muscle in histological examination, but in biochemical assays, glycolysis increased in cattle hearts with MT. Compared with wild-type cattle, there were no differences in mRNA and protein levels of rate-limiting enzymes, but phosphofructokinase (PFK) phosphorylation increased in cattle hearts with MT. Transcriptome analysis showed that phosphodiesterase-5A (PDE5A), a target for inhibiting cGMP-PKG signaling, was downregulated. For the mechanism, chromatin immunoprecipitation qPCR showed that the SMAD2/SMAD3 complex in the canonical downstream pathway for MSTN combined with the promoter of PDE5A. The cGMP-PKG pathway was activated, and PKG increased phosphorylation of PFK in cattle hearts with MT. In addition, activation of PKG and the increase in PFK phosphorylation promoted glycolysis. Knockdown of PKG resulted in the opposite phenomena. The results indicated that MT potentiated PFK phosphorylation via the PDE5A-cGMP-PKG pathway and thereby promoted glycolysis in the heart.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xinyu Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yajie Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Li Gao
- Baotou Teachers’ College, Baotou, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| |
Collapse
|
16
|
Yokoyama Y, Kataoka N, Nakai M, Matsuo A, Fujiwara A, Wakamiya A, Ueda N, Nakajima K, Kamakura T, Wada M, Yamagata K, Ishibashi K, Inoue Y, Miyamoto K, Nagase S, Noda T, Aiba T, Takahama H, Izumi C, Kinugawa K, Minamino N, Kusano K. A new biomarker of cardiac resynchronization therapy response: cGMP to mature BNP ratio. J Cardiol 2022; 79:727-733. [PMID: 35016810 DOI: 10.1016/j.jjcc.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Biomarkers that can predict cardiac resynchronization therapy (CRT) response have not yet been identified. The purpose of this study was to assess whether individual measurements of four brain/B-type natriuretic peptide (BNP) forms, coupled with cyclic guanosine monophosphate (cGMP) might contribute to the prediction of echocardiographic CRT responders. METHODS A BNP precursor (proBNP) and total BNP (= proBNP + mature BNP) were measured with newly developed kits, while an N-terminal fragment of proBNP (NT-proBNP) and cGMP were measured with commercial kits on the day before CRT implantation. Estimated mature BNP (emBNP = total BNP-proBNP), and the ratio of cGMP to each BNP form, as well as the concentrations of three other BNP forms, were prospectively investigated for their capability in predicting a response to CRT. A CRT responder was defined as an improvement in left ventricular ejection fraction >10% and/or a reduction in left ventricular end-systolic volume >15% at 6-month follow-up. RESULTS Out of 77 patients, 46 (60%) were categorized as CRT responders. Among the measurement parameters, only the highest quartile of the cGMP to emBNP ratio was an independent predictor of CRT responders (odds ratio 4.87, 95% confidence interval 1.25-18.89, p = 0.02). The cGMP to emBNP ratio was associated with the cumulative events of heart failure hospitalization within one year following CRT implantation (log-rank p = 0.029). CONCLUSIONS The cGMP to emBNP ratio could be utilized as a predictive biomarker of CRT responders. (Clinical Study on Responder Prediction in Cardiac Resynchronization Therapy Using Individual Molecular Measurement of Natriuretic Peptide: UMIN R000038927).
Collapse
Affiliation(s)
- Yasuhiro Yokoyama
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Naoya Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan; Second Department of Internal Medicine, University of Toyama, Toyama, Japan.
| | - Michikazu Nakai
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akihiro Fujiwara
- Department of Clinical Chemistry, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Akinori Wakamiya
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Nobuhiko Ueda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kenzaburo Nakajima
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tsukasa Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Mitsuru Wada
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kenichiro Yamagata
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuko Inoue
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Koji Miyamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takashi Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroyuki Takahama
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Chisato Izumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Koichiro Kinugawa
- Second Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan.
| |
Collapse
|
17
|
Yu LM, Dong X, Zhao JK, Xu YL, Xu DY, Xue XD, Zhou ZJ, Huang YT, Zhao QS, Luo LY, Wang ZS, Wang HS. Activation of PKG-CREB-KLF15 by melatonin attenuates Angiotensin II-induced vulnerability to atrial fibrillation via enhancing branched-chain amino acids catabolism. Free Radic Biol Med 2022; 178:202-214. [PMID: 34864165 DOI: 10.1016/j.freeradbiomed.2021.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) damage and atrial remodeling serve as the crucial substrates for the genesis of atrial fibrillation (AF). Branched-chain amino acids (BCAAs) catabolic defect plays critical roles in multiple cardiovascular diseases. However, the alteration of atrial BCAA catabolism and its role in AF remain largely unknown. This study aimed to explore the role of BCAA catabolism in the pathogenesis of AF and to further evaluate the therapeutic effect of melatonin with a focus on protein kinase G (PKG)-cAMP response element binding protein (CREB)-Krüppel-like factor 15 (KLF15) signaling. We found that angiotensin II-treated atria exhibited significantly elevated BCAA level, reduced BCAA catabolic enzyme activity, increased AF vulnerability, aggravated atrial electrical and structural remodeling, and enhanced mitochondrial ROS damage. These deleterious effects were attenuated by melatonin co-administration while exacerbated by BCAA oral supplementation. Melatonin treatment ameliorated BCAA-induced atrial damage and reversed BCAA-induced down-regulation of atrial PKGIα expression, CREB phosphorylation as well as KLF15 expression. However, inhibition of PKG partly abolished melatonin-induced beneficial actions. In summary, these data demonstrated that atrial BCAA catabolic defect contributed to the pathogenesis of AF by aggravating tissue fibrosis and mitochondrial ROS damage. Melatonin treatment ameliorated Ang II-induced atrial structural as well as electrical remodeling by activating PKG-CREB-KLF15. The present study reveals additional mechanisms contributing to AF genesis and highlights the opportunity of a novel therapy for AF by targeting BCAA catabolism. Melatonin may serve as a potential therapeutic agent for AF intervention.
Collapse
Affiliation(s)
- Li-Ming Yu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xue Dong
- Outpatient Department of Liaoning Military Region, General Hospital of Northern Theater Command, 49 Beiling Road, Shenyang, Liaoning, 110032, PR China
| | - Ji-Kai Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yin-Li Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Deng-Yue Xu
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xiao-Dong Xue
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zi-Jun Zhou
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yu-Ting Huang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Qiu-Sheng Zhao
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Lin-Yu Luo
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zhi-Shang Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Hui-Shan Wang
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|