1
|
Okamoto Y, Yasuda T, Morita R, Shigeta Y, Harada R. Structural Fluctuation in Homodimeric Aminoacyl-tRNA Synthetases Induces Half-of-the-Sites Activity. J Phys Chem B 2024. [PMID: 39441699 DOI: 10.1021/acs.jpcb.4c05191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Enzymatic activity is regulated by various mechanisms to ensure biologically proper functions. Notable instances of such regulation in homodimeric enzymes include "all-of-the-sites activity" and "half-of-the-sites activity". The difference in these activities lies in whether one or both of the subunits are simultaneously active. Owing to its uniqueness, the mechanism of half-of-the-sites activity has been widely investigated. Consequently, structural asymmetry derived from cooperative motion is considered to induce half-of-the-sites activity. In contrast, recent investigations have suggested that subunit-intrinsic properties or structural fluctuation also induces structural asymmetry. Hence, the mechanism underlying half-of-the-sites activity has not been completely elucidated. Additionally, most previous studies have focused only on half-of-the-sites activity. Therefore, by comparing the structural and dynamical properties of two representative homodimers exhibiting all-of-the-sites and half-of-the-sites activities, respectively, we attempted to elucidate the mechanism of half-of-the-sites activity. Specifically, all-atom molecular dynamics simulations were applied to lysyl-tRNA synthetase and tyrosyl-tRNA synthetase. Our analysis revealed that structural fluctuation is sufficient to induce structural asymmetry in addition to the well-established factor of cooperative motion. Considering that structural fluctuation is a common characteristic of any enzyme, it could be a general factor in half-of-the-sites activity.
Collapse
Affiliation(s)
- Yoshino Okamoto
- Master's Program in Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0821, Japan
| | - Takunori Yasuda
- Doctoral Program in Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0821, Japan
| | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2
|
Douglas J, Cui H, Perona JJ, Vargas-Rodriguez O, Tyynismaa H, Carreño CA, Ling J, Ribas de Pouplana L, Yang XL, Ibba M, Becker H, Fischer F, Sissler M, Carter CW, Wills PR. AARS Online: A collaborative database on the structure, function, and evolution of the aminoacyl-tRNA synthetases. IUBMB Life 2024. [PMID: 39247978 DOI: 10.1002/iub.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
The aminoacyl-tRNA synthetases (aaRS) are a large group of enzymes that implement the genetic code in all known biological systems. They attach amino acids to their cognate tRNAs, moonlight in various translational and non-translational activities beyond aminoacylation, and are linked to many genetic disorders. The aaRS have a subtle ontology characterized by structural and functional idiosyncrasies that vary from organism to organism, and protein to protein. Across the tree of life, the 22 coded amino acids are handled by 16 evolutionary families of Class I aaRS and 21 families of Class II aaRS. We introduce AARS Online, an interactive Wikipedia-like tool curated by an international consortium of field experts. This platform systematizes existing knowledge about the aaRS by showcasing a taxonomically diverse selection of aaRS sequences and structures. Through its graphical user interface, AARS Online facilitates a seamless exploration between protein sequence and structure, providing a friendly introduction to the material for non-experts and a useful resource for experts. Curated multiple sequence alignments can be extracted for downstream analyses. Accessible at www.aars.online, AARS Online is a free resource to delve into the world of the aaRS.
Collapse
Affiliation(s)
- Jordan Douglas
- Department of Physics, University of Auckland, New Zealand
- Centre for Computational Evolution, University of Auckland, New Zealand
| | - Haissi Cui
- Department of Chemistry, University of Toronto, Canada
| | - John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut, Storrs, Connecticut, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | | | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Michael Ibba
- Biological Sciences, Chapman University, Orange, California, USA
| | - Hubert Becker
- Génétique Moléculaire, Génomique Microbiologique, University of Strasbourg, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique Microbiologique, University of Strasbourg, France
| | - Marie Sissler
- Génétique Moléculaire, Génomique Microbiologique, University of Strasbourg, France
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter R Wills
- Department of Physics, University of Auckland, New Zealand
- Centre for Computational Evolution, University of Auckland, New Zealand
| |
Collapse
|
3
|
Douglas J, Bouckaert R, Carter CW, Wills P. Enzymic recognition of amino acids drove the evolution of primordial genetic codes. Nucleic Acids Res 2024; 52:558-571. [PMID: 38048305 PMCID: PMC10810186 DOI: 10.1093/nar/gkad1160] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
How genetic information gained its exquisite control over chemical processes needed to build living cells remains an enigma. Today, the aminoacyl-tRNA synthetases (AARS) execute the genetic codes in all living systems. But how did the AARS that emerged over three billion years ago as low-specificity, protozymic forms then spawn the full range of highly-specific enzymes that distinguish between 22 diverse amino acids? A phylogenetic reconstruction of extant AARS genes, enhanced by analysing modular acquisitions, reveals six AARS with distinct bacterial, archaeal, eukaryotic, or organellar clades, resulting in a total of 36 families of AARS catalytic domains. Small structural modules that differentiate one AARS family from another played pivotal roles in discriminating between amino acid side chains, thereby expanding the genetic code and refining its precision. The resulting model shows a tendency for less elaborate enzymes, with simpler catalytic domains, to activate amino acids that were not synthesised until later in the evolution of the code. The most probable evolutionary route for an emergent amino acid type to establish a place in the code was by recruiting older, less specific AARS, rather than adapting contemporary lineages. This process, retrofunctionalisation, differs from previously described mechanisms through which amino acids would enter the code.
Collapse
Affiliation(s)
- Jordan Douglas
- Department of Physics, The University of Auckland, New Zealand
- Centre for Computational Evolution, The University of Auckland, New Zealand
| | - Remco Bouckaert
- Centre for Computational Evolution, The University of Auckland, New Zealand
- School of Computer Science, The University of Auckland, New Zealand
| | - Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, USA
| | - Peter R Wills
- Department of Physics, The University of Auckland, New Zealand
- Centre for Computational Evolution, The University of Auckland, New Zealand
| |
Collapse
|
4
|
Yao J, Wang ZN, Liu H, Jin H, Zhang Y. Survey of Acetylation for Thermoanaerobacter tengcongensis. Appl Biochem Biotechnol 2023; 195:6081-6097. [PMID: 36809429 DOI: 10.1007/s12010-023-04361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/23/2023]
Abstract
Non-histone protein acetylation is involved in key cellular processes both in eukaryotes and prokaryotes. Acetylation in bacteria is used to modify proteins involved in metabolism and allow the bacteria to adapt to their environment. TTE (Thermoanaerobacter tengcongensis) is an anaerobic, thermophilic saccharolytic bacterium that grows at extreme temperature range between 50 and 80 ℃. The annotated TTE proteome contains less than 3000 proteins. We analyzed the proteome and acetylome of TTE using 2DLC-MS/MS (2-dimensional liquid chromatography mass spectrum). We evaluated the ability of mass spectrometry technology to cover a relatively small proteome as much as possible. And we also observed wide spread of acetylation in TTE, which changed under different temperatures. A total of 2082 proteins were identified, which accounts for about 82% of the database. A total of 2050 (~ 98%) proteins were quantified in at least one culture condition and 1818 proteins were quantified in all 4 conditions. The result also consisted 3457 acetylation sites corresponding to 827 distinct proteins, which covered 40% of the proteins identified. Bioinformatics analysis reported that proteins related to replication, recombination, repair, and extracellular structure cell wall biogenesis had more than half members acetylated, while energy production, carbohydrate transport, and metabolism related proteins were least acetylated. Our result suggested that acetylation affects the ATP-related energy metabolism and energy-dependent biosynthesis process. Comparing the enzymes related with lysine acetylation and acetyl-CoA (acetyl-coenzyme A) metabolism, we suggested that the acetylation of TTE took a non-enzymatic mechanism and affected by abundance of acetyl-CoA.
