1
|
Waqqar S, Lee K, Lawley B, Bilton T, Quiñones-Mateu ME, Bostina M, Burga LN. Directed Evolution of Seneca Valley Virus in Tumorsphere and Monolayer Cell Cultures of a Small-Cell Lung Cancer Model. Cancers (Basel) 2023; 15:cancers15092541. [PMID: 37174006 PMCID: PMC10177334 DOI: 10.3390/cancers15092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses.
Collapse
Affiliation(s)
- Shakeel Waqqar
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Kai Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Timothy Bilton
- Invermay Agricultural Centre, AgResearch, Mosgiel 9092, New Zealand
| | | | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Delgado S, Perales C, García-Crespo C, Soria ME, Gallego I, de Ávila AI, Martínez-González B, Vázquez-Sirvent L, López-Galíndez C, Morán F, Domingo E. A Two-Level, Intramutant Spectrum Haplotype Profile of Hepatitis C Virus Revealed by Self-Organized Maps. Microbiol Spectr 2021; 9:e0145921. [PMID: 34756074 PMCID: PMC8579923 DOI: 10.1128/spectrum.01459-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
RNA viruses replicate as complex mutant spectra termed viral quasispecies. The frequency of each individual genome in a mutant spectrum depends on its rate of generation and its relative fitness in the replicating population ensemble. The advent of deep sequencing methodologies allows for the first-time quantification of haplotype abundances within mutant spectra. There is no information on the haplotype profile of the resident genomes and how the landscape evolves when a virus replicates in a controlled cell culture environment. Here, we report the construction of intramutant spectrum haplotype landscapes of three amplicons of the NS5A-NS5B coding region of hepatitis C virus (HCV). Two-dimensional (2D) neural networks were constructed for 44 related HCV populations derived from a common clonal ancestor that was passaged up to 210 times in human hepatoma Huh-7.5 cells in the absence of external selective pressures. The haplotype profiles consisted of an extended dense basal platform, from which a lower number of protruding higher peaks emerged. As HCV increased its adaptation to the cells, the number of haplotype peaks within each mutant spectrum expanded, and their distribution shifted in the 2D network. The results show that extensive HCV replication in a monotonous cell culture environment does not limit HCV exploration of sequence space through haplotype peak movements. The landscapes reflect dynamic variation in the intramutant spectrum haplotype profile and may serve as a reference to interpret the modifications produced by external selective pressures or to compare with the landscapes of mutant spectra in complex in vivo environments. IMPORTANCE The study provides for the first time the haplotype profile and its variation in the course of virus adaptation to a cell culture environment in the absence of external selective constraints. The deep sequencing-based self-organized maps document a two-layer haplotype distribution with an ample basal platform and a lower number of protruding peaks. The results suggest an inferred intramutant spectrum fitness landscape structure that offers potential benefits for virus resilience to mutational inputs.
Collapse
Affiliation(s)
- Soledad Delgado
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos (ETSISI), Universidad Politécnica de Madrid, Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilio López-Galíndez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Federico Morán
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Broad and Dynamic Diversification of Infectious Hepatitis C Virus in a Cell Culture Environment. J Virol 2020; 94:JVI.01856-19. [PMID: 31852791 DOI: 10.1128/jvi.01856-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Previous studies documented that long-term hepatitis C virus (HCV) replication in human hepatoma Huh-7.5 cells resulted in viral fitness gain, expansion of the mutant spectrum, and several phenotypic alterations. In the present work, we show that mutational waves (changes in frequency of individual mutations) occurred continuously and became more prominent as the virus gained fitness. They were accompanied by an increasing proportion of heterogeneous genomic sites that affected 1 position in the initial HCV population and 19 and 69 positions at passages 100 and 200, respectively. Analysis of biological clones of HCV showed that these dynamic events affected infectious genomes, since part of the fluctuating mutations became incorporated into viable genomes. While 17 mutations were scored in 3 biological clones isolated from the initial population, the number reached 72 in 3 biological clones from the population at passage 200. Biological clones differed in their responses to antiviral inhibitors, indicating a phenotypic impact of viral dynamics. Thus, HCV adaptation to a specific constant environment (cell culture without external influences) broadens the mutant repertoire and does not focus the population toward a limited number of dominant genomes. A retrospective examination of mutant spectra of foot-and-mouth disease virus passaged in cell cultures suggests a parallel behavior here described for HCV. We propose that virus diversification in a constant environment has its basis in the availability of multiple alternative mutational pathways for fitness gain. This mechanism of broad diversification should also apply to other replicative systems characterized by high mutation rates and large population sizes.IMPORTANCE The study shows that extensive replication of an RNA virus in a constant biological environment does not limit exploration of sequence space and adaptive options. There was no convergence toward a restricted set of adapted genomes. Mutational waves and mutant spectrum broadening affected infectious genomes. Therefore, profound modifications of mutant spectrum composition and consensus sequence diversification are not exclusively dependent on environmental alterations or the intervention of population bottlenecks.
