1
|
Govada L, Chayen NE. Crystallisation and characterisation of muscle proteins: a mini-review. J Muscle Res Cell Motil 2023; 44:209-215. [PMID: 37133758 PMCID: PMC10542657 DOI: 10.1007/s10974-023-09648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/29/2023] [Indexed: 05/04/2023]
Abstract
The techniques of X-ray protein crystallography, NMR and high-resolution cryo-electron microscopy have all been used to determine the high-resolution structure of proteins. The most-commonly used method, however, remains X-ray crystallography but it does rely heavily on the production of suitable crystals. Indeed, the production of diffraction quality crystals remains the rate-limiting step for most protein systems. This mini-review highlights the crystallisation trials that used existing and newly developed crystallisation methods on two muscle protein targets - the actin binding domain (ABD) of α-actinin and the C0-C1 domain of human cardiac myosin binding protein C (cMyBP-C). Furthermore, using heterogenous nucleating agents the crystallisation of the C1 domain of cMyBP-C was successfully achieved in house along with preliminary actin binding studies using electron microscopy and co-sedimentation assays .
Collapse
Affiliation(s)
- Lata Govada
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, W12 0NN, London, UK.
| | - Naomi E Chayen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, W12 0NN, London, UK
| |
Collapse
|
2
|
Rajan S, Kudryashov DS, Reisler E. Actin Bundles Dynamics and Architecture. Biomolecules 2023; 13:450. [PMID: 36979385 PMCID: PMC10046292 DOI: 10.3390/biom13030450] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Cells use the actin cytoskeleton for many of their functions, including their division, adhesion, mechanosensing, endo- and phagocytosis, migration, and invasion. Actin bundles are the main constituent of actin-rich structures involved in these processes. An ever-increasing number of proteins that crosslink actin into bundles or regulate their morphology is being identified in cells. With recent advances in high-resolution microscopy and imaging techniques, the complex process of bundles formation and the multiple forms of physiological bundles are beginning to be better understood. Here, we review the physiochemical and biological properties of four families of highly conserved and abundant actin-bundling proteins, namely, α-actinin, fimbrin/plastin, fascin, and espin. We describe the similarities and differences between these proteins, their role in the formation of physiological actin bundles, and their properties-both related and unrelated to their bundling abilities. We also review some aspects of the general mechanism of actin bundles formation, which are known from the available information on the activity of the key actin partners involved in this process.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Guan H, Liu J, Liu D, Ding C, Zhan J, Hu X, Zhang P, Wang L, Lan Q, Qiu X. Elastic and Conductive Melanin/Poly(Vinyl Alcohol) Composite Hydrogel for Enhancing Repair Effect on Myocardial Infarction. Macromol Biosci 2022; 22:e2200223. [PMID: 36116010 DOI: 10.1002/mabi.202200223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/28/2022] [Indexed: 01/15/2023]
Abstract
Heart failure caused by acute myocardial infarction (MI) still remains the main cause of death worldwide. Development of conductive hydrogels provided a promising approach for the treatment of myocardial infarction. However, the therapeutic potential of these hydrogels is still limited by material toxicity or low conductivity. The latter directly affects the coupling and the propagation of electrical signals between cells. Here, a functional conductive hydrogel by combining hydrophilic and biocompatible poly(vinyl alcohol) (PVA) with conductive melanin nanoparticles under physical crosslinking conditions is prepared. The composite hydrogels prepared by a facile fabrication process of five freeze/thaw cycles possessed satisfying mechanical properties and conductivity close to those of the natural heart. The physical properties and biocompatibility are evaluated in vitro experiments, showing that the introduction of melanin particles successfully improved the elasticity, conductivity, and cell adhesion of PVA hydrogel. In vivo, the composite hydrogels can enhance the cardiac repair effect by reducing MI area, slowing down ventricular wall thinning, and promoting the vascularization of infarct area in MI rat model. It is believed that the melanin/PVA composite hydrogel may be a suitable candidate material for MI repair.
Collapse
Affiliation(s)
- Haien Guan
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jianing Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Dan Liu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Chengbin Ding
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jiamian Zhan
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China
| | - Xiaofang Hu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Qiaofeng Lan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510999, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Odenthal J, Dittrich S, Ludwig V, Merz T, Reitmeier K, Reusch B, Höhne M, Cosgun ZC, Hohenadel M, Putnik J, Göbel H, Rinschen MM, Altmüller J, Koehler S, Schermer B, Benzing T, Beck BB, Brinkkötter PT, Habbig S, Bartram MP. Modeling of ACTN4-Based Podocytopathy Using Drosophila Nephrocytes. Kidney Int Rep 2022; 8:317-329. [PMID: 36815115 PMCID: PMC9939316 DOI: 10.1016/j.ekir.2022.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Genetic disorders are among the most prevalent causes leading to progressive glomerular disease and, ultimately, end-stage renal disease (ESRD) in children and adolescents. Identification of underlying genetic causes is indispensable for targeted treatment strategies and counseling of affected patients and their families. Methods Here, we report on a boy who presented at 4 years of age with proteinuria and biopsy-proven focal segmental glomerulosclerosis (FSGS) that was temporarily responsive to treatment with ciclosporin A. Molecular genetic testing identified a novel mutation in alpha-actinin-4 (p.M240T). We describe a feasible and efficient experimental approach to test its pathogenicity by combining in silico, in vitro, and in vivo analyses. Results The de novo p.M240T mutation led to decreased alpha-actinin-4 stability as well as protein mislocalization and actin cytoskeleton rearrangements. Transgenic expression of wild-type human alpha-actinin-4 in Drosophila melanogaster nephrocytes was able to ameliorate phenotypes associated with the knockdown of endogenous actinin. In contrast, p.M240T, as well as other established disease variants p.W59R and p.K255E, failed to rescue these phenotypes, underlining the pathogenicity of the novel alpha-actinin-4 variant. Conclusion Our data highlight that the newly identified alpha-actinin-4 mutation indeed encodes for a disease-causing variant of the protein and promote the Drosophila model as a simple and convenient tool to study monogenic kidney disease in vivo.
Collapse
Affiliation(s)
- Johanna Odenthal
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Sebastian Dittrich
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Vivian Ludwig
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Tim Merz
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Katrin Reitmeier
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Björn Reusch
- Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany,Institute of Human Genetics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Zülfü C. Cosgun
- Department of Pediatrics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Maximilian Hohenadel
- Department of Pediatrics, Division of Pediatric Nephrology, University of Bonn, Bonn, Germany
| | - Jovana Putnik
- Mother and Child Health Care Institute of Serbia “Dr Vukan Čupić,” Department of Nephrology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Heike Göbel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Markus M. Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark,III Medical Clinic, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Janine Altmüller
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Sybille Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Bodo B. Beck
- Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany,Institute of Human Genetics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Paul T. Brinkkötter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany,Correspondence: Paul T. Brinkkoetter, Department II of Internal Medicine, Faculty of Medicine, University of Cologne, University Hospital Cologne, Kerpener Street 62, Cologne 50935, Germany.
| | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Malte P. Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
5
|
Denha SA, Atang AE, Hays TS, Avery AW. β-III-spectrin N-terminus is required for high-affinity actin binding and SCA5 neurotoxicity. Sci Rep 2022; 12:1726. [PMID: 35110634 PMCID: PMC8810934 DOI: 10.1038/s41598-022-05762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Recent structural studies of β-III-spectrin and related cytoskeletal proteins revealed N-terminal sequences that directly bind actin. These sequences are variable in structure, and immediately precede a conserved actin-binding domain composed of tandem calponin homology domains (CH1 and CH2). Here we investigated in Drosophila the significance of the β-spectrin N-terminus, and explored its functional interaction with a CH2-localized L253P mutation that underlies the neurodegenerative disease spinocerebellar ataxia type 5 (SCA5). We report that pan-neuronal expression of an N-terminally truncated β-spectrin fails to rescue lethality resulting from a β-spectrin loss-of-function allele, indicating that the N-terminus is essential to β-spectrin function in vivo. Significantly, N-terminal truncation rescues neurotoxicity and defects in dendritic arborization caused by L253P. In vitro studies show that N-terminal truncation eliminates L253P-induced high-affinity actin binding, providing a mechanistic basis for rescue. These data suggest that N-terminal sequences may be useful therapeutic targets for small molecule modulation of the aberrant actin binding associated with SCA5 β-spectrin and spectrin-related disease proteins.
Collapse
Affiliation(s)
- Sarah A Denha
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | | | - Thomas S Hays
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Adam W Avery
- Department of Chemistry, Oakland University, Rochester, MI, USA. .,Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Tan Y, Jin Y, Zhao P, Wu J, Ren Z. Lipid droplets contribute myogenic differentiation in C2C12 by promoting the remodeling of the acstin-filament. Cell Death Dis 2021; 12:1102. [PMID: 34815388 PMCID: PMC8611090 DOI: 10.1038/s41419-021-04273-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
Lipid droplet (LD), a multi-functional organelle, is found in most eukaryotic cells. LDs participate in the regulation of many cellular processes including proliferation, stress, and apoptosis. Previous studies showed the athlete's paradox that trained athletes accumulate LDs in their skeletal muscle. However, the impact of LDs on skeletal muscle and myogenesis is not clear. We discovered that C2C12 myoblast cells containing more LDs formed more multinucleated muscle fibers. We also discovered that LDs promoted cell migration and fusion by promoting actin-filaments remodeling. Mechanistically, two LD-proteins, Acyl-CoA synthetase long chain family member 3 (ACSL3) and lysophosphatidylcholine acyltransferase 1 (LPCAT1), medicated the recruitment of actinin proteins which contributed to actin-filaments formation on the surface of LDs. During remodeling, the actinin proteins on LDs surface translocated to actin-filaments via ARF1/COPI vesicles. Our study demonstrate LDs contribute to cell differentiation, which lead to new insight into the LD function.
