1
|
Celik B, Kara A, Guven M, Doganay S, Budak Ö, Guven EM, Colak T, Erdem AF, Yilmaz MS. Effect of Melatonin Administration on Nerve Regeneration after Recurrent Laryngeal Nerve Injury. AN ACAD BRAS CIENC 2024; 96:e20231149. [PMID: 39442101 DOI: 10.1590/0001-3765202420231149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/06/2024] [Indexed: 10/25/2024] Open
Abstract
Recurrent Laryngeal Nerve (RLN) injury is a complication in neck surgery. The aim of this study is to evaluate the effect of primary suture repair with melatonin treatment on nerve regeneration after RLN damage. After the RLN damage, nerve repair was performed in the first and fourth groups. The third and fourth groups were given intraperitoneal melatonin therapy daily for six weeks. EMG was applied to all subjects and vocal cord movements were evaluated endoscopically. At the end of the sixth week, all subjects were sacrificed, and their larynx were examinedhistologically. Vocal cord paralysis (VCP) was observed in all subjects after RLN damage. In the sixth week, improvement was observed in the first and fourth group who underwent nerve repair, whereas none in the second and third group, who did not undergo nerve repair, improved. With EMG, the highest MUP was in the fourth group. Histologically, an increase in Schwann cells, a decrease in axon damage, and cytoplasmic vacuolization were in the fourth group. Myelin protein zero and Ki-67 staining were the most in the fourth group. In our study, laryngoscopic, electrophysiological and histopathological findings show that melatonin contributes to nerve healing but this could not translate into functional recovery.
Collapse
Affiliation(s)
- Bilgehan Celik
- Darıca Farabi Training and Research Hospital, Department of Otorhinolaryngology, Fevziçakmak Mahallesi, Dr. Zeki Acar Cd, nº 62, 41700 Darıca, Kocaeli, Turkey
| | - Ahmet Kara
- Sakarya University Faculty of Medicine, Department of Otorhinolaryngology, Şirinevler, Adnan Menderes Cd Sağlık Sk, nº 195, 54100 Adapazarı, Sakarya, Turkey
| | - Mehmet Guven
- Sakarya University Faculty of Medicine, Department of Otorhinolaryngology, Şirinevler, Adnan Menderes Cd Sağlık Sk, nº 195, 54100 Adapazarı, Sakarya, Turkey
| | - Songül Doganay
- Sakarya University Faculty of Medicine, Department of Physiology, Korucuk, Konuralp Bulvarı, nº 81/1, 54290 Adapazarı, Sakarya, Turkey
| | - Özcan Budak
- Sakarya University Faculty of Medicine, Department of Histology and Embryology, Korucuk, Konuralp Bulvarı, nº 81/1, 54290 Adapazarı, Sakarya, Turkey
| | - Ebru M Guven
- Kocaeli University Faculty of Medicine, Department of Anatomy, Kabaoğlu, Baki Komsuoğlu Bulvarı, nº 515, Umuttepe, 41001 İzmit, Kocaeli, Turkey
- Sakarya University Faculty of Medicine, Department of Anatomy, Korucuk, Konuralp Bulvarı, nº 81/1, 54290 Adapazarı, Sakarya, Turkey
| | - Tuncay Colak
- Sakarya University Faculty of Medicine, Department of Anatomy, Korucuk, Konuralp Bulvarı, nº 81/1, 54290 Adapazarı, Sakarya, Turkey
| | - Ahmet F Erdem
- Sakarya University Faculty of Medicine, Department of Otorhinolaryngology, Şirinevler, Adnan Menderes Cd Sağlık Sk, nº 195, 54100 Adapazarı, Sakarya, Turkey
| | - Mahmut S Yilmaz
- Sakarya University Faculty of Medicine, Department of Otorhinolaryngology, Şirinevler, Adnan Menderes Cd Sağlık Sk, nº 195, 54100 Adapazarı, Sakarya, Turkey
| |
Collapse
|
2
|
Cyphert EL, Liu C, Morales AL, Nixon JC, Blackford E, Garcia M, Cevallos N, Turnbaugh PJ, Brito IL, Booth SL, Hernandez CJ. Effects of high dose aspartame-based sweetener on the gut microbiota and bone strength in young and aged mice. JBMR Plus 2024; 8:ziae082. [PMID: 39011468 PMCID: PMC11247189 DOI: 10.1093/jbmrpl/ziae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
In a recent study examining the effects of manipulating the gut microbiome on bone, a control group of mice in which the microbiome was altered using a non-caloric, aspartame-based sweetener resulted in whole bone strength being 40% greater than expected from geometry alone, implicating enhanced bone tissue strength. However, the study was not designed to detect changes in bone in this control group and was limited to young male mice. Here we report a replication study examining how changes in the gut microbiome caused by aspartame-based sweetener influence bone. Male and female C57Bl/6 J mice were untreated or treated with a high dose of sweetener (10 g/L) in their drinking water from