Collapse
Affiliation(s)
- Jun Yao
- Department of Chemistry, Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Ze-Ning Wang
- Department of Chemistry, Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Hang Liu
- Department of Chemistry, Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Jin
- Department of Chemistry, Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Yang Zhang
- Department of Chemistry, Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
5
|
Brkic A, Leibundgut M, Jablonska J, Zanki V, Car Z, Petrovic Perokovic V, Marsavelski A, Ban N, Gruic-Sovulj I. Antibiotic hyper-resistance in a class I aminoacyl-tRNA synthetase with altered active site signature motif. Nat Commun 2023; 14:5498. [PMID: 37679387 PMCID: PMC10485003 DOI: 10.1038/s41467-023-41244-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Antibiotics target key biological processes that include protein synthesis. Bacteria respond by developing resistance, which increases rapidly due to antibiotics overuse. Mupirocin, a clinically used natural antibiotic, inhibits isoleucyl-tRNA synthetase (IleRS), an enzyme that links isoleucine to its tRNAIle for protein synthesis. Two IleRSs, mupirocin-sensitive IleRS1 and resistant IleRS2, coexist in bacteria. The latter may also be found in resistant Staphylococcus aureus clinical isolates. Here, we describe the structural basis of mupirocin resistance and unravel a mechanism of hyper-resistance evolved by some IleRS2 proteins. We surprisingly find that an up to 103-fold increase in resistance originates from alteration of the HIGH motif, a signature motif of the class I aminoacyl-tRNA synthetases to which IleRSs belong. The structural analysis demonstrates how an altered HIGH motif could be adopted in IleRS2 but not IleRS1, providing insight into an elegant mechanism for coevolution of the key catalytic motif and associated antibiotic resistance.
Collapse
Affiliation(s)
- A Brkic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - M Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093, Zürich, Switzerland
| | - J Jablonska
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - V Zanki
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Z Car
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - V Petrovic Perokovic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - A Marsavelski
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - N Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093, Zürich, Switzerland.
| | - I Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia.
| |
Collapse
|
6
|
Hartman MCT. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem 2022; 23:e202100299. [PMID: 34416067 PMCID: PMC9651912 DOI: 10.1002/cbic.202100299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/03/2021] [Indexed: 01/07/2023]
Abstract
In this comprehensive review, I focus on the twenty E. coli aminoacyl-tRNA synthetases and their ability to charge non-canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20 E. coli aminoacyl-tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
Collapse
Affiliation(s)
- Matthew C T Hartman
- Department of Chemistry and Massey Cancer Center, Virginia Commonwealth University, 1001 W Main St., Richmond, VA 23220, USA
| |
Collapse
|
7
|
Datt M. Interplay of substrate polymorphism and conformational plasticity of Plasmodium tyrosyl-tRNA synthetase. Comput Biol Chem 2021; 95:107582. [PMID: 34571426 DOI: 10.1016/j.compbiolchem.2021.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022]
Abstract
Aminoacyl-tRNA synthetases are an indispensable component of ribosomal protein translational machinery and Plasmodium Tyrosyl-tRNA synthetase (PfTyrRS) is a validated drug target. This manuscript illustrates the dynamic conformational landscape of PfTyrRS in the context of substrate binding. Molecular dynamics simulations of PfTyrRS in the presence and absence of ligand show conformational heterogeneity for both the protein and the bound ligand. Diverse conformations for the evolutionarily conserved ATP binding motif (KMSKS) have been observed in both apo- and holo PfTyrRS. Further, the presented attributes of the tyrosyl-adenylate conformational sub-states in situ along with their implications on the strength of intermolecular interactions would be a pertinent benchmark for molecular design studies. In addition, an analysis of the ligand hydration pattern foregrounds the structurally conserved water-mediated inter-molecular interactions. The quantitative assessment of the conformational landscape, based on the fluctuations of the distance between the ligand binding pockets, of apo-PfTyrRS and holo-PfTyrRS highlights the nature of diversity in conformational sampling for the two cases. Evidently, the holo-PfTyrRS adopts a rather compact conformation compared to the apo-PfTyrRS. An intriguing asymmetry in the dynamics of the two monomers is contextualized with the functional asymmetry of the symmetrically dimeric PfTyrRS. Importantly, the network of non-bonded contacts in the apo- and holo- simulated ensembles has been analyzed. The graph-theoretic analysis-based novel insights concerning the nature of information flow as a function of ligation state would prove valuable in understanding PfTyrRS functions. The results presented here contend that understanding allostery in PfTyrRS is essential to astutely design structure-based inhibitors.
Collapse
Affiliation(s)
- Manish Datt
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat - 380009, India.
| |
Collapse
|
8
|
Chen B, Luo S, Zhang S, Ju Y, Gu Q, Xu J, Yang XL, Zhou H. Inhibitory mechanism of reveromycin A at the tRNA binding site of a class I synthetase. Nat Commun 2021; 12:1616. [PMID: 33712620 PMCID: PMC7955072 DOI: 10.1038/s41467-021-21902-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
The polyketide natural product reveromycin A (RM-A) exhibits antifungal, anticancer, anti-bone metastasis, anti-periodontitis and anti-osteoporosis activities by selectively inhibiting eukaryotic cytoplasmic isoleucyl-tRNA synthetase (IleRS). Herein, a co-crystal structure suggests that the RM-A molecule occupies the substrate tRNAIle binding site of Saccharomyces cerevisiae IleRS (ScIleRS), by partially mimicking the binding of tRNAIle. RM-A binding is facilitated by the copurified intermediate product isoleucyl-adenylate (Ile-AMP). The binding assays confirm that RM-A competes with tRNAIle while binding synergistically with L-isoleucine or intermediate analogue Ile-AMS to the aminoacylation pocket of ScIleRS. This study highlights that the vast tRNA binding site of the Rossmann-fold catalytic domain of class I aminoacyl-tRNA synthetases could be targeted by a small molecule. This finding will inform future rational drug design.
Collapse
Affiliation(s)
- Bingyi Chen
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China ,grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Siting Luo
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China ,grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Songxuan Zhang
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China ,grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Yingchen Ju
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China ,grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Qiong Gu
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Jun Xu
- grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| | - Xiang-Lei Yang
- grid.214007.00000000122199231Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037 USA
| | - Huihao Zhou
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China ,grid.12981.330000 0001 2360 039XResearch Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 China
| |
Collapse
|
9
|
Wang Z, Matthews H, Deng G, Zhou X, Chen Y. Thermodynamic Analysis of Tyrosyl-tRNA Synthetases Revealed Bacterial-Selective Tyrosine Derivatives. Aust J Chem 2021. [DOI: 10.1071/ch21218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The non-proteinogenic amino acids m-fluorotyrosine and 2,4-dihydroxyphenylalanine demonstrated a respective 6- and 12-fold greater binding affinity to the purified tyrosyl-tRNA synthetase from Escherichia coli than that from human cytosol. The differential binding was identified by probing the substrate selectivity of the two enzymes with structural analogues of tyrosine using a thermodynamic technique.
Collapse
|
10
|
De Ruysscher D, Pang L, Lenders SMG, Cappoen D, Cos P, Rozenski J, Strelkov SV, Weeks SD, Van Aerschot A. Synthesis and structure-activity studies of novel anhydrohexitol-based Leucyl-tRNA synthetase inhibitors. Eur J Med Chem 2020; 211:113021. [PMID: 33248851 DOI: 10.1016/j.ejmech.2020.113021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 12/01/2022]
Abstract
Leucyl-tRNA synthetase (LeuRS) is a clinically validated target for the development of antimicrobials. This enzyme catalyzes the formation of charged tRNALeu molecules, an essential substrate for protein translation. In the first step of catalysis LeuRS activates leucine using ATP, forming a leucyl-adenylate intermediate. Bi-substrate inhibitors that mimic this chemically labile phosphoanhydride-linked nucleoside have proven to be potent inhibitors of different members of the aminoacyl-tRNA synthetase family but, to date, they have demonstrated poor antibacterial activity. We synthesized a small series of 1,5-anhydrohexitol-based analogues coupled to a variety of triazoles and performed detailed structure-activity relationship studies with bacterial LeuRS. In an in vitro assay, Kiapp values in the nanomolar range were demonstrated. Inhibitory activity differences between the compounds revealed that the polarity and size of the triazole substituents affect binding. X-ray crystallographic studies of N. gonorrhoeae LeuRS in complex with all the inhibitors highlighted the crucial interactions defining their relative enzyme inhibitory activities. We further examined their in vitro antimicrobial properties by screening against several bacterial and yeast strains. While only weak antibacterial activity against M. tuberculosis was detected, the extensive structural data which were obtained could make these LeuRS inhibitors a suitable starting point towards further antibiotic development.
Collapse
Affiliation(s)
- Dries De Ruysscher
- Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 - Box 1030, 3000, Leuven, Belgium
| | - Luping Pang
- Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 - Box 1030, 3000, Leuven, Belgium; Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 - Box 822, 3000, Leuven, Belgium
| | - Stijn M G Lenders
- Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 - Box 1030, 3000, Leuven, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 - Box 1030, 3000, Leuven, Belgium
| | - Sergei V Strelkov
- Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 - Box 822, 3000, Leuven, Belgium
| | - Stephen D Weeks
- Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 - Box 822, 3000, Leuven, Belgium.