Collapse
Affiliation(s)
- Yanjie Tan
- grid.35155.370000 0004 1790 4137Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, 430070 Wuhan, Hubei P. R. China ,grid.410585.d0000 0001 0495 1805Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, 250014 Jinan, Shandong China
| | - Yi Jin
- grid.35155.370000 0004 1790 4137Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, 430070 Wuhan, Hubei P. R. China
| | - Pengxiang Zhao
- grid.35155.370000 0004 1790 4137Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, 430070 Wuhan, Hubei P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, 430070, Wuhan, Hubei, P. R. China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, 430070, Wuhan, Hubei, P. R. China. .,Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Persson K, Backman L. Structural and functional characterization of a plant alpha-actinin. FEBS Open Bio 2021. [PMID: 34110107 PMCID: PMC8329775 DOI: 10.1002/2211-5463.13222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 11/08/2022] Open
Abstract
The Australian tree malletwood (Rhodamnia argentea) is unique. The genome of malletwood is the only known plant genome that contains a gene coding for an α‐actinin‐like protein. Several organisms predating the animal‐plant bifurcation express an α‐actinin or α‐actinin‐like protein. Therefore, it appears that plants in general, but not malletwood, have lost the α‐actinin or α‐actinin‐like gene during evolution. In order to characterize its structure and function, we synthesized the gene and expressed the recombinant R. argentea protein. The results clearly show that this protein has all properties of genuine α‐actinin. The N‐terminal actin‐binding domain (ABD), with two calponin homology motifs, is very similar to the ABD of any α‐actinin. The C‐terminal calmodulin‐like domain, as well as the intervening rod domain, are also similar to the corresponding regions in other α‐actinins. The R. argentea α‐actinin‐like protein dimerises in solution and thereby can cross‐link actin filaments. Based on these results, we believe the R. argentea protein represents a genuine α‐actinin, making R. argentea unique in the plant world.
Collapse
Affiliation(s)
| | - Lars Backman
- Department of Chemistry, Umeå University, Sweden
| |
Collapse
|
8
|
Tapia R, Perez-Yepez EA, Carlino MJ, Karandikar UC, Kralicek SE, Estes MK, Hecht GA. Sperm Flagellar 1 Binds Actin in Intestinal Epithelial Cells and Contributes to Formation of Filopodia and Lamellipodia. Gastroenterology 2019; 157:1544-1555.e3. [PMID: 31473225 PMCID: PMC7016487 DOI: 10.1053/j.gastro.2019.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Sperm flagellar 1 (also called CLAMP) is a microtubule-associated protein that regulates microtubule dynamics and planar cell polarity in multi-ciliated cells. We investigated the localization and function of sperm flagellar 1, or CLAMP, in human intestinal epithelia cells (IECs). METHODS We performed studies with SKCO-15 and human intestinal enteroids established from biopsies from different intestinal segments (duodenal, jejunum, ileal, and colon) of a single donor. Enteroids were induced to differentiation after incubation with growth factors. The distribution of endogenous CLAMP in IECs was analyzed by immunofluorescence microscopy using total internal reflection fluorescence-ground state depletion and confocal microscopy. CLAMP localization was followed during the course of intestinal epithelial cell polarization as cells progressed from flat to compact, confluent monolayers. Protein interactions with endogenous CLAMP were determined in SKCO-15 cells using proximity ligation assays and co-immunoprecipitation. CLAMP was knocked down in SKCO-15 monolayers using small hairpin RNAs and cells were analyzed by immunoblot and immunofluorescence microscopy. The impact of CLAMP knock-down in migrating SKCO-15 cells was assessed using scratch-wound assays. RESULTS CLAMP bound to actin and apical junctional complex proteins but not microtubules in IECs. In silico analysis predicted the calponin-homology domain of CLAMP to contain conserved amino acids required for actin binding. During IEC polarization, CLAMP distribution changed from primarily basal stress fibers and cytoplasm in undifferentiated cells to apical membranes and microvilli in differentiated monolayers. CLAMP accumulated in lamellipodia and filopodia at the leading edge of migrating cells in association with actin. CLAMP knock-down reduced the number of filopodia, perturbed filopodia polarity, and altered the organization of actin filaments within lamellipodia. CONCLUSIONS CLAMP is an actin-binding protein, rather than a microtubule-binding protein, in IECs. CLAMP distribution changes during intestinal epithelial cell polarization, regulates the formation of filopodia, and appears to assist in the organization of actin bundles within lamellipodia of migrating IECs. Studies are needed to define the CLAMP domains that interact with actin and whether its loss from IECs affects intestinal function.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Medicine, Division of Gastroenterology and Nutrition
| | | | | | | | | | - Mary K. Estes
- Department of Molecular Virology and Microbiology,Department of Medicine - Gastroenterology and Hepatology and Infectious Diseases, Baylor College of Medicine, Houston, Texas
| | - Gail A. Hecht
- Department of Medicine, Division of Gastroenterology and Nutrition,Department of Microbiology and Immunology, Loyola University Chicago,Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
9
|
El-Fakharany EM, Redwan EM. Protein-lipid complexes: molecular structure, current scenarios and mechanisms of cytotoxicity. RSC Adv 2019; 9:36890-36906. [PMID: 35539089 PMCID: PMC9075609 DOI: 10.1039/c9ra07127j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023] Open
Abstract
Some natural proteins can be complexed with oleic acid (OA) to form an active protein-lipid formulation that can induce tumor-selective apoptosis. The first explored protein was human milk α-lactalbumin (α-LA), called HAMLET when composed with OA in antitumor form. Several groups have prepared active protein-lipid complexes using a variety of approaches, all of which depend on target protein destabilization or direct OA-protein incubation to alter pH to acid or alkaline condition. In addition to performing vital roles in inflammatory processes and immune responses, fatty acids can disturb different metabolic pathways and cellular signals. Therefore, the tumoricidal action of these complexes is related to OA rather than the protein that keeps OA in solution and acts as a vehicle for transferring OA molecules to tumor cells. However, other studies have suggested that the antitumor efficacy of these complexes was exerted by both protein and OA together. The potential is not limited to the anti-tumor activity of protein-lipid complexes but extends to other functions such as bactericidal activity. The protein shell enhances the solubility and stability of the bound fatty acid. These protein-lipid complexes are promising candidates for fighting various cancer types and managing bacterial and viral infections.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) New Borg EL-Arab 21934 Alexandria Egypt
| | - Elrashdy M Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City) New Borg EL-Arab 21934 Alexandria Egypt
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University P. O. Box 80203 Jeddah Saudi Arabia
| |
Collapse
|
10
|
X Cai L, Tanada Y, D Bello G, C Fleming J, F Alkassis F, Ladd T, Golde T, Koh J, Chen S, Kasahara H. Cardiac MLC2 kinase is localized to the Z-disc and interacts with α-actinin2. Sci Rep 2019; 9:12580. [PMID: 31467300 PMCID: PMC6715661 DOI: 10.1038/s41598-019-48884-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac contractility is enhanced by phosphorylation of myosin light chain 2 (MLC2) by cardiac-specific MLC kinase (cMLCK), located at the neck region of myosin heavy chain. In normal mouse and human hearts, the level of phosphorylation is maintained relatively constant, at around 30-40% of total MLC2, likely by well-balanced phosphorylation and phosphatase-dependent dephosphorylation. Overexpression of cMLCK promotes sarcomere organization, while the loss of cMLCK leads to cardiac atrophy in vitro and in vivo. In this study, we showed that cMLCK is predominantly expressed at the Z-disc with additional diffuse cytosolic expression in normal adult mouse and human hearts. cMLCK interacts with the Z-disc protein, α-actinin2, with a high-affinity kinetic value of 13.4 ± 0.1 nM through the N-terminus region of cMLCK unique to cardiac-isoform. cMLCK mutant deficient for interacting with α-actinin2 did not promote sarcomeric organization and reduced cardiomyocyte cell size. In contrast, a cMLCK kinase-deficient mutant showed effects similar to wild-type cMLCK on sarcomeric organization and cardiomyocyte cell size. Our results suggest that cMLCK plays a role in sarcomere organization, likely distinct from its role in phosphorylating MLC2, both of which will contribute to the enhancement of cardiac contractility.
Collapse
Affiliation(s)
- Lawrence X Cai
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Yohei Tanada
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Gregory D Bello
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - James C Fleming
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Fariz F Alkassis
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Thomas Ladd
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Todd Golde
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, 32610, USA.,Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Hideko Kasahara
- Department of Physiology and Functional Genomics, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Villalobo A, González-Muñoz M, Berchtold MW. Proteins with calmodulin-like domains: structures and functional roles. Cell Mol Life Sci 2019; 76:2299-2328. [PMID: 30877334 PMCID: PMC11105222 DOI: 10.1007/s00018-019-03062-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain.