Collapse
|
4
|
Domingo E, Perales C. Quasispecies and virus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:443-457. [PMID: 29397419 DOI: 10.1007/s00249-018-1282-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022]
Abstract
Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| |
Collapse
|
5
|
Molecular basis of interferon resistance in hepatitis C virus. Curr Opin Virol 2014; 8:38-44. [DOI: 10.1016/j.coviro.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 02/08/2023]
|
6
|
Mahabadi M, Norouzi M, Alavian SM, Samimirad K, Azad TM, Saberfar E, Mahmoodi M, Ramezani F, Karimzadeh H, Malekzadeh R, Montazeri G, Nejatizadeh A, Ziaee M, Abedi F, Ataei B, Yaran M, Sayad B, Hossein Somi M, Sarizadeh G, Sanei-Moghaddam I, Mansour-Ghanaei F, Rafatpanah H, Pourhosseingholi MA, Keyvani H, Kalantari E, Saberifiroozi M, Ali Judaki M, Ghamari S, Daram M, Fazeli Z, Goodarzi Z, Khedive A, Moradi A, Jazayeri SM. Drug-related mutational patterns in hepatitis B virus (HBV) reverse transcriptase proteins from Iranian treatment-naïve chronic HBV patients. HEPATITIS MONTHLY 2013; 13:e6712. [PMID: 23596461 PMCID: PMC3626233 DOI: 10.5812/hepatmon.6712] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/09/2012] [Accepted: 11/12/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Immunomodulators and Nucleotide analogues have been used globally for the dealing of chronic hepatitis B virus (HBV) infection. However, the development of drug resistance is a major limitation to their long-term effectiveness. OBJECTIVES The aim of this study was to characterize the hepatitis B virus reverse transcriptase (RT) protein variations among Iranian chronic HBV carriers who did not receive any antiviral treatments. MATERIALS AND METHODS Hepatitis B virus partial RT genes from 325 chronic in active carrier patients were amplified and directly sequenced. Nucleotide/amino acid substitutions were identified compared to the sequences obtained from the database. RESULTS All strains belonging to genotype D.365 amino-acid substitutions were found. Mutations related to lamivudine, adefovir, telbivudine, and entecavir occurred in (YMDD) 4% (n = 13), (SVQ) 17.23% (n = 56), (M204I/V + L180M) 2.45% (n = 8) and (M204I) 2.76% (n = 9) of patients, respectively. CONCLUSIONS RT mutants do occur naturally and could be found in HBV carriers who have never received antiviral therapy. However, mutations related to drug resistance in Iranian treatment-naïve chronic HBV patients were found to be higher than other studies published formerly. Chronic HBV patients should be monitored closely prior the commencement of therapy to achieve the best regimen option.
Collapse
Affiliation(s)
- Mostafa Mahabadi
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Mehdi Norouzi
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | | | - Katayoon Samimirad
- Hepatitis C Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Talat Mokhtari Azad
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Esmaeil Saberfar
- The research and development department of Bayerpaul vaccine and pharmaceutical company, Tehran, IR Iran
| | - Mahmood Mahmoodi
- Department of Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Fatemeh Ramezani
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Hadi Karimzadeh
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Reza Malekzadeh
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ghodrat Montazeri
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Azim Nejatizadeh
- Research Center for Molecular Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, IR Iran
| | - Masood Ziaee
- Hepatitis Research Center, Department of Internal Medicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, IR Iran
| | - Farshid Abedi
- Department of Infectious Disease, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Majid Yaran
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Babak Sayad
- Kermanshah Liver Diseases and Hepatitis Research Center, Kermanshah, IR Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | | | | | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, IR Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | | | - Hossain Keyvani
- Department of Virology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | | | - Mehdi Saberifiroozi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mohammad Ali Judaki
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Shiva Ghamari
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Maryam Daram
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Zeinab Fazeli
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Zahra Goodarzi
- The research and development department of Bayerpaul vaccine and pharmaceutical company, Tehran, IR Iran
| | - Abolfazl Khedive
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Abdolvahab Moradi
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, IR Iran
| | - Seyed Mohamad Jazayeri
- Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Seyed Mohamad Jazayeri, Hepatitis B Lab, Department of Virology, School of Public Health, Tehran University of Medical Sciences, P.O. Box: 14155-6446, Tehran, IR Iran. Tel.: +98-2188962343, Fax: +98-2188992660, E-mail:
| |
Collapse
|
7
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
8
|
Mather WH, Hasty J, Tsimring LS. Fast stochastic algorithm for simulating evolutionary population dynamics. ACTA ACUST UNITED AC 2012; 28:1230-8. [PMID: 22437850 DOI: 10.1093/bioinformatics/bts130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Many important aspects of evolutionary dynamics can only be addressed through simulations. However, accurate simulations of realistically large populations over long periods of time needed for evolution to proceed are computationally expensive. Mutants can be present in very small numbers and yet (if they are more fit than others) be the key part of the evolutionary process. This leads to significant stochasticity that needs to be accounted for. Different evolutionary events occur at very different time scales: mutations are typically much rarer than reproduction and deaths. RESULTS We introduce a new exact algorithm for fast fully stochastic simulations of evolutionary dynamics that include birth, death and mutation events. It produces a significant speedup compared to direct stochastic simulations in a typical case when the population size is large and the mutation rates are much smaller than birth and death rates. The algorithm performance is illustrated by several examples that include evolution on a smooth and rugged fitness landscape. We also show how this algorithm can be adapted for approximate simulations of more complex evolutionary problems and illustrate it by simulations of a stochastic competitive growth model.