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 - Box 1030, 3000, Leuven, Belgium.
| |
Collapse
|
11
|
A rationally designed orthogonal synthetase for genetically encoded fluorescent amino acids. Heliyon 2020; 6:e05140. [PMID: 33083608 PMCID: PMC7550906 DOI: 10.1016/j.heliyon.2020.e05140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/25/2023] Open
Abstract
The incorporation of non-canonical amino acids into proteins has emerged as a promising strategy to manipulate and study protein structure-function relationships with superior precision in vitro and in vivo. To date, fluorescent non-canonical amino acids (f-ncAA) have been successfully incorporated in proteins expressed in bacterial systems, Xenopus oocytes, and HEK-293T cells. Here, we describe the rational generation of a novel orthogonal aminoacyl-tRNA synthetase based on the E. coli tyrosine synthetase that is capable of encoding the f-ncAA tyr-coumarin in HEK-293T cells.
Collapse
|
12
|
He X, Chen Y, Beltran DG, Kelly M, Ma B, Lawrie J, Wang F, Dodds E, Zhang L, Guo J, Niu W. Functional genetic encoding of sulfotyrosine in mammalian cells. Nat Commun 2020; 11:4820. [PMID: 32973160 PMCID: PMC7515910 DOI: 10.1038/s41467-020-18629-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Protein tyrosine O-sulfation (PTS) plays a crucial role in extracellular biomolecular interactions that dictate various cellular processes. It also involves in the development of many human diseases. Regardless of recent progress, our current understanding of PTS is still in its infancy. To promote and facilitate relevant studies, a generally applicable method is needed to enable efficient expression of sulfoproteins with defined sulfation sites in live mammalian cells. Here we report the engineering, in vitro biochemical characterization, structural study, and in vivo functional verification of a tyrosyl-tRNA synthetase mutant for the genetic encoding of sulfotyrosine in mammalian cells. We further apply this chemical biology tool to cell-based studies on the role of a sulfation site in the activation of chemokine receptor CXCR4 by its ligand. Our work will not only facilitate cellular studies of PTS, but also paves the way for economical production of sulfated proteins as therapeutic agents in mammalian systems.
Collapse
Affiliation(s)
- Xinyuan He
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Yan Chen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Daisy Guiza Beltran
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Maia Kelly
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Bin Ma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Justin Lawrie
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Feng Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eric Dodds
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Limei Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
13
|
Cornell RB. Membrane Lipids Assist Catalysis by CTP: Phosphocholine Cytidylyltransferase. J Mol Biol 2020; 432:5023-5042. [PMID: 32234309 DOI: 10.1016/j.jmb.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
While most of the articles in this issue review the workings of integral membrane enzymes, in this review, we describe the catalytic mechanism of an enzyme that contains a soluble catalytic domain but appears to catalyze its reaction on the membrane surface, anchored and assisted by a separate regulatory amphipathic helical domain and inter-domain linker. Membrane partitioning of CTP: phosphocholine cytidylyltransferase (CCT), a key regulatory enzyme of phosphatidylcholine metabolism, is regulated chiefly by changes in membrane phospholipid composition, and boosts the enzyme's catalytic efficiency >200-fold. Catalytic enhancement by membrane binding involves the displacement of an auto-inhibitory helix from the active site entrance-way and promotion of a new conformational ensemble for the inter-domain, allosteric linker that has an active role in the catalytic cycle. We describe the evidence for close contact between membrane lipid, a compact allosteric linker, and the CCT active site, and discuss potential ways that this interaction enhances catalysis.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A-1S6.
| |
Collapse
|
14
|
Hughes CA, Gorabi V, Escamilla Y, Dean FB, Bullard JM. Two Forms of Tyrosyl-tRNA Synthetase from Pseudomonas aeruginosa: Characterization and Discovery of Inhibitory Compounds. SLAS DISCOVERY 2020; 25:1072-1086. [PMID: 32583746 DOI: 10.1177/2472555220934793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pseudomonas aeruginosa is a multidrug-resistant (MDR) pathogen and a causative agent of both nosocomial and community-acquired infections. The genes (tyrS and tyrZ) encoding both forms of P. aeruginosa tyrosyl-tRNA synthetase (TyrRS-S and TyrRS-Z) were cloned and the resulting proteins purified. TyrRS-S and TyrRS-Z were kinetically evaluated and the Km values for interaction with Tyr, ATP, and tRNATyr were 172, 204, and 1.5 μM and 29, 496, and 1.9 μM, respectively. The kcatobs values for interaction with Tyr, ATP, and tRNATyr were calculated to be 3.8, 1.0, and 0.2 s-1 and 3.1, 3.8, and 1.9 s-1, respectively. Using scintillation proximity assay (SPA) technology, a druglike 2000-compound library was screened to identify inhibitors of the enzymes. Four compounds (BCD37H06, BCD38C11, BCD49D09, and BCD54B04) were identified with inhibitory activity against TyrRS-S. BCD38C11 also inhibited TyrRS-Z. The IC50 values for BCD37H06, BCD38C11, BCD49D09, and BCD54B04 against TyrRS-S were 24, 71, 65, and 50 μM, respectively, while the IC50 value for BCD38C11 against TyrRS-Z was 241 μM. Minimum inhibitory concentrations (MICs) were determined against a panel of clinically important pathogens. All four compounds were observed to inhibit the growth of cultures of both Gram-positive and Gram-negative bacteria organisms with a bacteriostatic mode of action. When tested against human cell cultures, none of the compounds were toxic at concentrations up to 400 μg/mL. In mechanism of inhibition studies, BCD38C11 and BCD49D09 selectively inhibited TyrRS activity by competing with ATP for binding. BCD37H06 and BCD54B04 inhibited TyrRS activity by a mechanism other than substrate competition.
Collapse
Affiliation(s)
- Casey A Hughes
- The University of Texas-RGV, Edinburg, TX, USA.,Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | | | | | | | | |
Collapse
|
15
|
Shivakumaraswamy S, Pandey N, Ballut L, Violot S, Aghajari N, Balaram H. Helices on Interdomain Interface Couple Catalysis in the ATPPase Domain with Allostery in Plasmodium falciparum GMP Synthetase. Chembiochem 2020; 21:2805-2817. [PMID: 32358899 DOI: 10.1002/cbic.202000158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Indexed: 11/07/2022]
Abstract
GMP synthetase catalyses the conversion of XMP to GMP through a series of reactions that include hydrolysis of Gln to generate ammonia in the glutamine amidotransferase (GATase) domain, activation of XMP to adenyl-XMP intermediate in the ATP pyrophosphatase (ATPPase) domain and reaction of ammonia with the intermediate to generate GMP. The functioning of GMP synthetases entails bidirectional domain crosstalk, which leads to allosteric activation of the GATase domain, synchronization of catalytic events and tunnelling of ammonia. Herein, we have taken recourse to the analysis of structures of GMP synthetases, site-directed mutagenesis and steady-state and transient kinetics on the Plasmodium falciparum enzyme to decipher the molecular basis of catalysis in the ATPPase domain and domain crosstalk. Our results suggest an arrangement at the interdomain interface, of helices with residues that play roles in ATPPase catalysis as well as domain crosstalk enabling the coupling of ATPPase catalysis with GATase activation. Overall, the study enhances our understanding of GMP synthetases, which are drug targets in many infectious pathogens.
Collapse
Affiliation(s)
- Santosh Shivakumaraswamy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Nivedita Pandey
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Lionel Ballut
- Biocrystallography and Structural Biology of Therapeutic Targets Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS -, University of Lyon 1, 7 passage du Vercors, 69367, Lyon Cedex 07, France
| | - Sébastien Violot
- Biocrystallography and Structural Biology of Therapeutic Targets Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS -, University of Lyon 1, 7 passage du Vercors, 69367, Lyon Cedex 07, France
| | - Nushin Aghajari
- Biocrystallography and Structural Biology of Therapeutic Targets Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS -, University of Lyon 1, 7 passage du Vercors, 69367, Lyon Cedex 07, France
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
16
|
Farshadfar C, Mollica A, Rafii F, Noorbakhsh A, Nikzad M, Seyedi SH, Abdi F, Verki SA, Mirzaie S. Novel potential inhibitor discovery against tyrosyl-tRNA synthetase from Staphylococcus aureus by virtual screening, molecular dynamics, MMPBSA and QMMM simulations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1726911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chiako Farshadfar
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research Jefferson, Jefferson, AR, USA
| | - Akbar Noorbakhsh
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Mozhgan Nikzad
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Seyed Hamid Seyedi
- Department of Biochemistry, Science and Research Branch, Islamic Azad University, Sanandaj, Iran
| | - Fatemeh Abdi
- Department of Medicine and Paramedical, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | | | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
17
|
Tawfik DS, Gruic-Sovulj I. How evolution shapes enzyme selectivity - lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes. FEBS J 2020; 287:1284-1305. [PMID: 31891445 DOI: 10.1111/febs.15199] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/08/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) charge tRNA with their cognate amino acids. Many other enzymes use amino acids as substrates, yet discrimination against noncognate amino acids that threaten the accuracy of protein translation is a hallmark of AARSs. Comparing AARSs to these other enzymes allowed us to recognize patterns in molecular recognition and strategies used by evolution for exercising selectivity. Overall, AARSs are 2-3 orders of magnitude more selective than most other amino acid utilizing enzymes. AARSs also reveal the physicochemical limits of molecular discrimination. For example, amino acids smaller by a single methyl moiety present a discrimination ceiling of ~200, while larger ones can be discriminated by up to 105 -fold. In contrast, substrates larger by a hydroxyl group challenge AARS selectivity, due to promiscuous H-bonding with polar active site groups. This 'hydroxyl paradox' is resolved by editing. Indeed, when the physicochemical discrimination limits are reached, post-transfer editing - hydrolysis of tRNAs charged with noncognate amino acids, evolved. The editing site often selectively recognizes the edited noncognate substrate using the very same feature that the synthetic site could not efficiently discriminate against. Finally, the comparison to other enzymes also reveals that the selectivity of AARSs is an explicitly evolved trait, showing some clear examples of how selection acted not only to optimize catalytic efficiency with the target substrate, but also to abolish activity with noncognate threat substrates ('negative selection').