- Instituto de Investigaciones Sanitarias, Hospital Universitario La Paz, Edificio IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - María González-Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
12
|
Hsu CP, Moghadaszadeh B, Hartwig JH, Beggs AH. Sarcomeric and nonmuscle α-actinin isoforms exhibit differential dynamics at skeletal muscle Z-lines. Cytoskeleton (Hoboken) 2018; 75:213-228. [PMID: 29518289 PMCID: PMC5943145 DOI: 10.1002/cm.21442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 01/12/2023]
Abstract
The α-actinin proteins are a highly conserved family of actin crosslinkers that mediate interactions between several cytoskeletal and sarcomeric proteins. Nonsarcomeric α-actinin-1 and α-actinin-4 crosslink actin filaments in the cytoskeleton, while sarcomeric α-actinin-2 and α-actinin-3 serve a crucial role in anchoring actin filaments to the muscle Z-line. To assess the difference in turnover dynamics and structure/function properties between the α-actinin isoforms at the sarcomeric Z-line, we used Fluorescence Recovery After Photobleaching (FRAP) in primary myofiber cultures. We found that the recovery kinetics of these proteins followed three distinct patterns: α-actinin-2/α-actinin-3 had the slowest turn over, α-actinin-1 recovered to an intermediate degree, and α-actinin-4 had the fastest recovery. Interestingly, the isoforms' patterns of recovery were reversed at adhesion plaques in fibroblasts. This disparity suggests that the different α-actinin isoforms have unique association kinetics in myofibers and that nonmuscle isoform interactions are more dynamic at the sarcomeric Z-line. Protein domain-specific investigations using α-actinin-2/4 chimeric proteins showed that differential dynamics between sarcomeric and nonmuscle isoforms are regulated by cooperative interactions between the N-terminal actin-binding domain, the spectrin-like linker region and the C-terminal calmodulin-like EF hand domain. Together, these findings demonstrate that α-actinin isoforms are unique in binding dynamics at the Z-line and suggest differentially evolved interactive and Z-line association capabilities of each functional domain.
Collapse
Affiliation(s)
- Cynthia P Hsu
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Behzad Moghadaszadeh
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John H Hartwig
- Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Koczok K, Merő G, Szabó GP, Madar L, Gombos É, Ajzner É, Mótyán JA, Hortobágyi T, Balogh I. A novel point mutation affecting Asn76 of dystrophin protein leads to dystrophinopathy. Neuromuscul Disord 2018; 28:129-136. [DOI: 10.1016/j.nmd.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/11/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022]
|
14
|
Structural basis for high-affinity actin binding revealed by a β-III-spectrin SCA5 missense mutation. Nat Commun 2017; 8:1350. [PMID: 29116080 PMCID: PMC5676748 DOI: 10.1038/s41467-017-01367-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/08/2017] [Indexed: 12/24/2022] Open
Abstract
Spinocerebellar ataxia type 5 (SCA5) is a neurodegenerative disease caused by mutations in the cytoskeletal protein β-III-spectrin. Previously, a SCA5 mutation resulting in a leucine-to-proline substitution (L253P) in the actin-binding domain (ABD) was shown to cause a 1000-fold increase in actin-binding affinity. However, the structural basis for this increase is unknown. Here, we report a 6.9 Å cryo-EM structure of F-actin complexed with the L253P ABD. This structure, along with co-sedimentation and pulsed-EPR measurements, demonstrates that high-affinity binding caused by the CH2-localized mutation is due to opening of the two CH domains. This enables CH1 to bind actin aided by an unstructured N-terminal region that becomes α-helical upon binding. This helix is required for association with actin as truncation eliminates binding. Collectively, these results shed light on the mechanism by which β-III-spectrin, and likely similar actin-binding proteins, interact with actin, and how this mechanism can be perturbed to cause disease.
Collapse
|
15
|
Morita R, Takaine M, Numata O, Nakano K. Molecular dissection of the actin-binding ability of the fission yeast α-actinin, Ain1, in vitro and in vivo. J Biochem 2017; 162:93-102. [PMID: 28338873 DOI: 10.1093/jb/mvx008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/27/2016] [Indexed: 02/02/2023] Open
Abstract
A contractile ring (CR) is involved in cytokinesis in animal and yeast cells. Although several types of actin-bundling proteins associate with F-actin in the CR, their individual roles in the CR have not yet been elucidated in detail. Ain1 is the sole α-actinin homologue in the fission yeast Schizosaccharomyces pombe and specifically localizes to the CR with a high turnover rate. S. pombe cells lacking the ain1+ gene show defects in cytokinesis under stress conditions. We herein investigated the biochemical activity and cellular localization mechanisms of Ain1. Ain1 showed weaker affinity to F-actin in vitro than other actin-bundling proteins in S. pombe. We identified a mutation that presumably loosened the interaction between two calponin-homology domains constituting the single actin-binding domain (ABD) of Ain1, which strengthened the actin-binding activity of Ain1. This mutant protein induced a deformation in the ring shape of the CR. Neither a truncated protein consisting only of an N-terminal ABD nor a truncated protein lacking a C-terminal region containing an EF-hand motif localized to the CR, whereas the latter was involved in the bundling of F-actin in vitro. We herein propose detailed mechanisms for how each part of the molecule is involved in the proper cellular localization and function of Ain1.
Collapse
Affiliation(s)
- Rikuri Morita
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8572, Japan
| | - Masak Takaine
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8572, Japan
| | - Osamu Numata
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kentaro Nakano
- Department of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
16
|
Human phosphatase CDC14A regulates actin organization through dephosphorylation of epithelial protein lost in neoplasm. Proc Natl Acad Sci U S A 2017; 114:5201-5206. [PMID: 28465438 DOI: 10.1073/pnas.1619356114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CDC14 is an essential dual-specificity phosphatase that counteracts CDK1 activity during anaphase to promote mitotic exit in Saccharomyces cerevisiae Surprisingly, human CDC14A is not essential for cell cycle progression. Instead, it regulates cell migration and cell adhesion. Little is known about the substrates of hCDC14A and the counteracting kinases. Here, we combine phospho-proteome profiling and proximity-dependent biotin identification to identify hCDC14A substrates. Among these targets were actin regulators, including the tumor suppressor eplin. hCDC14A counteracts EGF-induced rearrangements of actin cytoskeleton by dephosphorylating eplin at two known extracellular signal-regulated kinase sites, serine 362 and 604. hCDC14APD and eplin knockout cell lines exhibited down-regulation of E-cadherin and a reduction in α/β-catenin at cell-cell adhesions. Reduction in the levels of hCDC14A and eplin mRNA is frequently associated with colorectal carcinoma and is correlated with poor prognosis. We therefore propose that eplin dephosphorylation by hCDC14A reduces actin dynamics to restrict tumor malignancy.
Collapse
|
17
|
Haywood NJ, Wolny M, Rogers B, Trinh CH, Shuping Y, Edwards TA, Peckham M. Hypertrophic cardiomyopathy mutations in the calponin-homology domain of ACTN2 affect actin binding and cardiomyocyte Z-disc incorporation. Biochem J 2016; 473:2485-93. [PMID: 27287556 PMCID: PMC4980809 DOI: 10.1042/bcj20160421] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022]
Abstract
α-Actinin-2 (ACTN2) is the only muscle isoform of α-actinin expressed in cardiac muscle. Mutations in this protein have been implicated in mild to moderate forms of hypertrophic cardiomyopathy (HCM). We have investigated the effects of two mutations identified from HCM patients, A119T and G111V, on the secondary and tertiary structure of a purified actin binding domain (ABD) of ACTN2 by circular dichroism and X-ray crystallography, and show small but distinct changes for both mutations. We also find that both mutants have reduced F-actin binding affinity, although the differences are not significant. The full length mEos2 tagged protein expressed in adult cardiomyocytes shows that both mutations additionally affect Z-disc localization and dynamic behaviour. Overall, these two mutations have small effects on structure, function and behaviour, which may contribute to a mild phenotype for this disease.
Collapse
Affiliation(s)
- Natalie J Haywood
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Marcin Wolny
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Brendan Rogers
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Yu Shuping
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology and the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
18
|
Murphy ACH, Lindsay AJ, McCaffrey MW, Djinović-Carugo K, Young PW. Congenital macrothrombocytopenia-linked mutations in the actin-binding domain of α-actinin-1 enhance F-actin association. FEBS Lett 2016; 590:685-95. [PMID: 26879394 DOI: 10.1002/1873-3468.12101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/21/2023]
Abstract
Mutations in the actin cross-linking protein actinin-1 were recently linked to dominantly inherited congenital macrothrombocytopenia. Here, we report that several disease-associated mutations that are located within the actinin-1 actin-binding domain cause increased binding of actinin-1 to actin filaments and enhance filament bundling in vitro. These actinin-1 mutants are also more stably associated with the cytoskeleton in cultured cells, as assessed by biochemical fractionation and fluorescence recovery after photobleaching experiments. For two mutations the disruption of contacts between the calponin homology domains within the actinin actin-binding domain may explain increased filament binding--providing mechanistic and structural insights into the basis of actinin-1 dysfunction in congenital macrothrombocytopenia.