Collapse
Affiliation(s)
- William H Mather
- Department of Bioengineering, University of California-San Diego, CA 92093, USA
| | | | | |
Collapse
|
9
|
Perales C, Lorenzo-Redondo R, López-Galíndez C, Martínez MA, Domingo E. Mutant spectra in virus behavior. Future Virol 2010. [DOI: 10.2217/fvl.10.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA viruses replicate as complex mutant spectra, also termed ‘mutant clouds’, known as viral quasispecies. While this is a widely observed viral population structure, it is less known that a number of biologically relevant features of this important group of viral pathogens depend on (or are strongly influenced by) the complexity and composition of mutant spectra. Among them, fitness increase or decrease depending on intrapopulation complementation or interference, selection triggered by memory genomes, pathogenic potential of viruses, disease evolution and the response to antiviral treatments. Quasispecies represent the recognition of complex behavior in viruses, and it is an oversimplification to equate such a population structure with the classic polymorphism of population biology. Darwinian principles acting on genome collectivities that replicate with high error rates provide a unique population structure prone to flexible and largely unpredictable behavior.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Ramón Lorenzo-Redondo
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Cecilio López-Galíndez
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | | | | |
Collapse
|
10
|
Biological effect of Muller's Ratchet: distant capsid site can affect picornavirus protein processing. J Virol 2009; 83:6748-56. [PMID: 19403672 DOI: 10.1128/jvi.00538-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Repeated bottleneck passages of RNA viruses result in accumulation of mutations and fitness decrease. Here, we show that clones of foot-and-mouth disease virus (FMDV) subjected to bottleneck passages, in the form of plaque-to-plaque transfers in BHK-21 cells, increased the thermosensitivity of the viral clones. By constructing infectious FMDV clones, we have identified the amino acid substitution M54I in capsid protein VP1 as one of the lesions associated with thermosensitivity. M54I affects processing of precursor P1, as evidenced by decreased production of VP1 and accumulation of VP1 precursor proteins. The defect is enhanced at high temperatures. Residue M54 of VP1 is exposed on the virion surface, and it is close to the B-C loop where an antigenic site of FMDV is located. M54 is not in direct contact with the VP1-VP3 cleavage site, according to the three-dimensional structure of FMDV particles. Models to account for the effect of M54 in processing of the FMDV polyprotein are proposed. In addition to revealing a distance effect in polyprotein processing, these results underline the importance of pursuing at the biochemical level the biological defects that arise when viruses are subjected to multiple bottleneck events.
Collapse
|
11
|
Arenavirus genetic diversity and its biological implications. INFECTION GENETICS AND EVOLUTION 2009; 9:417-29. [PMID: 19460307 PMCID: PMC7106275 DOI: 10.1016/j.meegid.2009.03.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 12/15/2022]
Abstract
The Arenaviridae family currently comprises 22 viral species, each of them associated with a rodent species. This viral family is important both as tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens. Arenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. The interaction with the cellular receptor and subsequent entry into the host cell differs between Old World and New World arenavirus that use α-dystoglycan or human transferring receptor 1, respectively, as main receptors. The recent development of reverse genetic systems for several arenaviruses has facilitated progress in understanding the molecular biology and cell biology of this viral family, as well as opening new approaches for the development of novel strategies to combat human pathogenic arenaviruses. On the other hand, increased availability of genetic data has allowed more detailed studies on the phylogeny and evolution of arenaviruses. As with other riboviruses, arenaviruses exist as viral quasispecies, which allow virus adaptation to rapidly changing environments. The large number of different arenavirus host reservoirs and great genetic diversity among virus species provide the bases for the emergence of new arenaviruses potentially pathogenic for humans.