either 1 to 4 mo of age (young cohort; n = 80) or 1 to 22 mo of age (aged cohort; n = 52). Sweetener did not replicate the modifications to the gut microbiome observed in the initial study and did not result in an increase in bone tissue strength in either sex at either age. Aged male mice dosed with sweetener had larger bones (+17% femur section modulus, p<.001) and greater whole bone strength (+22%, p=.006) but the increased whole bone strength was explained by the associated increase in body mass (+9%, p<.001). No differences in body mass, whole bone strength, or femoral geometry were associated with sweetener dosing in males from the young cohort or females at either age. As we were unable to replicate the gut microbiota observed in the initial experiment, it remains unclear if changes in the gut microbiome can enhance bone tissue strength. Although prior work studying gut microbiome-induced changes in bone with oral antibiotics has been highly repeatable, the current study highlights the variability of nutritional manipulations of the gut microbiota in mice.
Collapse
Affiliation(s)
- Erika L Cyphert
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, United States
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Chongshan Liu
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Angie L Morales
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Jacob C Nixon
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Emily Blackford
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Matthew Garcia
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853, United States
| | - Nicolas Cevallos
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, United States
- Chan Zuckerberg Biohub, San Francisco, CA 94143, United States
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, Ithaca, NY 14853, United States
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, United States
| | - Christopher J Hernandez
- Department of Orthopaedic Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, United States
- Chan Zuckerberg Biohub, San Francisco, CA 94143, United States
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, United States
| |
Collapse
|
3
|
Dar W. Aspartame-induced cognitive dysfunction: Unveiling role of microglia-mediated neuroinflammation and molecular remediation. Int Immunopharmacol 2024; 135:112295. [PMID: 38776852 DOI: 10.1016/j.intimp.2024.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Aspartame, an artificial sweetener, is consumed by millions of people globally. There are multiple reports of aspartame and its metabolites affecting cognitive functions in animal models and humans, which include learning problems, headaches, seizures, migraines, irritable moods, anxiety, depression, and insomnia. These cognitive deficits and associated symptoms are partly attributed to dysregulated excitatory and inhibitory neurotransmitter balance due to aspartate released from aspartame, resulting in an excitotoxic effect in neurons, leading to neuronal damage. However, microglia, a central immunocompetent cell type in brain tissue and a significant player in inflammation can contribute to the impact. Microglia rapidly respond to changes in CNS homeostasis. Aspartame consumption might affect the microglia phenotype directly via methanol-induced toxic effects and indirectly via aspartic acid-mediated excitotoxicity, exacerbating symptoms of cognitive decline. Long-term oral consumption of aspartame thus might change microglia's phenotype from ramified to activated, resulting in chronic or sustained activation, releasing excess pro-inflammatory molecules. This pro-inflammatory surge might lead to the degeneration of healthy neurons and other glial cells, impairing cognition. This review will deliberate on possible links and research gaps that need to be explored concerning aspartame consumption, ecotoxicity and microglia-mediated inflammatory cognitive impairment. The study covers a comprehensive analysis of the impact of aspartame consumption on cognitive function, considering both direct and indirect effects, including the involvement of microglia-mediated neuroinflammation. We also propose a novel intervention strategy involving tryptophan supplementation to mitigate cognitive decline symptoms in individuals with prolonged aspartame consumption, providing a potential solution to address the adverse effects of aspartame on cognitive function.