Collapse
Affiliation(s)
- Anita C H Murphy
- School of Biochemistry and Cell Biology, University College Cork, Ireland
| | - Andrew J Lindsay
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Ireland
| | - Mary W McCaffrey
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Ireland
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria.,Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Paul W Young
- School of Biochemistry and Cell Biology, University College Cork, Ireland
| |
Collapse
|
19
|
Kannan N, Tang VW. Synaptopodin couples epithelial contractility to α-actinin-4-dependent junction maturation. J Cell Biol 2016; 211:407-34. [PMID: 26504173 PMCID: PMC4621826 DOI: 10.1083/jcb.201412003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A novel tension-sensitive junctional protein, synaptopodin, can relay biophysical input from cellular actomyosin contractility to induce biochemical changes at cell–cell contacts, resulting in structural reorganization of the junctional complex and epithelial barrier maturation. The epithelial junction experiences mechanical force exerted by endogenous actomyosin activities and from interactions with neighboring cells. We hypothesize that tension generated at cell–cell adhesive contacts contributes to the maturation and assembly of the junctional complex. To test our hypothesis, we used a hydraulic apparatus that can apply mechanical force to intercellular junction in a confluent monolayer of cells. We found that mechanical force induces α-actinin-4 and actin accumulation at the cell junction in a time- and tension-dependent manner during junction development. Intercellular tension also induces α-actinin-4–dependent recruitment of vinculin to the cell junction. In addition, we have identified a tension-sensitive upstream regulator of α-actinin-4 as synaptopodin. Synaptopodin forms a complex containing α-actinin-4 and β-catenin and interacts with myosin II, indicating that it can physically link adhesion molecules to the cellular contractile apparatus. Synaptopodin depletion prevents junctional accumulation of α-actinin-4, vinculin, and actin. Knockdown of synaptopodin and α-actinin-4 decreases the strength of cell–cell adhesion, reduces the monolayer permeability barrier, and compromises cellular contractility. Our findings underscore the complexity of junction development and implicate a control process via tension-induced sequential incorporation of junctional components.
Collapse
Affiliation(s)
- Nivetha Kannan
- Program in Global Public Health, University of Illinois, Urbana-Champaign, Champaign, IL 61801
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Champaign, IL 61801
| |
Collapse
|
20
|
Karlsson G, Persson C, Mayzel M, Hedenström M, Backman L. Solution structure of the calmodulin-like C-terminal domain of Entamoeba α-actinin2. Proteins 2016; 84:461-6. [PMID: 26800385 DOI: 10.1002/prot.24992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/12/2022]
Abstract
Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross-links, or caps the filament ends have been identified and the actin cross-linker α-actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α-actinin is believed to be required for infection. To better understand the role of α-actinin in the infectious process we have determined the solution structure of the C-terminal calmodulin-like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium-binding EF-hand motifs, connected with a mobile linker.
Collapse
Affiliation(s)
- Göran Karlsson
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | - Cecilia Persson
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | - Maxim Mayzel
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | | | - Lars Backman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| |
Collapse
|
21
|
Bartram MP, Habbig S, Pahmeyer C, Höhne M, Weber LT, Thiele H, Altmüller J, Kottoor N, Wenzel A, Krueger M, Schermer B, Benzing T, Rinschen MM, Beck BB. Three-layered proteomic characterization of a novel ACTN4 mutation unravels its pathogenic potential in FSGS. Hum Mol Genet 2016; 25:1152-64. [PMID: 26740551 DOI: 10.1093/hmg/ddv638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023] Open
Abstract
Genetic diseases constitute the most important cause for end-stage renal disease in children and adolescents. Mutations in the ACTN4 gene, encoding the actin-binding protein α-actinin-4, are a rare cause of autosomal dominant familial focal segmental glomerulosclerosis (FSGS). Here, we report the identification of a novel, disease-causing ACTN4 mutation (p.G195D, de novo) in a sporadic case of childhood FSGS using next generation sequencing. Proteome analysis by quantitative mass spectrometry (MS) of patient-derived urinary epithelial cells indicated that ACTN4 levels were significantly decreased when compared with healthy controls. By resolving the peptide bearing the mutated residue, we could proof that the mutant protein is less abundant when compared with the wild-type protein. Further analyses revealed that the decreased stability of p.G195D is associated with increased ubiquitylation in the vicinity of the mutation site. We next defined the ACTN4 interactome, which was predominantly composed of cytoskeletal modulators and LIM domain-containing proteins. Interestingly, this entire group of proteins, including several highly specific ACTN4 interactors, was globally decreased in the patient-derived cells. Taken together, these data suggest a mechanistic link between ACTN4 instability and proteome perturbations of the ACTN4 interactome. Our findings advance the understanding of dominant effects exerted by ACTN4 mutations in FSGS. This study illustrates the potential of genomics and complementary, high-resolution proteomics analyses to study the pathogenicity of rare gene variants.
Collapse
Affiliation(s)
- Malte P Bartram
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sandra Habbig
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Department of Pediatrics
| | - Caroline Pahmeyer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | | | - Marcus Krueger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | | |
Collapse
|
22
|
Bandi S, Singh SM, Mallela KMG. Interdomain Linker Determines Primarily the Structural Stability of Dystrophin and Utrophin Tandem Calponin-Homology Domains Rather than Their Actin-Binding Affinity. Biochemistry 2015; 54:5480-8. [PMID: 26288220 DOI: 10.1021/acs.biochem.5b00741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tandem calponin-homology (CH) domains are the most common actin-binding domains in proteins. However, structural principles underlying their function are poorly understood. These tandem domains exist in multiple conformations with varying degrees of inter-CH-domain interactions. Dystrophin and utrophin tandem CH domains share high sequence similarity (∼82%), yet differ in their structural stability and actin-binding affinity. We examined whether the conformational differences between the two tandem CH domains can explain differences in their stability and actin binding. Dystrophin tandem CH domain is more stable by ∼4 kcal/mol than that of utrophin. Individual CH domains of dystrophin and utrophin have identical structures but differ in their relative orientation around the interdomain linker. We swapped the linkers between dystrophin and utrophin tandem CH domains. Dystrophin tandem CH domain with utrophin linker (DUL) has similar stability as that of utrophin tandem CH domain. Utrophin tandem CH domain with dystrophin linker (UDL) has similar stability as that of dystrophin tandem CH domain. Dystrophin tandem CH domain binds to F-actin ∼30 times weaker than that of utrophin. After linker swapping, DUL has twice the binding affinity as that of dystrophin tandem CH domain. Similarly, UDL has half the binding affinity as that of utrophin tandem CH domain. However, changes in binding free energies due to linker swapping are much lower by an order of magnitude compared to the corresponding changes in unfolding free energies. These results indicate that the linker region determines primarily the structural stability of tandem CH domains rather than their actin-binding affinity.
Collapse
Affiliation(s)
- Swati Bandi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Surinder M Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, and ‡Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus , Aurora, Colorado 80045, United States
| |
Collapse
|
23
|
Kim MK, Kim JH, Kim JS, Kang SO. Structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum. ACTA ACUST UNITED AC 2015; 71:1835-49. [PMID: 26327373 DOI: 10.1107/s139900471501264x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/30/2015] [Indexed: 11/11/2022]
Abstract
The crystal structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum was solved by Ca(2+)/S-SAD phasing and refined at 1.89 Å resolution. ABP34 is a calcium-regulated actin-binding protein that cross-links actin filaments into bundles. Its in vitro F-actin-binding and F-actin-bundling activities were confirmed by a co-sedimentation assay and transmission electron microscopy. The co-localization of ABP34 with actin in cells was also verified. ABP34 adopts a two-domain structure with an EF-hand-containing N-domain and an actin-binding C-domain, but has no reported overall structural homologues. The EF-hand is occupied by a calcium ion with a pentagonal bipyramidal coordination as in the canonical EF-hand. The C-domain structure resembles a three-helical bundle and superposes well onto the rod-shaped helical structures of some cytoskeletal proteins. Residues 216-244 in the C-domain form part of the strongest actin-binding sites (193-254) and exhibit a conserved sequence with the actin-binding region of α-actinin and ABP120. Furthermore, the second helical region of the C-domain is kinked by a proline break, offering a convex surface towards the solvent area which is implicated in actin binding. The F-actin-binding model suggests that ABP34 binds to the side of the actin filament and residues 216-244 fit into a pocket between actin subdomains -1 and -2 through hydrophobic interactions. These studies provide insights into the calcium coordination in the EF-hand and F-actin-binding site in the C-domain of ABP34, which are associated through interdomain interactions.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Hye Kim
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Sun Kim
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
24
|
Feng D, DuMontier C, Pollak MR. The role of alpha-actinin-4 in human kidney disease. Cell Biosci 2015; 5:44. [PMID: 26301083 PMCID: PMC4545552 DOI: 10.1186/s13578-015-0036-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Mutations in the Alpha-actinin-4 gene (ACTN4) cause a rare form of familial focal segmental glomerulosclerosis in humans. Individuals with kidney disease-associated ACTN4 mutations tend to have mild to moderate proteinuria, with many developing decreased kidney function progressing to end stage kidney disease. All of the disease-causing ACTN4 mutations identified to date are located within the actin-binding domain of the encoded protein, increasing its binding affinity to F-actin and leading to abnormal actin rich cellular aggregates. The identification of ACTN4 mutations as a cause of human kidney disease demonstrates a key cellular pathway by which alterations in cytoskeletal behavior can mediate kidney disease. Here we review the studies relevant to ACTN4 and its role in mediating kidney disease.