Collapse
|
12
|
Lewis-Rogers N, McClellan DA, Crandall KA. The evolution of foot-and-mouth disease virus: impacts of recombination and selection. INFECTION GENETICS AND EVOLUTION 2008; 8:786-98. [PMID: 18718559 DOI: 10.1016/j.meegid.2008.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
Foot-and-mouth disease virus is an economically important animal virus that exhibits extensive genetic and antigenic heterogeneity. To examine the evolutionary forces that have influenced the population dynamics of foot-and-mouth disease virus, individual genes and the coding genomes for the Eurasian (Asia1, A, C, and O) serotypes were examined for phylogenetic relationships, recombination, genetic diversity and selection. Our analyses demonstrate that paraphyletic relationships among serotypes are not as prevalent as previously proposed and suggest that convergent evolution might be obscuring phylogenetic relationships. We provide evidence that identification of recombinant sequences and recombination breakpoint patterns among and within serotypes are heavily dependent on the level of genetic diversity and convergent characters present in a particular data set as well as the methods used to detect recombination. Here, we also investigate the impact of adaptive positive selection on the capsid proteins and the non-structural genes 2B, 2C, 3A, and 3Cpro to identify genome regions involved in genetic diversity and antigenic variation. Two different categories of positive selection at the amino acid level were examined; conservative (stabilizing) selection that maintains particular phenotypic properties of an amino acid residue and radical (destabilizing), and selection that dramatically alters the phenotype and potentially the functional and/or structural features of the protein. Approximately, 29% of residues in the capsid proteins were under positive selection. Of those, 64% were under the influence of destabilizing selection, 80% were under the influence of stabilizing selection, and 44% had phenotypic properties influenced by both selection types. The majority of residues under selection (74%) were located outside of known antigenic sites; suggestive of additional uncharacterized epitopes and genomic regions involved in antigenic drift.
Collapse
Affiliation(s)
- Nicole Lewis-Rogers
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| | | | | |
Collapse
|
13
|
Martín V, Domingo E. Influence of the mutant spectrum in viral evolution: focused selection of antigenic variants in a reconstructed viral quasispecies. Mol Biol Evol 2008; 25:1544-54. [PMID: 18436553 DOI: 10.1093/molbev/msn099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA viruses replicate as complex mutant distributions termed viral quasispecies. Despite this, studies on virus populations subjected to positive selection have generally been performed and analyzed as if the viral population consisted of a defined genomic nucleotide sequence; such a simplification may not reflect accurately the molecular events underlying the selection process. In the present study, we have reconstructed a foot-and-mouth disease virus quasispecies with multiple, low-frequency, genetically distinguishable mutants that can escape neutralization by a monoclonal antibody. Some of the mutants included an amino acid substitution that affected an integrin recognition motif that overlaps with the antibody-binding site, whereas other mutants included an amino acid substitution that affected antibody binding but not integrin recognition. We have monitored consensus and clonal nucleotide sequences of populations passaged either in the absence or the presence of the neutralizing antibody. In both cases, the populations focused toward a specific mutant that was surrounded by a cloud of mutants with different antigenic and cell recognition specificities. In the absence of antibody selection, an antigenic variant that maintained integrin recognition became dominant, but the mutant cloud included as one of its minority components a variant with altered integrin recognition. Conversely, in the presence of antibody selection, a variant with altered integrin recognition motif became dominant, but it was surrounded by a cloud of antigenic variants that maintained integrin recognition. The results have documented that a mutant spectrum can exert an influence on a viral population subjected to a sustained positive selection pressure and have unveiled a mechanism of antigenic flexibility in viral populations, consisting in the presence in the selected quasispecies of mutants with different antigenic and cell recognition specificities.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
14
|
Domingo E, Escarmís C, Menéndez-Arias L, Perales C, Herrera M, Novella IS, Holland JJ. Viral Quasispecies: Dynamics, Interactions, and Pathogenesis *. ORIGIN AND EVOLUTION OF VIRUSES 2008. [PMCID: PMC7149507 DOI: 10.1016/b978-0-12-374153-0.00004-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quasispecies theory is providing a solid, evolving conceptual framework for insights into virus population dynamics, adaptive potential, and response to lethal mutagenesis. The complexity of mutant spectra can influence disease progression and viral pathogenesis, as demonstrated using virus variants selected for increased replicative fidelity. Complementation and interference exerted among components of a viral quasispecies can either reinforce or limit the replicative capacity and disease potential of the ensemble. In particular, a progressive enrichment of a replicating mutant spectrum with interfering mutant genomes prompted by enhanced mutagenesis may be a key event in the sharp transition of virus populations into error catastrophe that leads to virus extinction. Fitness variations are influenced by the passage regimes to which viral populations are subjected, notably average fitness decreases upon repeated bottleneck events and fitness gains upon competitive optimization of large viral populations. Evolving viral quasispecies respond to selective constraints by replication of subpopulations of variant genomes that display higher fitness than the parental population in the presence of the selective constraint. This has been profusely documented with fitness effects of mutations associated with resistance of pathogenic viruses to antiviral agents. In particular, selection of HIV-1 mutants resistant to one or multiple antiretroviral inhibitors, and the compensatory effect of mutations in the same genome, offers a compendium of the molecular intricacies that a virus can exploit for its survival. This chapter reviews the basic principles of quasispecies dynamics as they can serve to explain the behavior of viruses.