Collapse
Affiliation(s)
- Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
18
|
Wang Z, Matthews H. Translational incorporation of modified phenylalanines and tyrosines during cell-free protein synthesis. RSC Adv 2020; 10:11013-11023. [PMID: 35495348 PMCID: PMC9050441 DOI: 10.1039/d0ra00655f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/09/2020] [Indexed: 01/22/2023] Open
Abstract
Inherent promiscuity of bacterial translation is demonstrated by mass spectrometric quantification of the translational incorporation of ring-substituted phenylalanines and tyrosines bearing fluoro-, hydroxyl-, methyl-, chloro- and nitro-groups in an E. coli-derived cell-free system. Competitive studies using the cell-free system show that the aminoacyl-tRNA synthetases (aaRS) have at least two orders of magnitude higher specificity for the native substrate over these structural analogues, which correlates with studies on the purified synthetase. E. coli wild-type translational machinery utilizes a range of nonproteinogenic amino acids for protein synthesis with incorporation levels greater than 95%.![]()
Collapse
Affiliation(s)
- Zhongqiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi
| | | |
Collapse
|
19
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Nautiyal M, De Graef S, Pang L, Gadakh B, Strelkov SV, Weeks SD, Van Aerschot A. Comparative analysis of pyrimidine substituted aminoacyl-sulfamoyl nucleosides as potential inhibitors targeting class I aminoacyl-tRNA synthetases. Eur J Med Chem 2019; 173:154-166. [PMID: 30995568 DOI: 10.1016/j.ejmech.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyse the ATP-dependent coupling of an amino acid to its cognate tRNA. Being vital for protein translation aaRSs are considered a promising target for the development of novel antimicrobial agents. 5'-O-(N-aminoacyl)-sulfamoyl adenosine (aaSA) is a non-hydrolysable analogue of the aaRS reaction intermediate that has been shown to be a potent inhibitor of this enzyme family but is prone to chemical instability and enzymatic modification. In an attempt to improve the molecular properties of this scaffold we synthesized a series of base substituted aaSA analogues comprising cytosine, uracil and N3-methyluracil targeting leucyl-, tyrosyl- and isoleucyl-tRNA synthetases. In in vitro assays seven out of the nine inhibitors demonstrated Kiapp values in the low nanomolar range. To complement the biochemical studies, X-ray crystallographic structures of Neisseria gonorrhoeae leucyl-tRNA synthetase and Escherichia coli tyrosyl-tRNA synthetase in complex with the newly synthesized compounds were determined. These highlighted a subtle interplay between the base moiety and the target enzyme in defining relative inhibitory activity. Encouraged by this data we investigated if the pyrimidine congeners could escape a natural resistance mechanism, involving acetylation of the amine of the aminoacyl group by the bacterial N-acetyltransferases RimL and YhhY. With RimL the pyrimidine congeners were less susceptible to inactivation compared to the equivalent aaSA, whereas with YhhY the converse was true. Combined the various insights resulting from this study will pave the way for the further rational design of aaRS inhibitors.
Collapse
Affiliation(s)
- Manesh Nautiyal
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium
| | - Steff De Graef
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Luping Pang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium; Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Bharat Gadakh
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Stephen D Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 822, B-3000, Leuven, Belgium
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1041, B-3000, Leuven, Belgium.
| |
Collapse
|
21
|
Italia JS, Latour C, Wrobel CJJ, Chatterjee A. Resurrecting the Bacterial Tyrosyl-tRNA Synthetase/tRNA Pair for Expanding the Genetic Code of Both E. coli and Eukaryotes. Cell Chem Biol 2018; 25:1304-1312.e5. [PMID: 30078635 DOI: 10.1016/j.chembiol.2018.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
The bacteria-derived tyrosyl-tRNA synthetase (TyrRS)/tRNA pair was first used for unnatural amino acid (Uaa) mutagenesis in eukaryotic cells over 15 years ago. It provides an ideal platform to genetically encode numerous useful Uaas in eukaryotes. However, this pair has been engineered to charge only a small collection of Uaas to date. Development of Uaa-selective variants of this pair has been limited by technical challenges associated with a yeast-based directed evolution platform, which is currently required to alter its substrate specificity. Here we overcome this limitation by enabling its directed evolution in an engineered strain of E. coli (ATMY), where the endogenous TyrRS/tRNA pair has been functionally replaced with an archaeal counterpart. The facile E. coli-based selection system enabled rapid engineering of this pair to develop variants that selectively incorporate various Uaas, including p-boronophenylalanine, into proteins expressed in mammalian cells as well as in the ATMY strain of E. coli.
Collapse
Affiliation(s)
- James S Italia
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Christopher Latour
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Chester J J Wrobel
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
22
|
Kaiser F, Bittrich S, Salentin S, Leberecht C, Haupt VJ, Krautwurst S, Schroeder M, Labudde D. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases. PLoS Comput Biol 2018; 14:e1006101. [PMID: 29659563 PMCID: PMC5919687 DOI: 10.1371/journal.pcbi.1006101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/26/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. Aminoacyl tRNA synthetases (aaRS) are primordial enzymes essential for interpretation and transfer of genetic information. Understanding the origin of the peculiarities observed with aaRS can explain what constituted the earliest life forms and how the genetic code was established. The increasing amount of experimentally determined three-dimensional structures of aaRS opens up new avenues for high-throughput analyses of molecular mechanisms. In this study, we present an exhaustive structural analysis of ATP binding motifs. We unveil an oppositional implementation of enzyme substrate binding in each aaRS Class. While Class I binds via interactions mediated by backbone hydrogen bonds, Class II uses a pair of arginine residues to establish salt bridges to its ATP ligand. We show how nature realized the binding of the same ligand species with completely different mechanisms. In addition, we demonstrate that sequence or even structure analysis for conserved residues may miss important functional aspects which can only be revealed by ligand interaction studies. Additionally, the placement of those key residues in the structure supports a popular hypothesis, which states that prototypic aaRS were once coded on complementary strands of the same gene.