Collapse
Affiliation(s)
- Di Feng
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | - Clark DuMontier
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118 USA
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| |
Collapse
|
25
|
Türmer K, Orbán J, Gróf P, Nyitrai M. FASCIN and alpha-actinin can regulate the conformation of actin filaments. Biochim Biophys Acta Gen Subj 2015; 1850:1855-61. [PMID: 26025636 DOI: 10.1016/j.bbagen.2015.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Actin filament bundling proteins mediate numerous processes in cells such as the formation of cell membrane protrusions or cell adhesions and stress fiber based locomotion. Among them alpha-actinin and fascin are the most abundant ones. This work characterizes differences in molecular motions in actin filaments due to the binding of these two actin bundling proteins. METHODS We investigated how alpha-actinin and fascin binding modify the conformation of actin filaments by using conventional and saturation transfer EPR methods. RESULTS The result characteristic for motions on the microsecond time scale showed that both actin bundling proteins made the bending and torsional twisting of the actin filaments slower. When nanosecond time scale molecular motions were described the two proteins were found to induce opposite changes in the actin filaments. The binding of one molecule of alpha-actinin or fascin modified the conformation of numerous actin protomers. CONCLUSION As fascin and alpha-actinin participates in different cellular processes their binding can serve the proper tuning of the structure of actin by establishing the right conformation for the interactions with other actin binding proteins. Our observations are in correlation with the model where actin filaments fulfill their biological functions under the regulation by actin-binding proteins. GENERAL SIGNIFICANCE Supporting the general model for the cellular regulation of the actin cytoskeleton we showed that two abundant actin bundling proteins, fascin and alpha-actinin, alter the conformation of actin filaments through long range allosteric interactions in two different ways providing the structural framework for the adaptation to specific biological functions.
Collapse
Affiliation(s)
- Katalin Türmer
- Department of Biophysics, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7624, Hungary; János Szentágothai Research Center, Pécs H-7624, Hungary
| | - József Orbán
- Department of Biophysics, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7624, Hungary; János Szentágothai Research Center, Pécs H-7624, Hungary; MTA-PTE High Intensity Terahertz Research Group, Hungary
| | - Pál Gróf
- Department of Biophysics and Radiation Biology, Semmelweis University of Medicine, IX. Tűzoltó u. 37-47, Budapest H-1095, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7624, Hungary; János Szentágothai Research Center, Pécs H-7624, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Hungary.
| |
Collapse
|
26
|
Ribeiro EDA, Pinotsis N, Ghisleni A, Salmazo A, Konarev PV, Kostan J, Sjöblom B, Schreiner C, Polyansky AA, Gkougkoulia EA, Holt MR, Aachmann FL, Zagrović B, Bordignon E, Pirker KF, Svergun DI, Gautel M, Djinović-Carugo K. The structure and regulation of human muscle α-actinin. Cell 2014; 159:1447-60. [PMID: 25433700 PMCID: PMC4259493 DOI: 10.1016/j.cell.2014.10.056] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
Abstract
The spectrin superfamily of proteins plays key roles in assembling the actin cytoskeleton in various cell types, crosslinks actin filaments, and acts as scaffolds for the assembly of large protein complexes involved in structural integrity and mechanosensation, as well as cell signaling. α-actinins in particular are the major actin crosslinkers in muscle Z-disks, focal adhesions, and actin stress fibers. We report a complete high-resolution structure of the 200 kDa α-actinin-2 dimer from striated muscle and explore its functional implications on the biochemical and cellular level. The structure provides insight into the phosphoinositide-based mechanism controlling its interaction with sarcomeric proteins such as titin, lays a foundation for studying the impact of pathogenic mutations at molecular resolution, and is likely to be broadly relevant for the regulation of spectrin-like proteins. Structure of human α-actinin-2 in an autoinhibited closed conformation Facilitation of PIP2-induced allosteric modulation for opening and titin binding Essentiality of structural flexibility for crosslinking antiparallel F-actin Relevance for the intramolecular pseudoligand regulation mechanism of the spectrin family
Collapse
Affiliation(s)
- Euripedes de Almeida Ribeiro
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Nikos Pinotsis
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Andrea Ghisleni
- British Heart Foundation Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, King's College London, London SE1 1UL, UK
| | - Anita Salmazo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Petr V Konarev
- European Molecular Biology Laboratory, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany
| | - Julius Kostan
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Björn Sjöblom
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Claudia Schreiner
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria; M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Eirini A Gkougkoulia
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Mark R Holt
- British Heart Foundation Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, King's College London, London SE1 1UL, UK
| | - Finn L Aachmann
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Bojan Zagrović
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Enrica Bordignon
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland; Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Katharina F Pirker
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany
| | - Mathias Gautel
- British Heart Foundation Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, King's College London, London SE1 1UL, UK.
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia.
| |
Collapse
|
27
|
Spectrin and phospholipids - the current picture of their fascinating interplay. Cell Mol Biol Lett 2014; 19:158-79. [PMID: 24569979 PMCID: PMC6276000 DOI: 10.2478/s11658-014-0185-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/19/2014] [Indexed: 12/02/2022] Open
Abstract
The spectrin-based membrane skeleton is crucial for the mechanical stability and resilience of erythrocytes. It mainly contributes to membrane integrity, protein organization and trafficking. Two transmembrane protein macro-complexes that are linked together by spectrin tetramers play a crucial role in attaching the membrane skeleton to the cell membrane, but they are not exclusive. Considerable experimental data have shown that direct interactions between spectrin and membrane lipids are important for cell membrane cohesion. Spectrin is a multidomain, multifunctional protein with several distinctive structural regions, including lipid-binding sites within CH tandem domains, a PH domain, and triple helical segments, which are excellent examples of ligand specificity hidden in a regular repetitive structure, as recently shown for the ankyrin-sensitive lipid-binding domain of beta spectrin. In this review, we summarize the state of knowledge about interactions between spectrin and membrane lipids.
Collapse
|
28
|
An analysis of splicing, actin-binding properties, heterodimerization and molecular interactions of the non-muscle α-actinins. Biochem J 2013; 452:477-88. [PMID: 23557398 DOI: 10.1042/bj20121824] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The non-muscle α-actinin isoforms (actinin-1 and -4) are closely related dimeric actin filament cross-linking proteins. Despite high sequence similarity, unique properties have been ascribed to actinin-4 in particular. For example, actinin-4, but not actinin-1, is essential for normal glomerular function in the kidney, is overexpressed in several cancers and can translocate to the nucleus to regulate transcription. To understand the molecular basis for such isoform-specific functions we have, for the first time, comprehensively compared these proteins in terms of alternative splicing, actin-binding properties, heterodimer formation and molecular interactions. We find that the Ca2+-insensitive variant of actinin-4 is expressed only in the nervous system and thus cannot be regarded as a smooth muscle isoform, as is the case for the Ca2+-insensitive variant of actinin-1. The actin-binding properties of actinin-1 and -4 are similar and are unlikely to explain isoform-specific functions. Surprisingly, we reveal that actinin-1/-4 heterodimers, rather than homodimers, are the most abundant form of actinin in many cell lines. Finally, we use a proteomics approach to identify potential isoform-specific interactions. The results of the present study indicate that actinin-1 and -4 can readily form heterodimers composed of monomers that may have different properties and interacting proteins. This significantly alters our view of non-muscle actinin function.
Collapse
|
29
|
The N-terminal actin-binding tandem calponin-homology (CH) domain of dystrophin is in a closed conformation in solution and when bound to F-actin. Biophys J 2013. [PMID: 23199925 DOI: 10.1016/j.bpj.2012.08.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deficiency of the vital muscle protein dystrophin triggers Duchenne/Becker muscular dystrophy, but the structure-function relationship of dystrophin is poorly understood. To date, molecular structures of three dystrophin domains have been determined, of which the N-terminal actin-binding domain (N-ABD or ABD1) is of particular interest. This domain is composed of two calponin-homology (CH) domains, which form an important class of ABDs in muscle proteins. A previously determined x-ray structure indicates that the dystrophin N-ABD is a domain-swapped dimer, with each monomer adopting an extended, open conformation in which the two CH domains do not interact. This structure is controversial because it contradicts functional studies and known structures of similar ABDs from other muscle proteins. Here, we investigated the solution conformation of the dystrophin N-ABD using a very simple and elegant technique of pyrene excimer fluorescence. Using the wild-type protein, which contains two cysteines, and the corresponding single-cysteine mutants, we show that the protein is a monomer in solution and is in a closed conformation in which the two CH domains seem to interact, as observed from the excimer fluorescence of pyrene-labeled wild-type protein. Excimer fluorescence was also observed in its actin-bound form, indicating that the dystrophin N-ABD binds to F-actin in a closed conformation. Comparison of the dystrophin N-ABD conformation with other ABDs indicates that the tandem CH domains in general may be monomeric in solution and predominantly occur in closed conformation, whereas their actin-bound conformations may differ.