Collapse
Affiliation(s)
- Waseem Dar
- Translational Neurobiology and Disease Modelling Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, 201314, India.
| |
Collapse
|
4
|
Hu H, Zhang P, Yin J, Wang L, Lu Y, Guo H. The effect of aspartame on accelerating caspase-dependent apoptosis of pancreatic islet via ZIPK/STAT3/caspase 3 signaling pathway. J Physiol Biochem 2024; 80:53-65. [PMID: 37906422 DOI: 10.1007/s13105-023-00980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/08/2023] [Indexed: 11/02/2023]
Abstract
Aspartame (ASP) as an important sugar substitute is widely used in pharmaceutical and food processing. Here, we compared the effects of ASP and sucrose on mice pancreatic islet cells in vivo and observed that ASP with the condition of high concentration and long-term exposure (HASP) could cause insulin secretion (500 mg/kg for 1 month). Next, we conducted iTRAQ mass spectrometry to profile the global phosphoproteome and found that phosphorylation of zipper-interacting protein kinase (ZIPK) in murine pancreatic islet tissues were induced at Thr197, Thr242, Thr282, and Ser328 by high-sucrose (HS) treatment, but only induced at Thr197 and Ser328 by HASP treatment. Simultaneously, phosphorylation of STAT3 could be induced at Tyr705 and Ser727 by HS but not by HASP. Furthermore, presence of activated STAT3 accompanied with autophagy was observed in HS treatment. In turn, the inactivation of STAT3 as well as enhanced expression of caspase 3 was observed in HASP treatment. We generated Thr242APro and Thr282Pro on ZIPK using CRISPR-Cas9 in β-TC3 cells and found the weakened interaction with STAT3 as well as the reduced phosphorylation of STAT3 even under HS stimulation. Finally, we observed that ankyrin repeat domain containing 11 (ANKRD11) could interact with ZIPK and play an inhibitory role in the phosphorylation of Thr242APro and Thr282Pro of ZIPK. However, HASP can induce the retention of ANKRD11 in the cytoplasm by phenylpyruvic acid (the metabolite of ASP). Taken together, this study determined that ASP with high concentration and long-term exposure could lead to caspase-dependent apoptosis of pancreatic islet cells through ANKRD11/ZIPK/STAT3 inhibition. Our results give evidence of adverse effects of aspartame on islet cells in some extreme conditions, which might help people to reconsider the biosafety of non-nutritive sweeteners.
Collapse
Affiliation(s)
- Haiying Hu
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, 88, Jiefang Road, Shangcheng District, Zhejiang, 310009, Hangzhou, China.
| | - Pianhong Zhang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, 88, Jiefang Road, Shangcheng District, Zhejiang, 310009, Hangzhou, China
| | - Junhua Yin
- Department of General Practice, The Second Affiliated Hospital of Zhejiang University, Zhejiang, Hangzhou, China
| | - Leilei Wang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, 88, Jiefang Road, Shangcheng District, Zhejiang, 310009, Hangzhou, China
| | - Yanyu Lu
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, 88, Jiefang Road, Shangcheng District, Zhejiang, 310009, Hangzhou, China
| | - Huilan Guo
- Department of Clinical Nutrition, The Second Affiliated Hospital of Zhejiang University, 88, Jiefang Road, Shangcheng District, Zhejiang, 310009, Hangzhou, China
| |
Collapse
|
5
|
Cyphert EL, Liu C, Morales AL, Nixon JC, Blackford E, Garcia M, Cevallos N, Turnbaugh PJ, Brito IL, Booth SL, Hernandez CJ. Effects of long-term high dose aspartame on body mass, bone strength, femoral geometry, and microbiota composition in a young and aged cohort of male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573970. [PMID: 38260245 PMCID: PMC10802297 DOI: 10.1101/2024.01.02.573970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Recent reassessment of the safety of aspartame has prompted increased evaluation of its effect on the health of a range of tissues. The gut microbiome is altered by oral aspartame. One prior study suggested that changes in the microbiome caused by aspartame could influence the strength of bone in young skeletally developing mice. Here we ask how aspartame influences bone in mice of different age and sex. Objective The objective of this study was to determine the effect of aspartame on the bone strength and gut microbiota of young and aged