Collapse
|
15
|
Herrera M, Grande-Pérez A, Perales C, Domingo E. Persistence of foot-and-mouth disease virus in cell culture revisited: implications for contingency in evolution. J Gen Virol 2008; 89:232-244. [DOI: 10.1099/vir.0.83312-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
If we could rewind the tape of evolution and play it again, would it turn out to be similar to or different from what we know? Obviously, this key question can only be addressed by fragmentary experimental approaches. Twenty-two years ago, we described the establishment of BHK-21 cells persistently infected with foot-and-mouth disease virus (FMDV), a system that displayed as its major biological feature a coevolution of the cells and the resident virus in the course of persistence. Now we report the establishment of two persistently infected cell lines in parallel, starting with the same clones of FMDV and BHK-21 cells used 22 years ago. We have asked whether the evolution of the two newly established cell lines and of the earlier cell line would be similar or different. The main conclusions of the study are: (i) the basic behaviour characterized by virus–cell coevolution is similar in the three carrier cell lines, despite differences in some genetic alterations of FMDV; (ii) a strikingly parallel behaviour has been observed with the two newly established cell lines passaged in parallel, unveiling a deterministic virus behaviour during persistence; and (iii) selective RT-PCR amplifications have detected imbalances in the proportion of positive- versus negative-strand viral RNA, mediated by both viral and cellular factors. The results confirm coevolution of cells and virus as a major and reproducible feature of FMDV persistence in cell culture, and suggest that rapidly evolving viruses may constitute adequate test systems to probe the influence of historical contingency on evolutionary events.
Collapse
Affiliation(s)
- Mónica Herrera
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana Grande-Pérez
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
García-Arriaza J, Domingo E, Briones C. Characterization of minority subpopulations in the mutant spectrum of HIV-1 quasispecies by successive specific amplifications. Virus Res 2007; 129:123-34. [PMID: 17706828 DOI: 10.1016/j.virusres.2007.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 01/06/2023]
Abstract
RNA viruses do not replicate as defined genomic nucleotide sequences but rather as complex distributions of mutant genomes termed viral quasispecies. Quasispecies dynamics has a number of relevant biological consequences in ribo- and retroviruses, among these the possible presence of memory genomes as minority components of their mutant spectra. Minority memory genomes reflect those viral subpopulations that were dominant at an earlier phase of viral evolution, and can quickly re-emerge to react to certain selective pressures, as it was documented with HIV-1 in vivo. Therefore, an adequate clinical management of HIV-1 requires the development of experimental methods for the detection and quantification of minority viral subpopulations, even at levels of less than 1% of the total quasispecies. We describe a new approach based on successive, highly specific PCR amplifications, which allows the genetic characterization of minority genomes present in increasingly smaller proportion in viral populations. We have coined the term 'quasispecies diving' to reflect the progressive draw on minority or 'deeper' genomes in the mutant spectrum of the quasispecies. In the case of the multidrug-resistant HIV-1 strain analyzed here, quasispecies diving allowed the detection of mutant minority genomes at an unprecedented level of 0.0054% of the amplified viral population. This approach represents a general strategy for the genetic characterization of smaller minority genomes in complex molecular populations.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
17
|
Novella IS, Ebendick-Corpus BE, Zárate S, Miller EL. Emergence of mammalian cell-adapted vesicular stomatitis virus from persistent infections of insect vector cells. J Virol 2007; 81:6664-8. [PMID: 17428845 PMCID: PMC1900099 DOI: 10.1128/jvi.02365-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 04/02/2007] [Indexed: 11/20/2022] Open
Abstract
Arboviruses (arthropod-borne viruses) represent quintessential generalists, with the ability to infect and perform well in multiple hosts. However, antagonistic pleiotropy imposed a cost during the adaptation to persistent replication of vesicular stomatitis virus in sand fly cells and resulted in strains that initially replicated poorly in hamster cells, even when the virus was allowed to replicate periodically in the latter. Once a debilitated strain started replicating continuously in mammalian cells, fitness increased significantly. Fitness recovery did not entail back mutations or compensatory mutations, but instead, we observed the replacement of persistence-adapted genomes by mammalian cell-adapted strains with a full set of new, unrelated sequence changes. These mammalian cell-adapted genomes were present at low frequencies in the populations with a history of persistence for up to a year and quickly became dominant during mammalian infection, but coexistence was not stable in the long term. Periodic acute replication in mammalian cells likely contributed to extending the survival of minority genomes, but these genomes were also found in strictly persistent populations.