Collapse
|
30
|
Travers T, Shao H, Wells A, Camacho C. Modeling the assembly of the multiple domains of α-actinin-4 and its role in actin cross-linking. Biophys J 2013; 104:705-15. [PMID: 23442921 PMCID: PMC3566466 DOI: 10.1016/j.bpj.2012.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 12/30/2022] Open
Abstract
The assembly of proteins into multidomain complexes is critical for their function. In eukaryotic nonmuscle cells, regulation of the homodimeric actin cross-linking protein α-actinin-4 (ACTN4) during cell migration involves signaling receptors with intrinsic tyrosine kinase activity, yet the underlying molecular mechanisms are poorly understood. As a first step to address the latter, we validate here an atomic model for the ACTN4 end region, which corresponds to a ternary complex between the N-terminal actin-binding domain (ABD) and an adjacent helical neck region of one monomer, and the C-terminal calmodulin-like domain of the opposite antiparallel monomer. Mutagenesis experiments designed to disrupt this ternary complex confirm that its formation reduces binding to F-actin. Molecular dynamics simulations show that the phosphomimic mutation Y265E increases actin binding by breaking several interactions that tether the two calponin homology domains into a closed ABD conformation. Simulations also show a disorder-to-order transition in the double phosphomimic mutant Y4E/Y31E of the 45-residue ACTN4 N-terminal region, which can inhibit actin binding by latching both calponin homology domains more tightly. Collectively, these studies provide a starting point for understanding the role of external cues in regulating ACTN4, with different phenotypes resulting from changes in the multidomain assembly of the protein.
Collapse
Affiliation(s)
- Timothy Travers
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hanshuang Shao
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carlos J. Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Abstract
Alpha-actinins (ACTNs) were originally identified as cytoskeletal proteins which cross-link filamentous actin to establish cytoskeletal architect that protects cells from mechanical stress and controls cell movement. Notably, unlike other ACTNs, alpha-actinin 4 (ACTN4) displays unique characteristics in signaling transduction, nuclear translocation, and gene expression regulation. Initial reports indicated that ACTN4 is part of the breast cancer cell motile apparatus and is highly expressed in the nucleus. These results imply that ACTN4 plays a role in breast cancer tumorigenesis. While several observations in breast cancer and other cancers support this hypothesis, little direct evidence links the tumorigenic phenotype with ACTN4-mediated pathological mechanisms. Recently, several studies have demonstrated that in addition to its role in coordinating cytoskeleton, ACTN4 interacts with signaling mediators, chromatin remodeling factors, and transcription factors including nuclear receptors. Thus, ACTN4 functions as a versatile promoter for breast cancer tumorigenesis and appears to be an ideal drug target for future therapeutic development.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- Department of Biochemistry, School of Medicine, Case Western Reserve University-CWRU, The Comprehensive Cancer Center of CWRU, Cleveland, Ohio, USA
| | | |
Collapse
|
32
|
Ho CS J, Rydström A, Trulsson M, Bålfors J, Storm P, Puthia M, Nadeem A, Svanborg C. HAMLET: functional properties and therapeutic potential. Future Oncol 2012; 8:1301-13. [DOI: 10.2217/fon.12.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human α-lactalbumin made lethal to tumor cells (HAMLET) is the first member in a new family of protein–lipid complexes that kills tumor cells with high selectivity. The protein component of HAMLET is α-lactalbumin, which in its native state acts as a substrate specifier in the lactose synthase complex, thereby defining a function essential for the survival of lactating mammals. In addition, α-lactalbumin acquires tumoricidal activity after partial unfolding and binding to oleic acid. The lipid cofactor serves the dual role as a stabilizer of the altered fold of the protein and a coactivator of specific steps in tumor cell death. HAMLET is broadly tumoricidal, suggesting that the complex identifies conserved death pathways suitable for targeting by novel therapies. Sensitivity to HAMLET is defined by oncogene expression including Ras and c-Myc and by glycolytic enzymes. Cellular targets are located in the cytoplasmic membrane, cytoskeleton, mitochondria, proteasomes, lysosomes and nuclei, and specific signaling pathways are rapidly activated, first by interactions of HAMLET with the cell membrane and subsequently after HAMLET internalization. Therapeutic effects of HAMLET have been demonstrated in human skin papillomas and bladder cancers, and HAMLET limits the progression of human glioblastomas, with no evidence of toxicity for normal brain or bladder tissue. These findings open up new avenues for cancer therapy and the understanding of conserved death responses in tumor cells.
Collapse
Affiliation(s)
- James Ho CS
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Anna Rydström
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Maria Trulsson
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Johannes Bålfors
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Petter Storm
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Manoj Puthia
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Aftab Nadeem
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology & Glycobiology (MIG), Institute of Laboratory Medicine, Lund University, Sölvegatan 23, S-223 62 Lund, Sweden
| |
Collapse
|
33
|
Broderick MJF, Bobkov A, Winder SJ. Utrophin ABD binds to F-actin in an open conformation. FEBS Open Bio 2012; 2:6-11. [PMID: 23650574 PMCID: PMC3642092 DOI: 10.1016/j.fob.2012.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 11/20/2022] Open
Abstract
Structural analyses of actin binding regions comprising tandem calponin homology domains alone and when bound to F-actin have revealed a number of different conformations with calponin homology domains in ‘open’ and ‘closed’ positions. In an attempt to resolve these issues we have examined the properties of the utrophin actin binding domain in open and closed conformations in order to verify the conformation when bound to F-actin. Locking the actin binding domain in a closed conformation using engineered cysteine residues in each calponin homology domain reduced the affinity for F-actin without affecting the stoichiometry furthermore differential scanning calorimetry experiments revealed a reduction in melting temperature on binding to actin. The data suggest the amino-terminal utrophin actin binding domain is in an open conformation in solution and when bound to F-actin.
Collapse
Key Words
- ABD, actin binding domain
- Actin binding domain
- CD, circular dichroism
- CH, calponin homology
- Calponin homology domain
- DSC, differential scanning calorimetry
- Differential scanning calorimetry
- Dystrophin
- EM, electron microscopy
- F-actin, filamentous actin
- NTCB, 2-nitro-5-thiocyanobenzoic acid
- SDS-PAGE, sodium dodecyl sulphate poly-acrylamide electrophoresis
- Spectrin
- Tm, melting temperature
- UTR261, utrophin residues 1-261
- α-Actinin
Collapse
Affiliation(s)
- Mike J F Broderick
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK ; IBLS, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
34
|
Beck MR, Otey CA, Campbell SL. Structural characterization of the interactions between palladin and α-actinin. J Mol Biol 2011; 413:712-25. [PMID: 21925511 PMCID: PMC3226707 DOI: 10.1016/j.jmb.2011.08.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022]
Abstract
The interaction between α-actinin and palladin, two actin-cross-linking proteins, is essential for proper bidirectional targeting of these proteins. As a first step toward understanding the role of this complex in organizing cytoskeletal actin, we have characterized binding interactions between the EF-hand domain of α-actinin (Act-EF34) and peptides derived from palladin and generated an NMR-derived structural model for the Act-EF34/palladin peptide complex. The critical binding site residues are similar to an α-actinin binding motif previously suggested for the complex between Act-EF34 and titin Z-repeats. The structure-based model of the Act-EF34/palladin peptide complex expands our understanding of binding specificity between the scaffold protein α-actinin and various ligands, which appears to require an α-helical motif containing four hydrophobic residues, common to many α-actinin ligands. We also provide evidence that the Family X mutation in palladin, associated with a highly penetrant form of pancreatic cancer, does not interfere with α-actinin binding.
Collapse
Affiliation(s)
- Moriah R. Beck
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Carol A. Otey
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
35
|
O'Sullivan ML, O'Grady MR, Pyle WG, Dawson JF. Evaluation of 10 genes encoding cardiac proteins in Doberman Pinschers with dilated cardiomyopathy. Am J Vet Res 2011; 72:932-9. [PMID: 21728854 DOI: 10.2460/ajvr.72.7.932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify a causative mutation for dilated cardiomyopathy (DCM) in Doberman Pinschers by sequencing the coding regions of 10 cardiac genes known to be associated with familial DCM in humans. ANIMALS 5 Doberman Pinschers with DCM and congestive heart failure and 5 control mixed-breed dogs that were euthanized or died. PROCEDURES RNA was extracted from frozen ventricular myocardial samples from each dog, and first-strand cDNA was synthesized via reverse transcription, followed by PCR amplification with gene-specific primers. Ten cardiac genes were analyzed: cardiac actin, α-actinin, α-tropomyosin, β-myosin heavy chain, metavinculin, muscle LIM protein, myosinbinding protein C, tafazzin, titin-cap (telethonin), and troponin T. Sequences for DCM-affected and control dogs and the published canine genome were compared. RESULTS None of the coding sequences yielded a common causative mutation among all Doberman Pinscher samples. However, 3 variants were identified in the α-actinin gene in the DCM-affected Doberman Pinschers. One of these variants, identified in 2 of the 5 Doberman Pinschers, resulted in an amino acid change in the rod-forming triple coiled-coil domain. CONCLUSIONS AND CLINICAL RELEVANCE Mutations in the coding regions of several genes associated with DCM in humans did not appear to consistently account for DCM in Doberman Pinschers. However, an α-actinin variant was detected in some Doberman Pinschers that may contribute to the development of DCM given its potential effect on the structure of this protein. Investigation of additional candidate gene coding and noncoding regions and further evaluation of the role of α-actinin in development of DCM in Doberman Pinschers are warranted.