mice. Methods Male and female C57Bl/6J mice were untreated or treated with a high dose of aspartame in their drinking water from 1 month of age until 4 (young cohort; n = 80) or 22 months (aged cohort; n = 52). Results In aged males, mice treated with aspartame had greater body mass, whole bone strength, and femoral geometry relative to untreated. Specifically, in aged males, aspartame led to 9% increase in body mass (p < 0.001), 22% increase in whole bone strength (p = 0.006), and 17% increase in section modulus (p < 0.001) relative to untreated mice. Aged males and females receiving aspartame had a different microbiota than untreated mice and a decreased abundance of Odoribacter. No differences in body mass, whole bone strength, or femoral geometry were associated with aspartame dosing in young males or young or aged females. Conclusions Aspartame treated aged males had greater whole bone strength and the effect appeared to be explained by greater body mass. Aspartame treatment did not alter whole bone strength in young males or young or aged females despite the aspartame having a similar effect on the microbiota of both aged males and females.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Orthopaedic Surgery, University of California San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Chongshan Liu
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Angie L. Morales
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Jacob C. Nixon
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Emily Blackford
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Matthew Garcia
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY 14853
| | - Nicolas Cevallos
- Department of Orthopaedic Surgery, University of California San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94143
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, Ithaca, NY 14853
| | - Sarah L. Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, 711 Washington Street, Tufts University, Boston, MA 02111
| | - Christopher J. Hernandez
- Department of Orthopaedic Surgery, University of California San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94143
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 400 Parnassus Avenue, San Francisco, CA 94158
| |
Collapse
|
6
|
Suswidiantoro V, Azmi NU, Lukmanto D, Saputri FC, Mun'im A, Jusuf AA. The neuroprotective potential of turmeric rhizome and bitter melon on aspartame-induced spatial memory impairment in rats. Heliyon 2023; 9:e21693. [PMID: 38027700 PMCID: PMC10665738 DOI: 10.1016/j.heliyon.2023.e21693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Aspartame is widely used artificial sweetener. However, chronic exposure to aspartame led to spatial memory impairment and elevated oxidative stress in the brain. Extract of turmeric rhizome (Curcuma longa) (TUR) and extract of bitter melon (Momordica charantia) (BM) is known to have antioxidant activity. The present study was aimed to examine the neuroprotective potential of TUR and BM extracts, either as single or as combination, against the effects of aspartame in the brain. Here, Sprague-Dawley rats fed with aspartame (40 mg/kg BW) for 28 days were compared with rats fed with extract and aspartame. To assess neuroprotective potential, rats were given extract 7 days before and during aspartame treatment. Spatial memory was assessed with Morris water maze test followed with H&E staining of hippocampal region. Brain lipid peroxidation and enzymatic activity of malondialdehyde (MDA), glutathione peroxidase (GPx), and Acetylcholinesterase (AChE) were measured to probe status of oxidative stress in the brain. Aspartame-treated rats demonstrated spatial memory impairment and reduced number of hippocampal cells and elevated levels of MDA, downregulated activity of GPx and elevated activity of AChE. In contrast, animals received both aspartame and extract demonstrated better spatial memory function, higher number of hippocampal areas, increased GPX activity, reduced MDA levels, and decreased AChE activity were observed in the brain of extract-treated rats. Taken together, our results suggest that extract of TUR rhizome and BM fruit exhibit antioxidant activity which may contribute to the neuroprotective effects against aspartame-induced memory impairment in rats.