Collapse
Affiliation(s)
- Isabel S Novella
- Department of Medical Microbiology and Immunology, Medical University of Ohio, 3055 Arlington Ave., Toledo, OH 43614, USA.
| | | | | | | |
Collapse
|
18
|
Briones C, de Vicente A, Molina-París C, Domingo E. Minority memory genomes can influence the evolution of HIV-1 quasispecies in vivo. Gene 2006; 384:129-38. [PMID: 17059869 DOI: 10.1016/j.gene.2006.07.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/09/2006] [Accepted: 07/13/2006] [Indexed: 11/13/2022]
Abstract
One of the consequences of viral quasispecies dynamics is the presence, in the mutant spectrum, of minority memory genomes that reflect those variants that were dominant at an earlier phase of the same evolutionary lineage. Replicative and cellular (or anatomical) contributions to quasispecies memory were previously defined during intrahost evolution of human immunodeficiency virus type 1 (HIV-1) [Briones, C., Domingo, E., Molina-París, C., 2003. Memory in retroviral quasispecies: experimental evidence and theoretical model for human immunodeficiency virus. J. Mol. Biol. 331, 213-229.]. However, the effects of replicative memory regarding virus evolution in vivo have not been investigated. Here we document that a multidrug-resistant (MDR) HIV-1, present at memory level, determined the ensuing evolution of the virus in an infected patient. Nucleotide sequencing and detailed phylogenetic analyses of sequential viral populations and individual molecular clones evidenced that the progeny of a minority MDR genome during a treatment interruption contributed the dominant genomes when an antiretroviral treatment was restored. An extension of a mathematical model of establishment and maintenance of memory, based on quasispecies theory, supports the experimental data. Therefore a replicative memory subpopulation, not detectable in a consensus nucleotide sequence, affected decisively subsequent states of viral evolution in vivo.
Collapse
Affiliation(s)
- Carlos Briones
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain.
| | | | | | | |
Collapse
|
19
|
Martín V, Perales C, Dávila M, Domingo E. Viral fitness can influence the repertoire of virus variants selected by antibodies. J Mol Biol 2006; 362:44-54. [PMID: 16890952 DOI: 10.1016/j.jmb.2006.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/30/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Minority genomes in the mutant spectra of viral quasispecies may differ in relative fitness. Here, we report experiments designed to evaluate the contribution of relative fitness to selection by a neutralizing monoclonal antibody (mAb). We have reconstructed a foot-and-mouth disease virus (FMDV) quasispecies, with two matched pairs of distinguishable mAb-escape mutants as minority genomes of the mutant spectrum. Each mutant of a pair differs from the other by 11-fold or 33-fold in relative fitness. Analysis of the mutant spectra of virus populations selected with different concentrations of antibody in infections in liquid culture medium has documented a dominance of the high fitness counterpart in the selected population. Plaque development as a function of increasing concentration of the antibody has shown that each mutant of a matched pair yielded the same number of plaques, although the high fitness mutant required less time for plaque formation, and attained a larger plaque size at any given time-point. This result documents equal intrinsic resistance to the antibody of each mutant of a matched pair, confirming previous biochemical, structural, and genetic studies, which indicated that the epitopes of each mutant pair were indistinguishable regarding reactivity with the monoclonal antibody. Thus, relative viral fitness can influence in a significant way the repertoire of viral mutants selected from a viral quasispecies by a neutralizing antibody. We discuss the significance of these results in relation to antibody selection, and to other selective forces likely encountered by viral quasispecies in vivo.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Quiñones-Mateu ME, Arts EJ. Virus fitness: concept, quantification, and application to HIV population dynamics. Curr Top Microbiol Immunol 2006; 299:83-140. [PMID: 16568897 DOI: 10.1007/3-540-26397-7_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viral fitness has been broadly studied during the past three decades, mainly to test evolutionary models and population theories difficult to analyze and interpret with more complex organisms. More recent studies, however, are focused in the role of fitness on viral transmission, pathogenesis, and drug resistance. Here, we used human immunodeficiency virus (HIV) as one of the most relevant models to evaluate the importance of viral quasispecies and fitness in HIV evolution, population dynamics, disease progression, and potential clinical implications.