Collapse
Affiliation(s)
- M Lynne O'Sullivan
- Department of Clinical Studies, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
36
|
Podocyte Injury Associated with Mutant α-Actinin-4. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:563128. [PMID: 21808733 PMCID: PMC3144672 DOI: 10.1155/2011/563128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/08/2011] [Indexed: 11/17/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is an important cause of proteinuria and nephrotic syndrome in humans. The pathogenesis of FSGS may be associated with glomerular visceral epithelial cell (GEC; podocyte) injury, leading to apoptosis, detachment, and "podocytopenia", followed by glomerulosclerosis. Mutations in α-actinin-4 are associated with FSGS in humans. In cultured GECs, α-actinin-4 mediates adhesion and cytoskeletal dynamics. FSGS-associated α-actinin-4 mutants show increased binding to actin filaments, compared with the wild-type protein. Expression of an α-actinin-4 mutant in mouse podocytes in vivo resulted in proteinuric FSGS. GECs that express mutant α-actinin-4 show defective spreading and motility, and such abnormalities could alter the mechanical properties of the podocyte, contribute to cytoskeletal disruption, and lead to injury. The potential for mutant α-actinin-4 to injure podocytes is also suggested by the characteristics of this mutant protein to form microaggregates, undergo ubiquitination, impair the ubiquitin-proteasome system, enhance endoplasmic reticulum stress, and exacerbate apoptosis.
Collapse
|
37
|
Large-scale opening of utrophin's tandem calponin homology (CH) domains upon actin binding by an induced-fit mechanism. Proc Natl Acad Sci U S A 2011; 108:12729-33. [PMID: 21768337 DOI: 10.1073/pnas.1106453108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have used site-directed spin labeling and pulsed electron paramagnetic resonance to resolve a controversy concerning the structure of the utrophin-actin complex, with implications for the pathophysiology of muscular dystrophy. Utrophin is a homolog of dystrophin, the defective protein in Duchenne and Becker muscular dystrophies, and therapeutic utrophin derivatives are currently being developed. Both proteins have a pair of N-terminal calponin homology (CH) domains that are important for actin binding. Although there is a crystal structure of the utrophin actin-binding domain, electron microscopy of the actin-bound complexes has produced two very different structural models, in which the CH domains are in open or closed conformations. We engineered a pair of labeling sites in the CH domains of utrophin and used dipolar electron-electron resonance to determine the distribution of interdomain distances with high resolution. We found that the two domains are flexibly connected in solution, indicating a dynamic equilibrium between two distinct open structures. Upon actin binding, the two domains become dramatically separated and ordered, indicating a transition to a single open and extended conformation. There is no trace of this open conformation of utrophin in the absence of actin, providing strong support for an induced-fit model of actin binding.
Collapse
|
38
|
Nonlinear viscoelasticity of actin transiently cross-linked with mutant α-actinin-4. J Mol Biol 2011; 411:1062-71. [PMID: 21762701 DOI: 10.1016/j.jmb.2011.06.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/27/2011] [Accepted: 06/29/2011] [Indexed: 01/17/2023]
Abstract
Filamentous actin and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. They can also play a critical role in disease; for example, mutations in α-actinin-4 (Actn4), a dynamic actin cross-linking protein, cause proteinuric disease in humans and mice. Amino acid substitutions strongly affect the binding affinity and protein structure of Actn4. To study the physical impact of such substitutions on the underlying cytoskeletal network, we examine the bulk mechanical behavior of in vitro actin networks cross-linked with wild-type and mutant Actn4. These networks exhibit a complex viscoelastic response and are characterized by fluid-like behavior at the longest timescales, a feature that can be quantitatively accounted for through a model governed by dynamic cross-linking. The elastic behavior of the network is highly nonlinear, becoming much stiffer with applied stress. This nonlinear elastic response is also highly sensitive to the mutations of Actn4. In particular, we observe that actin networks cross-linked with Actn4 bearing the disease-causing K255E mutation are more brittle, with a lower breaking stress in comparison to networks cross-linked with wild-type Actn4. Furthermore, a mutation that ablates the first actin binding site (ABS1) in Actn4 abrogates the network's ability to stress-stiffen is standard nomenclature. These changes in the mechanical properties of actin networks cross-linked with mutant Actn4 may represent physical determinants of the underlying disease mechanism in inherited focal segmental glomerulosclerosis.
Collapse
|
39
|
HAMLET binding to α-actinin facilitates tumor cell detachment. PLoS One 2011; 6:e17179. [PMID: 21408150 PMCID: PMC3050841 DOI: 10.1371/journal.pone.0017179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/22/2011] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed.
Collapse
|
40
|
Alpha-actinin: a multidisciplinary protein with important role in B-cell driven autoimmunity. Autoimmun Rev 2011; 10:389-96. [PMID: 21241830 DOI: 10.1016/j.autrev.2010.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 12/27/2010] [Indexed: 12/13/2022]
Abstract
Alpha-actinin (α-actinin) is a ubiquitous cytoskeletal protein, which belongs to the superfamily of filamentous actin (F-actin) crosslinking proteins. It is present in multiple subcellular regions of both muscle and non-muscle cells, including cell-cell and cell-matrix contact sites, cellular protrusions and stress fiber dense regions and thus, it seems to bear multiple important roles in the cell by linking the cytoskeleton to many different transmembrane proteins in a variety of junctions. Four isoforms of human α-actinin have already been identified namely, the "muscles" α-actinin-2 and α-actinin-3 and the "non-muscles" α-actinin-1 and α-actinin-4. The precise functions of α-actinin isoforms as well as the precise role and significance of their binding to F-actin particularly in-vivo, have been elusive. They are generally believed to represent key structural components of large-scale F-actin cohesion in cells required for cell shape and motility. α-Actinin-2 has been implicated in myopathies such as nemalin body myopathy, hypertrophic and dilated cardiomyopathy and it may have at least an indirect pathogenetic role in diseases of the central nervous system (CNS) like schizophrenia, epilepsy, ischemic brain damage, CNS lupus and neurodegenerative disorders. The role of "non-muscle" α-actinins in the kidney seems to be crucial as an essential component of the glomerular filtration barrier. Therefore, they have been implicated in the pathogenesis of familial focal segmental glomerulosclerosis, nephrotic syndrome, IgA nephropathy, focal segmental glomerulosclerosis and minimal change disease. α-Actinin is also expressed on the membrane and cytosol of parenchymal and ductal cells of the liver and it seems that it interacts with hepatitis C virus in an essential way for the replication of the virus. Finally α-actinin, especially α-actinin-4, has been implicated in cancer cell progression and metastasis, as well as the migration of several cell types participating in the immune response. Based on these functions, the accumulating reported evidence of the importance of α-actinin as a target autoantigen in the pathogenesis of autoimmune diseases, particularly systemic lupus erythematosus and autoimmune hepatitis, is also discussed along with the possible perspectives that are potentially emerging from the study of this peculiar molecule in health and disease.
Collapse
|
41
|
Gautel M. The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 2010; 23:39-46. [PMID: 21190822 DOI: 10.1016/j.ceb.2010.12.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 01/01/2023]
Abstract
In striated muscle sarcomeres, the contractile actin and myosin filaments are organised by a subset of specialised cytoskeletal proteins, the sarcomeric cytoskeleton. They include α-actinin, myomesin, and the giant proteins titin, obscurin and nebulin, which combine architectural, mechanical and signalling functions. Mechanics and signalling in the sarcomere appear tightly interdependent, but the exact contributions of the various sarcomeric cytoskeleton proteins to strain handling or signalling are only just emerging. General mechanisms of cytoskeletal mechanics and signalling may be gleaned from the sarcomere as a specialised actomyosin system. Recent work has led to insight into the interactions, structure, and mechanical stability of sarcomeric protein complexes that fulfil both structural and signalling roles.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division and Randall Division for Cell and Molecular Biophysics, London SE1 1UL, United Kingdom.
| |
Collapse
|
42
|
Ferjani I, Fattoum A, Manai M, Benyamin Y, Roustan C, Maciver SK. Two distinct regions of calponin share common binding sites on actin resulting in different modes of calponin-actin interaction. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1760-7. [PMID: 20595006 DOI: 10.1016/j.bbapap.2010.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 05/05/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
Calponins are a small family of proteins that alter the interaction between actin and myosin II and mediate signal transduction. These proteins bind F-actin in a complex manner that depends on a variety of parameters such as stoichiometry and ionic strength. Calponin binds G-actin and F-actin, bundling the latter primarily through two distinct and adjacent binding sites (ABS1 and ABS2). Calponin binds other proteins that bind F-actin and considerable disagreements exist as to how calponin is located on the filament, especially in the presence of other proteins. A study (Galkin, V.E., Orlova, A., Fattoum, A., Walsh, M.P. and Egelman, E.H. (2006) J. Mol. Biol. 359, 478-485.), using EM single-particle reconstruction has shown that there may be four modes of interaction, but how these occur is not yet known. We report that two distinct regions of calponin are capable of binding some of the same sites on actin (such as 18-28 and 360-372 in subdomain 1). This accounts for the finding that calponin binds the filament with different apparent geometries. We suggest that the four modes of filament binding account for differences in stoichiometry and that these, in turn, arise from differential binding of the two calponin regions to actin. It is likely that the modes of binding are reciprocally influenced by other actin-binding proteins since members of the alpha-actinin group also adopt different actin-binding positions and bind actin principally through a domain that is similar to calponin's ABS1.