Collapse
Affiliation(s)
- Florian Kaiser
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
- * E-mail:
| | - Sebastian Bittrich
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
| | | | - Christoph Leberecht
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
| | | | | | | | - Dirk Labudde
- University of Applied Sciences Mittweida, Mittweida, Germany
| |
Collapse
|
23
|
Venkat S, Gregory C, Gan Q, Fan C. Biochemical Characterization of the Lysine Acetylation of Tyrosyl-tRNA Synthetase in Escherichia coli. Chembiochem 2017; 18:1928-1934. [PMID: 28741290 PMCID: PMC5629106 DOI: 10.1002/cbic.201700343] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein synthesis. As a member of the aaRS family, the tyrosyl-tRNA synthetase (TyrRS) in Escherichia coli has been shown in proteomic studies to be acetylated at multiple lysine residues. However, these putative acetylation targets have not yet been biochemically characterized. In this study, we applied a genetic-code-expansion strategy to site-specifically incorporate Nϵ -acetyl-l-lysine into selected positions of TyrRS for in vitro characterization. Enzyme assays demonstrated that acetylation at K85, K235, and K238 could impair the enzyme activity. In vitro deacetylation experiments showed that most acetylated lysine residues in TyrRS were sensitive to the E. coli deacetylase CobB but not YcgC. In vitro acetylation assays indicated that 25 members of the Gcn5-related N-acetyltransferase family in E. coli, including YfiQ, could not acetylate TyrRS efficiently, whereas TyrRS could be acetylated chemically by acetyl-CoA or acetyl-phosphate (AcP) only. Our in vitro characterization experiments indicated that lysine acetylation could be a possible mechanism for modulating aaRS enzyme activities, thus affecting translation.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Caroline Gregory
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 727011, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
24
|
Sharma AK, O'Brien EP. Increasing Protein Production Rates Can Decrease the Rate at Which Functional Protein Is Produced and Their Steady-State Levels. J Phys Chem B 2017. [PMID: 28650169 DOI: 10.1021/acs.jpcb.7b01700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate at which soluble, functional protein is produced by the ribosome has recently been found to vary in complex and unexplained ways as various translation-associated rates are altered through synonymous codon substitutions. To understand this phenomenon, here, we combine a well-established ribosome-traffic model with a master-equation model of cotranslational domain folding to explore the scenarios that are possible for the protein production rate, J, and the functional-nascent protein production rate, F, as the rates of various translation processes are altered for five different E. coli proteins. We find that while J monotonically increases as the rates of translation-initiation, -elongation, and -termination increase, F can either increase or decrease. We show that F's nonmonotonic behavior arises within the model from two opposing trends: the tendency for increased translation rates to produce more total protein but less cotranslationally folded protein. We further demonstrate that under certain conditions these nonmonotonic changes in F can result in nonmonotonic variations in post-translational, steady-state levels of functional protein. These results provide a potential explanation for recent experimental observations in which the specific activity of enzymatic proteins decreased with increased synthesis rates. Additionally our model has the potential to be used to rationally design transcripts to maximize the production of functional nascent protein by simultaneously optimizing translation initiation, elongation, and termination rates.
Collapse
Affiliation(s)
- Ajeet K Sharma
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
25
|
Barros-Álvarez X, Kerchner KM, Koh CY, Turley S, Pardon E, Steyaert J, Ranade RM, Gillespie JR, Zhang Z, Verlinde CLMJ, Fan E, Buckner FS, Hol WGJ. Leishmania donovani tyrosyl-tRNA synthetase structure in complex with a tyrosyl adenylate analog and comparisons with human and protozoan counterparts. Biochimie 2017; 138:124-136. [PMID: 28427904 PMCID: PMC5484532 DOI: 10.1016/j.biochi.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
The crystal structure of Leishmania donovani tyrosyl-tRNA synthetase (LdTyrRS) in complex with a nanobody and the tyrosyl adenylate analog TyrSA was determined at 2.75 Å resolution. Nanobodies are the variable domains of camelid heavy chain-only antibodies. The nanobody makes numerous crystal contacts and in addition reduces the flexibility of a loop of LdTyrRS. TyrSA is engaged in many interactions with active site residues occupying the tyrosine and adenine binding pockets. The LdTyrRS polypeptide chain consists of two pseudo-monomers, each consisting of two domains. Comparing the two independent chains in the asymmetric unit reveals that the two pseudo-monomers of LdTyrRS can bend with respect to each other essentially as rigid bodies. This flexibility might be useful in the positioning of tRNA for catalysis since both pseudo-monomers in the LdTyrRS chain are needed for charging tRNATyr. An "extra pocket" (EP) appears to be present near the adenine binding region of LdTyrRS. Since this pocket is absent in the two human homologous enzymes, the EP provides interesting opportunities for obtaining selective drugs for treating infections caused by L. donovani, a unicellular parasite causing visceral leishmaniasis, or kala azar, which claims 20,000 to 30,000 deaths per year. Sequence and structural comparisons indicate that the EP is a characteristic which also occurs in the active site of several other important pathogenic protozoa. Therefore, the structure of LdTyrRS could inspire the design of compounds useful for treating several different parasitic diseases.
Collapse
Affiliation(s)
- Ximena Barros-Álvarez
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela
| | - Keshia M Kerchner
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cho Yeow Koh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Stewart Turley
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Ranae M Ranade
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, WA, USA
| | - J Robert Gillespie
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, WA, USA
| | - Zhongsheng Zhang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Frederick S Buckner
- Division of Allergy and Infectious Diseases, School of Medicine, University of Washington, Seattle, WA, USA
| | - Wim G J Hol
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
Probing the stereospecificity of tyrosyl- and glutaminyl-tRNA synthetase with molecular dynamics. J Mol Graph Model 2016; 71:192-199. [PMID: 27939931 DOI: 10.1016/j.jmgm.2016.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/28/2022]
Abstract
The stereospecificity of aminoacyl-tRNA synthetases helps exclude d-amino acids from protein synthesis and could perhaps be engineered to allow controlled d-amino acylation of tRNA. We use molecular dynamics simulations to probe the stereospecificity of the class I tyrosyl- and glutaminyl-tRNA synthetases (TyrRS, GlnRS), including wildtype enzymes and three point mutants suggested by three different protein design methods. l/d binding free energy differences are obtained by alchemically and reversibly transforming the ligand from L to D in simulations of the protein-ligand complex. The D81Q mutation in Escherichia coli TyrRS is homologous to the D81R mutant shown earlier to have inverted stereospecificity. D81Q is predicted to lead to a rotated ligand backbone and an increased, not a decreased l-Tyr preference. The E36Q mutation in Methanococcus jannaschii TyrRS has a predicted l/d binding free energy difference ΔΔG of just 0.5±0.9kcal/mol, compared to 3.1±0.8kcal/mol for the wildtype enzyme (favoring l-Tyr). The ligand ammonium position is preserved in the d-Tyr complex, while the carboxylate is shifted. Wildtype GlnRS has a similar preference for l-glutaminyl adenylate; the R260Q mutant has an increased preference, even though Arg260 makes a large contribution to the wildtype ΔΔG value.
Collapse
|
27
|
Druart K, Bigot J, Audit E, Simonson T. A Hybrid Monte Carlo Scheme for Multibackbone Protein Design. J Chem Theory Comput 2016; 12:6035-6048. [DOI: 10.1021/acs.jctc.6b00421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karen Druart
- Laboratoire
de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
- Maison
de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Julien Bigot
- Maison
de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Edouard Audit
- Maison
de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Thomas Simonson
- Laboratoire
de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
28
|
Kravchuk VO, Savytskyi OV, Odynets KO, Mykuliak VV, Kornelyuk AI. Computational modeling and molecular dynamics simulations of mammalian cytoplasmic tyrosyl-tRNA synthetase and its complexes with substrates. J Biomol Struct Dyn 2016; 35:2772-2788. [PMID: 27615678 DOI: 10.1080/07391102.2016.1235512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cytoplasmic tyrosyl-tRNA synthetase (TyrRS) is one of the key enzymes of protein biosynthesis. TyrRSs of pathogenic organisms have gained attention as potential targets for drug development. Identifying structural differences between various TyrRSs will facilitate the development of specific inhibitors for the TyrRSs of pathogenic organisms. However, there is a deficiency in structural data for mammalian cytoplasmic TyrRS in complexes with substrates. In this work, we constructed spatial structure of full-length Bos taurus TyrRS (BtTyrRS) and its complexes with substrates using the set of computational modeling techniques. Special attention was paid to BtTyrRS complexes with substrates [L-tyrosine, K+ and ATP:Mg2+] and intermediate products [tyrosyl-adenylate (Tyr-AMP), K+ and PPi:Mg2+] with the different catalytic loop conformations. In order to analyze their dynamical properties, we performed 100 ns of molecular dynamics (MD) simulations. MD simulations revealed new structural data concerning the tyrosine activation reaction in mammalian TyrRS. Formation of strong interaction between Lys154 and γ-phosphate suggests the additional role of CP1 insertion as an important factor for ATP binding. The presence of a potassium-binding pocket within the active site of mammalian TyrRS compensates the absence of the second lysine in the KMSKS motif. Our data provide new details concerning a role of K+ ions at different stages of the first step of the tyrosylation reaction, including the coordination of substrates and involvement in the PPi releasing. The results of this work suggest that differences between ATP-binding sites of mammalian and bacterial TyrRSs are meaningful and could be exploited in the drug design.