Collapse
Affiliation(s)
- Vicko Suswidiantoro
- Laboratory of Pharmacology, Pharmacy Department, Universitas Aisyah Pringsewu, 35372, Lampung, Indonesia
| | - Nuriza Ulul Azmi
- Laboratory of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Donny Lukmanto
- Laboratory of Advanced Vision Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Fadlina Chany Saputri
- Laboratory of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, West Java, 16424, Indonesia
| | - Abdul Mun'im
- Laboratory of Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
| | - Ahmad Aulia Jusuf
- Laboratory of Histology, Faculty of Medicine, Universitas Indonesia, Kampus UI Salemba, Jakarta, 10440, Indonesia
| |
Collapse
|
7
|
Shrief AI, Abdel-Hamid AAM, Moustafa A, El-Mohandes E. The possible protective role of pimpinella anisum oil versus selenium on aspartame induced changes in rat cerebellar cortex: histological, immunohistochemical and electron microscopic study. Ultrastruct Pathol 2022; 46:497-510. [PMID: 36273246 DOI: 10.1080/01913123.2022.2136809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aspartame (ASP) is an artificial sweeter. Chronic use of ASP has a harmful effect on cerebellar cortex. Anisum oil and selenium (SE) are antioxidant substances. Therefore, the present study was performed to study the possible protective role of anisum oil versus selenium on aspartame-induced changes in rat cerebellar cortex. Rats were divided into four main groups. Group I (Control group). Group II received 250 mg/kg/day aspartame once daily for 2 months. Group III received 0.5 ml/kg/day anisum 2 h before aspartame administration. Group IV received 0.5 mg/kg/day selenium 2 h before aspartame administration. The administration of Asp for 2 months (group II) resulted in cerebellar histopathological changes in the form of deformed Purkinje and granule cells. Ultrastructurally, Purkinje cells had irregular nuclei, dilated cisternae of rough endoplasmic reticulum, dilated saccules of Golgi apparatus, mitochondria with destroyed cristae. In addition, granule cells appeared shrunken with irregular nuclei. Aspartame and anisum oil treated group (group III) showed partial improvement. Examination of ASP and SE treated group (group IV) showed that cerebellar cortex was nearly similar to control. In conclusion, Anisum oil and selenium could protect against ASP-induced cerebellar damage. The protective effect of selenium is better than anisum oil.
Collapse
Affiliation(s)
- Amira I Shrief
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Al Mansoura, Egypt
| | - Ahmed A M Abdel-Hamid
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Al Mansoura, Egypt
| | - Am Moustafa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Al Mansoura, Egypt
| | - E El-Mohandes
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Al Mansoura, Egypt
| |
Collapse
|
8
|
Swati K, Agrawal K, Raj S, Kumar R, Prakash A, Kumar D. Molecular mechanism(s) of regulations of cancer stem cell in brain cancer propagation. Med Res Rev 2022; 43:441-463. [PMID: 36205299 DOI: 10.1002/med.21930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/01/2022] [Accepted: 09/11/2022] [Indexed: 11/12/2022]
Abstract
Brain tumors are most often diagnosed with solid neoplasms and are the primary reason for cancer-related deaths in both children and adults worldwide. With recent developments in the progression of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. However, the high recurrence rate and high mortality rate remain unresolved and are closely linked to the biological features of cancer stem cells (CSCs). Research on tumor biology has reached a new age with more understanding of CSC features. CSCs, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Therefore, in the diagnosis and treatment of tumors, recognizing the biological properties of CSCs is of considerable significance. Here, we have discussed the concept of CSCs and their significant role in brain cancer growth and propagation. We have also discussed personalized therapeutic development and immunotherapies for brain cancer by specifically targeting CSCs.