Collapse
Affiliation(s)
- M E Quiñones-Mateu
- Department of Molecular Genetics, Section Virology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NN10, Cleveland, OH 44195, USA.
| | | |
Collapse
|
21
|
Quer J, Esteban JI, Cos J, Sauleda S, Ocaña L, Martell M, Otero T, Cubero M, Palou E, Murillo P, Esteban R, Guàrdia J. Effect of bottlenecking on evolution of the nonstructural protein 3 gene of hepatitis C virus during sexually transmitted acute resolving infection. J Virol 2006; 79:15131-41. [PMID: 16306585 PMCID: PMC1316027 DOI: 10.1128/jvi.79.24.15131-15141.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sexual partners of patients infected with the hepatitis C virus (HCV) often have detectable HCV-specific T-cell responses in the absence of seroconversion, suggesting unapparent, spontaneously resolving infection. To determine whether differences in the evolutionary potential of bottlenecked inoculum may explain the low rate of HCV persistence after sexual exposure, we have investigated changes in the entire HCV nonstructural 3 (NS3) gene over time in a chronic carrier and compared his viral quasispecies with that of the acute-phase isolate of his sexual partner, who developed acute resolving hepatitis C. The overall rate of accumulation of mutations, estimated by regression analysis of six consecutive consensus NS3 sequences over 8 years, was 1.5 x 10(-3) mutations per site per year, with small intersample fluctuations related to changes in environmental conditions. Comparison of quasispecies parameters in one isolate of the chronic carrier with those of the acute-phase isolate of the infected partner revealed a higher heterogeneity and lower proportion of nonsynonymous mutations in the former. All NS3 sequences from the acute-phase isolate clustered with a single sequence from the chronic isolate, despite complete HLA mismatch between the patients, suggesting bottlenecking during transmission. The low risk of viral persistence after sexual exposure to HCV may be related to the selection of a limited number of viral particles carrying a particular combination of mutations which may further limit the potential of a relatively homogeneous quasispecies to rapidly diversify and overcome the immune response of the exposed host.
Collapse
Affiliation(s)
- Josep Quer
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Pg Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Replication of poliovirus RNA is accomplished by the error-prone viral RNA-dependent RNA polymerase and hence is accompanied by numerous mutations. In addition, genetic errors may be introduced by nonreplicative mechanisms. Resulting variability is manifested by point mutations and genomic rearrangements (e.g., deletions, insertions and recombination). After description of basic mechanisms underlying this variability, the review focuses on regularities of poliovirus evolution (mutation fixation) in tissue cultures, human organisms and populations.
Collapse
Affiliation(s)
- V I Agol
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, 142782, Russia.
| |
Collapse
|
23
|
Domingo E, Martin V, Perales C, Grande-Pérez A, García-Arriaza J, Arias A. Viruses as quasispecies: biological implications. Curr Top Microbiol Immunol 2006; 299:51-82. [PMID: 16568896 PMCID: PMC7120838 DOI: 10.1007/3-540-26397-7_3] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During viral infections, the complex and dynamic distributions of variants, termed viral quasispecies, play a key role in the adaptability of viruses to changing environments and the fate of the population as a whole. Mutant spectra are continuously and avoidably generated during RNA genome replication, and they are not just a by-product of error-prone replication, devoid of biological relevance. On the contrary, current evidence indicates that mutant spectra contribute to viral pathogenesis, can modulate the expression of phenotypic traits by subpopulations of viruses, can include memory genomes that reflect the past evolutionary history of the viral lineage, and, furthermore, can participate in viral extinction through lethal mutagenesis. Also, mutant spectra are the target on which selection and random drift act to shape the long-term evolution of viruses. The biological relevance of mutant spectra is the central topic of this chapter.