Collapse
Affiliation(s)
- Vladyslav O Kravchuk
- a Department of Protein Engineering and Bioinformatics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150, Akademika Zabolotnogo Str., Kyiv , 03143 , Ukraine.,b Department of Biotechnology , National Aviation University , 1, Kosmonavta Komarova Str., Kyiv , 03058 , Ukraine
| | - Oleksandr V Savytskyi
- a Department of Protein Engineering and Bioinformatics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150, Akademika Zabolotnogo Str., Kyiv , 03143 , Ukraine
| | - Konstantin O Odynets
- a Department of Protein Engineering and Bioinformatics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150, Akademika Zabolotnogo Str., Kyiv , 03143 , Ukraine
| | - Vasyl V Mykuliak
- a Department of Protein Engineering and Bioinformatics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150, Akademika Zabolotnogo Str., Kyiv , 03143 , Ukraine.,c Institute of High Technologies , Taras Shevchenko National University of Kyiv , 64, Volodymyrs'ka Str., Kyiv , 01601 , Ukraine
| | - Alexander I Kornelyuk
- a Department of Protein Engineering and Bioinformatics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150, Akademika Zabolotnogo Str., Kyiv , 03143 , Ukraine.,c Institute of High Technologies , Taras Shevchenko National University of Kyiv , 64, Volodymyrs'ka Str., Kyiv , 01601 , Ukraine
| |
Collapse
|
29
|
Structural characterization of antibiotic self-immunity tRNA synthetase in plant tumour biocontrol agent. Nat Commun 2016; 7:12928. [PMID: 27713402 PMCID: PMC5059758 DOI: 10.1038/ncomms12928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 08/16/2016] [Indexed: 01/08/2023] Open
Abstract
Antibiotic-producing microbes evolved self-resistance mechanisms to avoid suicide. The biocontrol Agrobacterium radiobacter K84 secretes the Trojan Horse antibiotic agrocin 84 that is selectively transported into the plant pathogen A. tumefaciens and processed into the toxin TM84. We previously showed that TM84 employs a unique tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase (LeuRS), while the TM84-producer prevents self-poisoning by expressing a resistant LeuRS AgnB2. We now identify a mechanism by which the antibiotic-producing microbe resists its own toxin. Using a combination of structural, biochemical and biophysical approaches, we show that AgnB2 evolved structural changes so as to resist the antibiotic by eliminating the tRNA-dependence of TM84 binding. Mutagenesis of key resistance determinants results in mutants adopting an antibiotic-sensitive phenotype. This study illuminates the evolution of resistance in self-immunity genes and provides mechanistic insights into a fascinating tRNA-dependent antibiotic with applications for the development of anti-infectives and the prevention of biocontrol emasculation.
The bacterium Agrobacterium radiobacter K84 secretes an antibiotic that is transported into the plant pathogen A. tumefaciens and processed into the toxin TM84. Here, the authors identify a mechanism whereby the antibiotic-producing microbe resists its own toxin.
Collapse
|
30
|
Lamech LT, Saoji M, Paukstelis PJ, Lambowitz AM. Structural Divergence of the Group I Intron Binding Surface in Fungal Mitochondrial Tyrosyl-tRNA Synthetases That Function in RNA Splicing. J Biol Chem 2016; 291:11911-27. [PMID: 27036943 PMCID: PMC4882457 DOI: 10.1074/jbc.m116.725390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/29/2016] [Indexed: 01/25/2023] Open
Abstract
The mitochondrial tyrosyl-tRNA synthetases (mtTyrRSs) of Pezizomycotina fungi, a subphylum that includes many pathogenic species, are bifunctional proteins that both charge mitochondrial tRNA(Tyr) and act as splicing cofactors for autocatalytic group I introns. Previous studies showed that one of these proteins, Neurospora crassa CYT-18, binds group I introns by using both its N-terminal catalytic and C-terminal anticodon binding domains and that the catalytic domain uses a newly evolved group I intron binding surface that includes an N-terminal extension and two small insertions (insertions 1 and 2) with distinctive features not found in non-splicing mtTyrRSs. To explore how this RNA binding surface diverged to accommodate different group I introns in other Pezizomycotina fungi, we determined x-ray crystal structures of C-terminally truncated Aspergillus nidulans and Coccidioides posadasii mtTyrRSs. Comparisons with previous N. crassa CYT-18 structures and a structural model of the Aspergillus fumigatus mtTyrRS showed that the overall topology of the group I intron binding surface is conserved but with variations in key intron binding regions, particularly the Pezizomycotina-specific insertions. These insertions, which arose by expansion of flexible termini or internal loops, show greater variation in structure and amino acids potentially involved in group I intron binding than do neighboring protein core regions, which also function in intron binding but may be more constrained to preserve mtTyrRS activity. Our results suggest a structural basis for the intron specificity of different Pezizomycotina mtTyrRSs, highlight flexible terminal and loop regions as major sites for enzyme diversification, and identify targets for therapeutic intervention by disrupting an essential RNA-protein interaction in pathogenic fungi.
Collapse
Affiliation(s)
- Lilian T Lamech
- From the Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712 and
| | - Maithili Saoji
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Paul J Paukstelis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Alan M Lambowitz
- From the Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712 and
| |
Collapse
|
31
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
32
|
Melo Czekster C, Robertson WE, Walker AS, Söll D, Schepartz A. In Vivo Biosynthesis of a β-Amino Acid-Containing Protein. J Am Chem Soc 2016; 138:5194-7. [PMID: 27086674 DOI: 10.1021/jacs.6b01023] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has recently been reported that ribosomes from erythromycin-resistant Escherichia coli strains, when isolated in S30 extracts and incubated with chemically mis-acylated tRNA, can incorporate certain β-amino acids into full length DHFR in vitro. Here we report that wild-type E. coli EF-Tu and phenylalanyl-tRNA synthetase collaborate with these mutant ribosomes and others to incorporate β(3)-Phe analogs into full length DHFR in vivo. E. coli harboring the most active mutant ribosomes are robust, with a doubling time only 14% longer than wild-type. These results reveal the unexpected tolerance of E. coli and its translation machinery to the β(3)-amino acid backbone and should embolden in vivo selections for orthogonal translational machinery components that incorporate diverse β-amino acids into proteins and peptides. E. coli harboring mutant ribosomes may possess the capacity to incorporate many non-natural, non-α-amino acids into proteins and other sequence-programmed polymeric materials.
Collapse
Affiliation(s)
- Clarissa Melo Czekster
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Wesley E Robertson
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Allison S Walker
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Dieter Söll
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Alanna Schepartz
- Department of Chemistry, ‡Department of Molecular, Cellular, and Developmental Biology, and §Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
33
|
Simonson T, Ye-Lehmann S, Palmai Z, Amara N, Wydau-Dematteis S, Bigan E, Druart K, Moch C, Plateau P. Redesigning the stereospecificity of tyrosyl-tRNA synthetase. Proteins 2016; 84:240-53. [PMID: 26676967 DOI: 10.1002/prot.24972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/30/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
D-Amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Unnatural amino acids have been introduced into proteins using engineered aminoacyl-tRNA synthetases (aaRSs), and this strategy might be applicable to D-amino acids. Several aaRSs can aminoacylate their tRNA with a D-amino acid; of these, tyrosyl-tRNA synthetase (TyrRS) has the weakest stereospecificity. We use computational protein design to suggest active site mutations in Escherichia coli TyrRS that could increase its D-Tyr binding further, relative to L-Tyr. The mutations selected all modify one or more sidechain charges in the Tyr binding pocket. We test their effect by probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments. We also perform extensive alchemical free energy simulations to obtain L-Tyr/D-Tyr binding free energy differences. Agreement with experiment is good, validating the structural models and detailed thermodynamic predictions the simulations provide. The TyrRS stereospecificity proves hard to engineer through charge-altering mutations in the first and second coordination shells of the Tyr ammonium group. Of six mutants tested, two are active towards D-Tyr; one of these has an inverted stereospecificity, with a large preference for D-Tyr. However, its activity is low. Evidently, the TyrRS stereospecificity is robust towards charge rearrangements near the ligand. Future design may have to consider more distant and/or electrically neutral target mutations, and possibly design for binding of the transition state, whose structure however can only be modeled.
Collapse
Affiliation(s)
- Thomas Simonson
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | | | - Zoltan Palmai
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Najette Amara
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Sandra Wydau-Dematteis
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Erwan Bigan
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Karen Druart
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Clara Moch
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Pierre Plateau
- Department of Biology, Laboratoire De Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| |
Collapse
|
34
|
Druart K, Palmai Z, Omarjee E, Simonson T. Protein:Ligand binding free energies: A stringent test for computational protein design. J Comput Chem 2015; 37:404-15. [PMID: 26503829 DOI: 10.1002/jcc.24230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/29/2023]
Abstract
A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl-tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l-tyrosine (l-Tyr), compared to the analogs d-Tyr, p-acetyl-, and p-azido-phenylalanine (ac-Phe, az-Phe). We simulate l- and d-Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous "MD/GBSA" procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l-Tyr, ac- and az-Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l-Tyr or d-Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l-Tyr is the ligand and a d-Tyr specific mutant when d-Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln.