Collapse
Affiliation(s)
- Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Sibi Raj
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Rajeev Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
9
|
An updated multifaceted overview of sweet proteins and dipeptides as sugar substitutes; the chemistry, health benefits, gut interactions, and safety. Food Res Int 2022; 162:111853. [DOI: 10.1016/j.foodres.2022.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022]
|
10
|
Bester EG, Kitshoff AM, Botha WJ, van Wilpe E, du Plessis L, Williams J. Nemaline myopathy in a six-month-old Pomeranian dog. J S Afr Vet Assoc 2022. [DOI: 10.36303/jsava.2022.93.1.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- EG Bester
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - AM Kitshoff
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - WJ Botha
- Department of Small Animal Medicine Clinic, Panorama Veterinary Clinic and Specialist Centre,
South Africa
| | - E van Wilpe
- Laboratory for Microscopy and Microanalysis, Faculty of Natural and Agricultural Sciences, University of Pretoria,
South Africa
| | - L du Plessis
- Electron Microscope Unit, Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria,
South Africa
| | - J Williams
- Section of Pathology, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria,
South Africa
| |
Collapse
|
11
|
Batool M, Ranjha MMAN, Roobab U, Manzoor MF, Farooq U, Nadeem HR, Nadeem M, Kanwal R, AbdElgawad H, Al Jaouni SK, Selim S, Ibrahim SA. Nutritional Value, Phytochemical Potential, and Therapeutic Benefits of Pumpkin ( Cucurbita sp.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1394. [PMID: 35684166 PMCID: PMC9182978 DOI: 10.3390/plants11111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/05/2023]
Abstract
Pumpkin is a well-known multifunctional ingredient in the diet, full of nutrients, and has opened new vistas for scientists during the past years. The fruit of pumpkin including the flesh, seed, and peel are a rich source of primary and secondary metabolites, including proteins, carbohydrates, monounsaturated fatty acids, polyunsaturated fatty acids, carotenoids, tocopherols, tryptophan, delta-7-sterols, and many other phytochemicals. This climber is traditionally used in many countries, such as Austria, Hungary, Mexico, Slovenia, China, Spain, and several Asian and African countries as a functional food and provides health promising properties. Other benefits of pumpkin, such as improving spermatogenesis, wound healing, antimicrobial, anti-inflammatory, antioxidative, anti-ulcerative properties, and treatment of benign prostatic hyperplasia have also been confirmed by researchers. For better drug delivery, nanoemulsions and niosomes made from pumpkin seeds have also been reported as a health promising tool, but further research is still required in this field. This review mainly focuses on compiling and summarizing the most relevant literature to highlight the nutritional value, phytochemical potential, and therapeutic benefits of pumpkin.
Collapse
Affiliation(s)
- Maria Batool
- University Institute of Diet and Nutritional Sciences, University of Lahore, Gujrat 50700, Pakistan;
| | | | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (U.R.); (R.K.)
| | | | - Umar Farooq
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan 59300, Pakistan;
| | - Hafiz Rehan Nadeem
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 59300, Pakistan;
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan; (M.M.A.N.R.); (M.N.)
| | - Rabia Kanwal
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (U.R.); (R.K.)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
12
|
Czarnecka K, Pilarz A, Rogut A, Maj P, Szymańska J, Olejnik Ł, Szymański P. Aspartame-True or False? Narrative Review of Safety Analysis of General Use in Products. Nutrients 2021; 13:1957. [PMID: 34200310 PMCID: PMC8227014 DOI: 10.3390/nu13061957] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Aspartame is a sweetener introduced to replace the commonly used sucrose. It was discovered by James M. Schlatter in 1965. Being 180-200 times sweeter than sucrose, its intake was expected to reduce obesity rates in developing countries and help those struggling with diabetes. It is mainly used as a sweetener for soft drinks, confectionery, and medicines. Despite its widespread use, its safety remains controversial. This narrative review investigates the existing literature on the use of aspartame and its possible effects on the human body to refine current knowledge. Taking to account that aspartame is a widely used artificial sweetener, it seems appropriate to continue research on safety. Studies mentioned in this article have produced very interesting results overall, the current review highlights the social problem of providing visible and detailed information about the presence of aspartame in products. The studies involving the impact of aspartame on obesity, diabetes mellitus, children and fetus, autism, neurodegeneration, phenylketonuria, allergies and skin problems, its cancer properties and its genotoxicity were analyzed. Further research should be conducted to ensure clear information about the impact of aspartame on health.