Collapse
Affiliation(s)
- E Domingo
- Centro de Biologia Molecular, Severo Ochoa, (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
García-Arriaza J, Domingo E, Escarmís C. A segmented form of foot-and-mouth disease virus interferes with standard virus: a link between interference and competitive fitness. Virology 2005; 335:155-64. [PMID: 15840515 DOI: 10.1016/j.virol.2005.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/02/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Serial passage of foot-and-mouth disease virus (FMDV) in BHK-21 cells at high multiplicity of infection resulted in dominance of particles containing defective RNAs that were infectious by complementation in the absence of standard viral RNA. In the present study, we show that the defective FMDV particles interfere with replication of the cognate standard virus. Coinfections of defective FMDV with standard FMDV mutants that differ up to 151-fold in relative fitness have documented that the degree of interference is higher for low fitness than for high fitness standard virus. These comparisons suggest a likely overlap between those mechanisms of intracellular competition that underlie viral interference and those expressed as fitness differences between two viruses when they coinfect the same cells. Interference may contribute to the selective pressures that help maintain dominance of segmented defective RNAs over the standard FMDV genome.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
25
|
Yuste E, Bordería AV, Domingo E, López-Galíndez C. Few mutations in the 5' leader region mediate fitness recovery of debilitated human immunodeficiency type 1 viruses. J Virol 2005; 79:5421-7. [PMID: 15827156 PMCID: PMC1082768 DOI: 10.1128/jvi.79.9.5421-5427.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repeated bottleneck passages of RNA viruses result in fitness losses due to the accumulation of deleterious mutations. In contrast, repeated transfers of large virus populations result in exponential fitness increases. Human immunodeficiency virus type 1 (HIV-1) manifested a drastic fitness loss after a limited number of plaque-to-plaque transfers in MT-4 cells. An analysis of the mutations associated with fitness loss in four debilitated clones revealed mutation frequencies in gag that were threefold higher than those in env. We now show an increase in the fitness of the debilitated HIV-1 clones by repeated passages of large populations. An analysis of the entire genomic nucleotide sequences of these populations showed that few mutations, from two to seven per clone, mediated fitness recovery. Eight of the 20 mutations affected coding regions, mainly by the introduction of nonsynonymous mutations (75%). However, most of the mutations accumulated during fitness recovery (12 of 20) were located in the 5' untranslated leader region of the genome, and more specifically, in the primer binding site (PBS) loop. Two of the viruses incorporated the same mutation in the primer activation signal in the PBS loop, which is critical for the tRNA3Lys-mediated initiation of reverse transcription. Moreover, 25% of the mutations observed were reversions. This fact, together with the presence of a large proportion of nonsynonymous replacements, may disclose the operation, during large population passages, of strong positive selection for optimal HIV-1 replication, which seems to be primarily affected by binding of the tRNA to the PBS and the initiation of reverse transcription.
Collapse
Affiliation(s)
- Eloísa Yuste
- Centro de Biología Molecular "Severo Ochoa," CSIC-UAM, Universidad Autónoma, Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Perales C, Martín V, Ruiz-Jarabo CM, Domingo E. Monitoring sequence space as a test for the target of selection in viruses. J Mol Biol 2005; 345:451-9. [PMID: 15581890 DOI: 10.1016/j.jmb.2004.10.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 10/22/2004] [Accepted: 10/22/2004] [Indexed: 10/26/2022]
Abstract
An essential feature of viral quasispecies, predicted from quasispecies theory, is that the target of selection is the mutant distribution as a whole. To test molecularly the mutant composition selected from a viral quasispecies we reconstructed a mutant distribution using 19 antigenic variants of foot-and-mouth disease virus (FMDV). Each variant was marked by a specific amino acid replacement at a major antigenic site of the virus that conferred resistance to a monoclonal antibody (mAb). The variants were introduced in the mutant spectrum of a biological FMDV clone, at a frequency commonly found in FMDV quasispecies. The reconstructed quasispecies (and a number of control populations) were allowed to replicate in the presence or absence of the mAb. The mutant distribution that became dominant as a result of antibody selection included at least ten of the 19 mutants initially used to reconstruct the quasispecies. No such biased mutant repertoire was found in control populations. The results show that a mutant distribution was selected, and are incompatible with selection of an individual genome, which then generated multiple mutants upon further replication. An ample representation of variants immediately following a selection event should contribute to subsequent adaptability of the virus.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Arias A, Ruiz-Jarabo CM, Escarmís C, Domingo E. Fitness increase of memory genomes in a viral quasispecies. J Mol Biol 2004; 339:405-12. [PMID: 15136042 DOI: 10.1016/j.jmb.2004.03.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/22/2004] [Accepted: 03/23/2004] [Indexed: 11/18/2022]
Abstract
Viral quasispecies may contain a subset of minority genomes that reflect those genomic sequences that were dominant at an early phase of quasispecies evolution. Such minority genomes are referred to as memory in viral quasispecies. A memory marker previously characterized in foot-and-mouth disease virus (FMDV) is an internal oligoadenylate tract of variable length that became dominant upon serial plaque-to-plaque transfers of FMDV clones. During large population passages, genomes with internal oligoadenylate were outcompeted by wild-type revertants but remained in the mutant spectra as memory genomes. Here, we report a quantification of relative fitness of several FMDV clones, harboring internal oligoadenylate tracts of different length, and that were retrieved at early or late times (passage number) after implementation of memory. The results show that for any given length range of the oligoadenylate, maintenance in memory resulted in an increase in relative fitness, comparable to the increase undergone by the entire population. The fitness increase is in agreement with the Red Queen hypothesis, and implies a replicative memory mechanism. Thus, permanence of memory genomes may be a source of high fitness variants despite their initial low fitness, and despite having remained hidden in mutant spectra. This reinforces the interest of diagnosing minority genomes during chronic human and animal viral infections.
Collapse
Affiliation(s)
- Armando Arias
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|