Collapse
Affiliation(s)
- Karen Druart
- Laboratoire De Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| | - Zoltan Palmai
- Laboratoire De Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| | - Eyaz Omarjee
- Laboratoire De Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| | - Thomas Simonson
- Laboratoire De Biochimie (UMR CNRS 7654), Department of Biology, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
35
|
Ren W, Truong TM, Ai HW. Study of the Binding Energies between Unnatural Amino Acids and Engineered Orthogonal Tyrosyl-tRNA Synthetases. Sci Rep 2015; 5:12632. [PMID: 26220470 PMCID: PMC4518261 DOI: 10.1038/srep12632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/03/2015] [Indexed: 11/08/2022] Open
Abstract
We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs.
Collapse
Affiliation(s)
- Wei Ren
- Department of Chemistry, University of California-Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Tan M. Truong
- Cell, Molecular, and Developmental Biology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
| | - Hui-wang Ai
- Department of Chemistry, University of California-Riverside, 501 Big Springs Road, Riverside, California 92521, United States
- Cell, Molecular, and Developmental Biology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
36
|
Zhu N, Lin Y, Li D, Gao N, Liu C, You X, Jiang J, Jiang W, Si S. Identification of an anti-TB compound targeting the tyrosyl-tRNA synthetase. J Antimicrob Chemother 2015; 70:2287-94. [DOI: 10.1093/jac/dkv110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
|
37
|
Lamech LT, Mallam AL, Lambowitz AM. Evolution of RNA-protein interactions: non-specific binding led to RNA splicing activity of fungal mitochondrial tyrosyl-tRNA synthetases. PLoS Biol 2014; 12:e1002028. [PMID: 25536042 PMCID: PMC4275181 DOI: 10.1371/journal.pbio.1002028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/12/2014] [Indexed: 12/28/2022] Open
Abstract
Studies of tRNA synthetases that adapted to assist the splicing of group I introns provide insight into how proteins can evolve new RNA-binding functions. The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (mtTyrRS; CYT-18 protein) evolved a new function as a group I intron splicing factor by acquiring the ability to bind group I intron RNAs and stabilize their catalytically active RNA structure. Previous studies showed: (i) CYT-18 binds group I introns by using both its N-terminal catalytic domain and flexibly attached C-terminal anticodon-binding domain (CTD); and (ii) the catalytic domain binds group I introns specifically via multiple structural adaptations that occurred during or after the divergence of Peziomycotina and Saccharomycotina. However, the function of the CTD and how it contributed to the evolution of splicing activity have been unclear. Here, small angle X-ray scattering analysis of CYT-18 shows that both CTDs of the homodimeric protein extend outward from the catalytic domain, but move inward to bind opposite ends of a group I intron RNA. Biochemical assays show that the isolated CTD of CYT-18 binds RNAs non-specifically, possibly contributing to its interaction with the structurally different ends of the intron RNA. Finally, we find that the yeast mtTyrRS, which diverged from Pezizomycotina fungal mtTyrRSs prior to the evolution of splicing activity, binds group I intron and other RNAs non-specifically via its CTD, but lacks further adaptations needed for group I intron splicing. Our results suggest a scenario of constructive neutral (i.e., pre-adaptive) evolution in which an initial non-specific interaction between the CTD of an ancestral fungal mtTyrRS and a self-splicing group I intron was “fixed” by an intron RNA mutation that resulted in protein-dependent splicing. Once fixed, this interaction could be elaborated by further adaptive mutations in both the catalytic domain and CTD that enabled specific binding of group I introns. Our results highlight a role for non-specific RNA binding in the evolution of RNA-binding proteins. The acquisition of new modes of post-transcriptional gene regulation played an important role in the evolution of eukaryotes and was achieved by an increase in the number of RNA-binding proteins with new functions. RNA-binding proteins bind directly to double- or single-stranded RNA and regulate many cellular processes. Here, we address how proteins evolve new RNA-binding functions by using as a model system a fungal mitochondrial tyrosyl-tRNA synthetase that evolved to acquire a novel function in splicing group I introns. Group I introns are RNA enzymes (or “ribozymes”) that catalyze their own removal from transcripts, but can become dependent upon proteins to stabilize their active structure. We show that the C-terminal domain of the synthetase is flexibly attached and has high non-specific RNA-binding activity that likely pre-dated the evolution of splicing activity. Our findings suggest an evolutionary scenario in which an initial non-specific interaction between an ancestral synthetase and a self-splicing group I intron was fixed by an intron RNA mutation, thereby making it dependent upon the protein for structural stabilization. The interaction then evolved by the acquisition of adaptive mutations throughout the protein and RNA that increased both the splicing efficiency and its protein-dependence. Our results suggest a general mechanism by which non-specific binding interactions can lead to the evolution of new RNA-binding functions and provide novel insights into splicing and synthetase mechanisms.
Collapse
Affiliation(s)
- Lilian T. Lamech
- The Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Anna L. Mallam
- The Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alan M. Lambowitz
- The Institute for Cellular and Molecular Biology and Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
38
|
Structural states of the flexible catalytic loop of M. tuberculosis tyrosyl-tRNA synthetase in different enzyme–substrate complexes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:613-22. [DOI: 10.1007/s00249-014-0991-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/17/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
|
39
|
Conformational landscapes for KMSKS loop in tyrosyl-tRNA synthetases. ACTA ACUST UNITED AC 2014; 15:45-61. [DOI: 10.1007/s10969-014-9178-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/08/2014] [Indexed: 01/20/2023]
|
40
|
Mykuliak VV, Kornelyuk AI. The mechanisms of substrates interaction with the active site of Mycobacterium tuberculosis tyrosyl-tRNA synthetase studied by molecular dynamics simulations. ACTA ACUST UNITED AC 2014. [DOI: 10.7124/bc.000890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- V. V. Mykuliak
- Institute of High Technologies, Taras Shevchenko National University of Kyiv
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| | - A. I. Kornelyuk
- Institute of High Technologies, Taras Shevchenko National University of Kyiv
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| |
Collapse
|
41
|
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are essential components of the protein synthesis machinery responsible for defining the genetic code by pairing the correct amino acids to their cognate tRNAs. The aaRSs are an ancient enzyme family believed to have origins that may predate the last common ancestor and as such they provide insights into the evolution and development of the extant genetic code. Although the aaRSs have long been viewed as a highly conserved group of enzymes, findings within the last couple of decades have started to demonstrate how diverse and versatile these enzymes really are. Beyond their central role in translation, aaRSs and their numerous homologs have evolved a wide array of alternative functions both inside and outside translation. Current understanding of the emergence of the aaRSs, and their subsequent evolution into a functionally diverse enzyme family, are discussed in this chapter.
Collapse
|
42
|
Perona JJ, Gruic-Sovulj I. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:1-41. [PMID: 23852030 DOI: 10.1007/128_2013_456] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) ensure the faithful transmission of genetic information in all living cells. The 24 known aaRS families are divided into 2 structurally distinct classes (class I and class II), each featuring a catalytic domain with a common fold that binds ATP, amino acid, and the 3'-terminus of tRNA. In a common two-step reaction, each aaRS first uses the energy stored in ATP to synthesize an activated aminoacyl adenylate intermediate. In the second step, either the 2'- or 3'-hydroxyl oxygen atom of the 3'-A76 tRNA nucleotide functions as a nucleophile in synthesis of aminoacyl-tRNA. Ten of the 24 aaRS families are unable to distinguish cognate from noncognate amino acids in the synthetic reactions alone. These enzymes possess additional editing activities for hydrolysis of misactivated amino acids and misacylated tRNAs, with clearance of the latter species accomplished in spatially separate post-transfer editing domains. A distinct class of trans-acting proteins that are homologous to class II editing domains also perform hydrolytic editing of some misacylated tRNAs. Here we review essential themes in catalysis with a view toward integrating the kinetic, stereochemical, and structural mechanisms of the enzymes. Although the aaRS have now been the subject of investigation for many decades, it will be seen that a significant number of questions regarding fundamental catalytic functioning still remain unresolved.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, 751, Portland, OR, 97207, USA,
| | | |
Collapse
|
43
|
Yanagisawa T, Sumida T, Ishii R, Yokoyama S. A novel crystal form of pyrrolysyl-tRNA synthetase reveals the pre- and post-aminoacyl-tRNA synthesis conformational states of the adenylate and aminoacyl moieties and an asparagine residue in the catalytic site. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 69:5-15. [PMID: 23275158 DOI: 10.1107/s0907444912039881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/19/2012] [Indexed: 11/10/2022]
Abstract
Structures of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) have been determined in a novel crystal form. The triclinic form crystals contained two PylRS dimers (four monomer molecules) in the asymmetric unit, in which the two subunits in one dimer each bind N(ℇ)-(tert-butyloxycarbonyl)-L-lysyladenylate (BocLys-AMP) and the two subunits in the other dimer each bind AMP. The BocLys-AMP molecules adopt a curved conformation and the C(α) position of BocLys-AMP protrudes from the active site. The β7-β8 hairpin structures in the four PylRS molecules represent distinct conformations of different states of the aminoacyl-tRNA synthesis reaction. Tyr384, at the tip of the β7-β8 hairpin, moves from the edge to the inside of the active-site pocket and adopts multiple conformations in each state. Furthermore, a new crystal structure of the BocLys-AMPPNP-bound form is also reported. The bound BocLys adopts an unusually bent conformation, which differs from the previously reported structure. It is suggested that the present BocLys-AMPPNP-bound, BocLys-AMP-bound and AMP-bound complexes represent the initial binding of an amino acid (or pre-aminoacyl-AMP synthesis), pre-aminoacyl-tRNA synthesis and post-aminoacyl-tRNA synthesis states, respectively. The conformational changes of Asn346 that accompany the aminoacyl-tRNA synthesis reaction have been captured by X-ray crystallographic analyses. The orientation of the Asn346 side chain, which hydrogen-bonds to the carbonyl group of the amino-acid substrate, shifts by a maximum of 85-90° around the C(β) atom.