Collapse
Affiliation(s)
- Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Aleksandra Pilarz
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
| | - Aleksandra Rogut
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
| | - Patryk Maj
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
| | - Joanna Szymańska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
| | - Łukasz Olejnik
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| |
Collapse
|
13
|
Farag OM, Abd-Elsalam RM, Ogaly HA, Ali SE, El Badawy SA, Alsherbiny MA, Li CG, Ahmed KA. Metabolomic Profiling and Neuroprotective Effects of Purslane Seeds Extract Against Acrylamide Toxicity in Rat's Brain. Neurochem Res 2021; 46:819-842. [PMID: 33439429 DOI: 10.1007/s11064-020-03209-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
AIM Acrylamide (ACR) is an environmental pollutant with well-demonstrated neurotoxic and neurodegenerative effects in both humans and experimental animals. The present study aimed to investigate the neuroprotective effect of Portulaca oleracea seeds extract (PSE) against ACR-induced neurotoxicity in rats and its possible underlying mechanisms. PSE was subjected to phytochemical investigation using ultra-high-performance liquid chromatography (UPLC) coupled with quantitative time of flight mass spectrometry (qTOF-MS). Multivariate, clustering and correlation data analyses were performed to assess the overall effects of PSE on ACR-challenged rats. Rats were divided into six groups including negative control, ACR-intoxicated group (10 mg/kg/day), PSE treated groups (200 and 400 mg/kg/day), and ACR + PSE treated groups (200 and 400 mg/kg/day, respectively). All treatments were given intragastrically for 60 days. PSE markedly ameliorated brain damage as evidenced by the decreased lactate dehydrogenase (LDL), increased acetylcholinesterase (AchE) activities, as well as the increased brain-derived neurotrophic factor (BDNF) that were altered by the toxic dose of ACR. In addition, PSE markedly attenuated ACR-induced histopathological alterations in the cerebrum, cerebellum, hippocampus and sciatic nerve and downregulated the ACR-inclined GFAP expression. PSE restored the oxidative status in the brain as indicated by glutathione (GSH), lipid peroxidation and increased total antioxidant capacity (TAC). PSE upregulated the mRNA expression of protein kinase B (AKT), which resulted in an upsurge in its downstream cAMP response element-binding protein (CREB)/BDNF mRNA expression in the brain tissue of ACR-intoxicated rats. All exerted PSE beneficial effects were dose-dependent, with the ACR-challenged group received PSE 400 mg/kg dose showed a close clustering to the negative control in both unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-Da) alongside with the hierarchical clustering analysis (HCA). The current investigation confirmed the neuroprotective capacity of PSE against ACR-induced brain injury, and our findings indicate that AKT/CREB pathways and BDNF synthesis may play an important role in the PSE-mediated protective effects against ACR-triggered neurotoxicity.
Collapse
Affiliation(s)
- Ola M Farag
- General Organization for Veterinary Services, Giza, Egypt
| | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hanan A Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sara E Ali
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shymaa A El Badawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
14
|
Fareed SA, Mostafa HES. Could aspartame exacerbate caffeine effects on renal maturation in rat's offspring? A biochemical and histological study. Birth Defects Res 2020; 113:90-107. [PMID: 33128303 DOI: 10.1002/bdr2.1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Caffeine and aspartame (ASP) are mostly used as a diet regimen to reduce overweight. The risk increase if used during critical life periods that may affect the development of fetal organs. OBJECTIVE To evaluate the individual and combined effects of maternal exposure to caffeine and ASP during gestation and lactation on the kidneys' development of rats' offspring. METHODS Pregnant rats were divided randomly into four groups; Group I (control group). Group II (ASP group): ASP was given at a dose of 40 mg of /kg/day. Group III (Caffeine group): caffeine was given at a dose of 80 mg/kg/day. Group IV (ASP & caffeine group); where previous doses of ASP and caffeine were given at the same time. All the treatments were given by oral gavage from the first day of pregnancy until postnatal day 30. Kidneys of rats' offspring were dissected and tested for detection of oxidative stress markers and for histopathological & immunohistochemical examination. RESULTS This study showed a high significant increase in oxidative load (malondialdehyde) in renal tissues in group IV associated with decreased activities of total glutathione and antioxidant enzymes (superoxide dismutase and glutathione peroxidase). Histological and morphometric examination results showed delayed maturation of renal tissues in Group II and III, but more deleterious effects were observed in group IV with a lot of pathological changes in renal tissues. CONCLUSION The extensive use of caffeine and ASP should be controlled to avoid the risk of their toxicity.