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Japan
| | | | | | | |
Collapse
|
44
|
Chiu YY, Lin CY, Lin CT, Hsu KC, Chang LZ, Yang JM. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets. BMC Genomics 2012; 13 Suppl 7:S21. [PMID: 23281852 PMCID: PMC3521469 DOI: 10.1186/1471-2164-13-s7-s21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. Results We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. Conclusions SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.
Collapse
Affiliation(s)
- Yi-Yuan Chiu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
46
|
Perona JJ, Hadd A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry 2012; 51:8705-29. [PMID: 23075299 DOI: 10.1021/bi301180x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are the enzymes that ensure faithful transmission of genetic information in all living cells, and are central to the developing technologies for expanding the capacity of the translation apparatus to incorporate nonstandard amino acids into proteins in vivo. The 24 known aaRS families are divided into two classes that exhibit functional evolutionary convergence. Each class features an active site domain with a common fold that binds ATP, the amino acid, and the 3'-terminus of tRNA, embellished by idiosyncratic further domains that bind distal portions of the tRNA and enhance specificity. Fidelity in the expression of the genetic code requires that the aaRS be selective for both amino acids and tRNAs, a substantial challenge given the presence of structurally very similar noncognate substrates of both types. Here we comprehensively review central themes concerning the architectures of the protein structures and the remarkable dual-substrate selectivities, with a view toward discerning the most important issues that still substantially limit our capacity for rational protein engineering. A suggested general approach to rational design is presented, which should yield insight into the identities of the protein-RNA motifs at the heart of the genetic code, while also offering a basis for improving the catalytic properties of engineered tRNA synthetases emerging from genetic selections.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States.
| | | |
Collapse
|
47
|
Iwaki J, Endo K, Ichikawa T, Suzuki R, Fujimoto Z, Momma M, Kuno A, Nishimura S, Hasegawa T. Studies on crenarchaeal tyrosylation accuracy with mutational analyses of tyrosyl-tRNA synthetase and tyrosine tRNA from Aeropyrum pernix. J Biochem 2012; 152:539-48. [PMID: 23024156 DOI: 10.1093/jb/mvs114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aminoacyl-tRNA synthetases play a key role in the translation of genetic code into correct protein sequences. These enzymes recognize cognate amino acids and tRNAs from noncognate counterparts, and catalyze the formation of aminoacyl-tRNAs. While Although several tyrosyl-tRNA synthetases (TyrRSs) from various species have been structurally and functionally well characterized, the crenarchaeal TyrRS remains poorly understood. In this study, we performed mutational analyses on tyrosine tRNA (tRNA(Tyr)) and TyrRS from the crenarchaeon, Aeropyrum pernix, to investigate the molecular recognition mechanism. Kinetics for tyrosylation using in vitro transcript indicated that the discriminator base A73 and adjacent G72 in the acceptor stem are identity elements of tRNA(Tyr), whereas the C1 base and anticodon had modest roles as identity determinants. Intriguingly, in contrast to the identity element of eukaryotic/euryarchaeal TyrRSs, the first base-pair (C1-G72) of the acceptor stem was not essential in crenarchaeal TyrRS as a pair. Furthermore, A. pernix TyrRS mutants were constructed at positions Tyr39 and Asp172, which could form hydrogen bonds with the 4-hydroxyl group of l-tyrosine. The tyrosylation activities with the mutants resulted that Asp172 mutants completely abolished tyrosylation activity, whereas Tyr39 mutants had no effect on activity. Thus, crenarchaeal TyrRS appears to adopt different molecular recognition mechanism from other TyrRSs.
Collapse
Affiliation(s)
- Jun Iwaki
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Yamagata 990-8560, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat Struct Mol Biol 2012; 19:677-84. [PMID: 22683997 PMCID: PMC3392462 DOI: 10.1038/nsmb.2317] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/02/2012] [Indexed: 11/09/2022]
Abstract
Leucyl-tRNA synthetase (LeuRS) produces error-free leucyl-tRNA(Leu) by coordinating translocation of the 3' end of (mis-)charged tRNAs from its synthetic site to a separate proofreading site for editing. Here we report cocrystal structures of the Escherichia coli LeuRS-tRNA(Leu) complex in the aminoacylation or editing conformations, showing that translocation involves correlated rotations of four flexibly linked LeuRS domains. This pivots the tRNA to guide its charged 3' end from the closed aminoacylation state to the editing site. The editing domain unexpectedly stabilizes the tRNA during aminoacylation, and a large rotation of the leucine-specific domain positions the conserved KMSKS loop to bind the 3' end of the tRNA, promoting catalysis. Our results give new insight into the structural dynamics of a molecular machine that is essential for accurate protein synthesis.
Collapse
|
49
|
Goncearenco A, Berezovsky IN. Exploring the evolution of protein function in Archaea. BMC Evol Biol 2012; 12:75. [PMID: 22646318 PMCID: PMC3458885 DOI: 10.1186/1471-2148-12-75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/24/2012] [Indexed: 11/21/2022] Open
Abstract
Background Despite recent progress in studies of the evolution of protein function, the questions what were the first functional protein domains and what were their basic building blocks remain unresolved. Previously, we introduced the concept of elementary functional loops (EFLs), which are the functional units of enzymes that provide elementary reactions in biochemical transformations. They are presumably descendants of primordial catalytic peptides. Results We analyzed distant evolutionary connections between protein functions in Archaea based on the EFLs comprising them. We show examples of the involvement of EFLs in new functional domains, as well as reutilization of EFLs and functional domains in building multidomain structures and protein complexes. Conclusions Our analysis of the archaeal superkingdom yields the dominating mechanisms in different periods of protein evolution, which resulted in several levels of the organization of biochemical function. First, functional domains emerged as combinations of prebiotic peptides with the very basic functions, such as nucleotide/phosphate and metal cofactor binding. Second, domain recombination brought to the evolutionary scene the multidomain proteins and complexes. Later, reutilization and de novo design of functional domains and elementary functional loops complemented evolution of protein function.
Collapse
Affiliation(s)
- Alexander Goncearenco
- Computational Biology Unit, Uni Research, University of Bergen, N-5008 Bergen, Norway
| | | |
Collapse
|
50
|
Ayyadurai N, Prabhu NS, Deepankumar K, Kim A, Lee SG, Yun H. Biosynthetic substitution of tyrosine in green fluorescent protein with its surrogate fluorotyrosine in Escherichia coli. Biotechnol Lett 2011; 33:2201-7. [PMID: 21744148 DOI: 10.1007/s10529-011-0679-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/20/2011] [Indexed: 11/29/2022]
Abstract
Introduction of a fluorine moiety into green fluorescent protein offers an interesting novel spectral variant. The calculated binding energy of fluorotyrosine (F-Tyr) (-8.42 kcal/mol) for tyrosyl tRNA synthetase was moderately higher than that of tyrosine (Tyr) (-8.36 kcal/mol). This result directly correlated with the expression level of F-Tyr containing GFP (38 mg/l), which was comparably higher than that of the parent GFP expression level (34 mg/l). Finally, we generated a model structure for GFP to assess possible interaction in the chromophore of the protein structure, which plays an important role in determining the spectral and folding behaviors of the F-Tyr incorporated GFP variant.
Collapse
|