Collapse
|
15
|
Elblehi SS, El Euony OI, El-Sayed YS. Apoptosis and astrogliosis perturbations and expression of regulatory inflammatory factors and neurotransmitters in acrylamide-induced neurotoxicity under ω3 fatty acids protection in rats. Neurotoxicology 2019; 76:44-57. [PMID: 31647937 DOI: 10.1016/j.neuro.2019.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 01/25/2023]
Abstract
This study was aimed to investigate the potential ameliorative effects of omega-3 (ω3) fatty acids against acrylamide (ACR)-induced neurotoxicity. Thirty-two adult male Sprague Dawley rats were randomly assigned into four groups (n = 8) as follows: control, ω3 fatty acids (1000 mg/kg bwt/day orally), ACR-treated (50 mg/kg bwt/day IP) and ACR plus ω3 fatty acids group. Treatments were performed every other day for 21 consecutive days. ACR induced abnormal gait and elevated serum levels of proinflammatory cytokines (IL-6 and TNF-α), brain and spinal cord MDA levels and decreased brain and spinal cord GSH levels. Moreover, it reduced neurotransmitters (acetylcholine, GABA, serotonin and noradrenaline levels) and increased AChE activity in brain tissues. Histopathologically, ACR caused various degenerative changes, necrosis and glial cell activation in the cerebrum, cerebellum, hippocampus, spinal cord and sciatic nerve. Likewise, the histomorphometric analysis was constant with ACR-induced neurotoxicity. The ACR induced axonal atrophy and myelin disruption and decreased g-ratio of the sciatic nerve. Immunohistochemically, strong positive expressions of apoptotic marker caspase-3 and astroglial GFAP in the examined tissues were detected. Contrariwise, concurrent administration of ω3 fatty acids partially attenuated ACR impacts, as it improved the gait performance, reduced oxidative stress and pro-inflammatory cytokines, and modulate the levels of the neurotransmitters. It also ameliorated the intensity of ACR-induced histopathological and histomorphometric alterations within the examined nervous tissues. It could be concluded that ω3 fatty acids have antioxidant, anti-inflammatory and anti-apoptotic potentials against ACR neurotoxicity via suppression of oxidative stress, lipid peroxidation and pro-inflammatory cytokines, and inhibition of AChE activity and downregulation of caspase-3 and GFAP expressions in the nervous tissues.
Collapse
Affiliation(s)
- Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria 22758, Egypt
| | - Omnia I El Euony
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria 22758, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
16
|
Othman SI, Jumah MB. Histopathological Effect of Aspartame on Liver and Kidney of Mice. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.336.342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Abstract
Aspartame is a synthetic dipeptide artificial sweetener, frequently used in foods, medications, and beverages, notably carbonated and powdered soft drinks. Since 1981, when aspartame was first approved by the US Food and Drug Administration, researchers have debated both its recommended safe dosage (40 mg/kg/d) and its general safety to organ systems. This review examines papers published between 2000 and 2016 on both the safe dosage and higher-than-recommended dosages and presents a concise synthesis of current trends. Data on the safe aspartame dosage are controversial, and the literature suggests there are potential side effects associated with aspartame consumption. Since aspartame consumption is on the rise, the safety of this sweetener should be revisited. Most of the literature available on the safety of aspartame is included in this review. Safety studies are based primarily on animal models, as data from human studies are limited. The existing animal studies and the limited human studies suggest that aspartame and its metabolites, whether consumed in quantities significantly higher than the recommended safe dosage or within recommended safe levels, may disrupt the oxidant/antioxidant balance, induce oxidative stress, and damage cell membrane integrity, potentially affecting a variety of cells and tissues and causing a deregulation of cellular function, ultimately leading to systemic inflammation.
Collapse
Affiliation(s)
- Arbind Kumar Choudhary
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food Chem Toxicol 2017; 107:302-317. [DOI: 10.1016/j.fct.2017.06.046] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 01/07/2023]
|