Collapse
Affiliation(s)
- Imen Ferjani
- UMR 5539 (CNRS) Laboratoire de motilité cellulaire (Ecole Pratique des Hautes Etudes) Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
43
|
Missense mutations in dystrophin that trigger muscular dystrophy decrease protein stability and lead to cross-beta aggregates. Proc Natl Acad Sci U S A 2010; 107:15069-74. [PMID: 20696926 DOI: 10.1073/pnas.1008818107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A deficiency of functional dystrophin protein in muscle cells causes muscular dystrophy (MD). More than 50% of missense mutations that trigger the disease occur in the N-terminal actin binding domain (N-ABD or ABD1). We examined the effect of four disease-causing mutations--L54R, A168D, A171P, and Y231N--on the structural and biophysical properties of isolated N-ABD. Our results indicate that N-ABD is a monomeric, well-folded alpha-helical protein in solution, as is evident from its alpha-helical circular dichroism spectrum, blue shift of the native state tryptophan fluorescence, well-dispersed amide crosspeaks in 2D NMR (15)N-(1)H HSQC fingerprint region, and rotational correlation time calculated from NMR longitudinal (T(1)) and transverse (T(2)) relaxation experiments. Compared to WT, three mutants--L54R, A168D, and A171P--show a decreased alpha-helicity and do not show a cooperative sigmoidal melt with temperature, indicating that these mutations exist in a wide range of conformations or in a "molten globule" state. In contrast, Y231N has an alpha-helical content similar to WT and shows a cooperative sigmoidal temperature melt but with a decreased stability. All four mutants experience serious misfolding and aggregation. FT-IR, circular dichroism, increase in thioflavin T fluorescence, and the congo red spectral shift and birefringence show that these aggregates contain intermolecular cross-beta structure similar to that found in amyloid diseases. These results indicate that disease-causing mutants affect N-ABD structure by decreasing its thermodynamic stability and increasing its misfolding, thereby decreasing the net functional dystrophin concentration.
Collapse
|
44
|
The carboxyterminal EF domain of erythroid alpha-spectrin is necessary for optimal spectrin-actin binding. Blood 2010; 116:2600-7. [PMID: 20585040 DOI: 10.1182/blood-2009-12-260612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectrin and protein 4.1R crosslink F-actin, forming the membrane skeleton. Actin and 4.1R bind to one end of β-spectrin. The adjacent end of α-spectrin, called the EF domain, is calmodulin-like, with calcium-dependent and calcium-independent EF hands. The severely anemic sph(1J)/sph(1J) mouse has very fragile red cells and lacks the last 13 amino acids in the EF domain, implying that the domain is critical for skeletal integrity. To test this, we constructed a minispectrin heterodimer from the actin-binding domain, the EF domain, and 4 adjacent spectrin repeats in each chain. The minispectrin bound to F-actin in the presence of native human protein 4.1R. Formation of the spectrin-actin-4.1R complex was markedly attenuated when the minispectrin contained the shortened sph(1J) α-spectrin. The α-spectrin deletion did not interfere with spectrin heterodimer assembly or 4.1R binding but abolished the binary interaction between spectrin and F-actin. The data show that the α-spectrin EF domain greatly amplifies the function of the β-spectrin actin-binding domain (ABD) in forming the spectrin-actin-4.1R complex. A model, based on the structure of α-actinin, suggests that the EF domain modulates the function of the ABD and that the C-terminal EF hands (EF(34)) may bind to the linker that connects the ABD to the first spectrin repeat.
Collapse
|
45
|
Abstract
The dynamic remolding of the actin cytoskeleton is a critical part of most cellular activities, and malfunction of cytoskeletal proteins results in various human diseases. The transition between two forms of actin, monomeric or G-actin and filamentous or F-actin, is tightly regulated in time and space by a large number of signaling, scaffolding and actin-binding proteins (ABPs). New ABPs are constantly being discovered in the post-genomic era. Most of these proteins are modular, integrating actin binding, protein-protein interaction, membrane-binding, and signaling domains. In response to extracellular signals, often mediated by Rho family GTPases, ABPs control different steps of actin cytoskeleton assembly, including filament nucleation, elongation, severing, capping, and depolymerization. This review summarizes structure-function relationships among ABPs in the regulation of actin cytoskeleton assembly.
Collapse
Affiliation(s)
- Sung Haeng Lee
- Chosun University School of Medicine, Department of Cellular and Molecular Medicine, Gwangju 501-759, Korea.
| | | |
Collapse
|
46
|
Lek M, Quinlan KGR, North KN. The evolution of skeletal muscle performance: gene duplication and divergence of human sarcomeric alpha-actinins. Bioessays 2010; 32:17-25. [PMID: 19967710 DOI: 10.1002/bies.200900110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In humans, there are two skeletal muscle alpha-actinins, encoded by ACTN2 and ACTN3, and the ACTN3 genotype is associated with human athletic performance. Remarkably, approximately 1 billion people worldwide are deficient in alpha-actinin-3 due to the common ACTN3 R577X polymorphism. The alpha-actinins are an ancient family of actin-binding proteins with structural, signalling and metabolic functions. The skeletal muscle alpha-actinins diverged approximately 250-300 million years ago, and ACTN3 has since developed restricted expression in fast muscle fibres. Despite ACTN2 and ACTN3 retaining considerable sequence similarity, it is likely that following duplication there was a divergence in function explaining why alpha-actinin-2 cannot completely compensate for the absence of alpha-actinin-3. This paper focuses on the role of skeletal muscle alpha-actinins, and how possible changes in functions between these duplicates fit in the context of gene duplication paradigms.
Collapse
Affiliation(s)
- Monkol Lek
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | | | |
Collapse
|
47
|
Luther PK. The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling. J Muscle Res Cell Motil 2009; 30:171-85. [PMID: 19830582 PMCID: PMC2799012 DOI: 10.1007/s10974-009-9189-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/23/2009] [Indexed: 02/04/2023]
Abstract
The Z-disc, appearing as a fine dense line forming sarcomere boundaries in striated muscles, when studied in detail reveals crosslinked filament arrays that transmit tension and house myriads of proteins with diverse functions. At the Z-disc the barbed ends of the antiparallel actin filaments from adjoining sarcomeres interdigitate and are crosslinked primarily by layers of α-actinin. The Z-disc is therefore the site of polarity reversal of the actin filaments, as needed to interact with the bipolar myosin filaments in successive sarcomeres. The layers of α-actinin determine the Z-disc width: fast fibres have narrow (~30–50 nm) Z-discs and slow and cardiac fibres have wide (~100 nm) Z-discs. Comprehensive reviews on the roles of the numerous proteins located at the Z-disc in signalling and disease have been published; the aim here is different, namely to review the advances in structural aspects of the Z-disc.
Collapse
Affiliation(s)
- Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
48
|
Clark AR, Sawyer GM, Robertson SP, Sutherland-Smith AJ. Skeletal dysplasias due to filamin A mutations result from a gain-of-function mechanism distinct from allelic neurological disorders†. Hum Mol Genet 2009; 18:4791-800. [DOI: 10.1093/hmg/ddp442] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Sawyer GM, Clark AR, Robertson SP, Sutherland-Smith AJ. Disease-associated substitutions in the filamin B actin binding domain confer enhanced actin binding affinity in the absence of major structural disturbance: Insights from the crystal structures of filamin B actin binding domains. J Mol Biol 2009; 390:1030-47. [PMID: 19505475 DOI: 10.1016/j.jmb.2009.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/29/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
Missense mutations in filamin B (FLNB) are associated with the autosomal dominant atelosteogenesis (AO) and the Larsen group of skeletal malformation disorders. These mutations cluster in particular FLNB protein domains and act in a presumptive gain-of-function mechanism. In contrast the loss-of-function disorder, spondylocarpotarsal synostosis syndrome, is characterised by the complete absence of FLNB. One cluster of AO missense mutations is found within the second of two calponin homology (CH) domains that create a functional actin-binding domain (ABD). This N-terminal ABD is required for filamin F-actin crosslinking activity, a crucial aspect of filamin's role of integrating cell-signalling events with cellular scaffolding and mechanoprotection. This study characterises the wild type FLNB ABD and investigates the effects of two disease-associated mutations on the structure and function of the FLNB ABD that could explain a gain-of-function mechanism for the AO diseases. We have determined high-resolution X-ray crystal structures of the human filamin B wild type ABD, plus W148R and M202V mutants. All three structures display the classic compact monomeric conformation for the ABD with the CH1 and CH2 domains in close contact. The conservation of tertiary structure in the presence of these mutations shows that the compact ABD conformation is stable to the sequence substitutions. In solution the mutant ABDs display reduced melting temperatures (by 6-7 degrees C) as determined by differential scanning fluorimetry. Characterisation of the wild type and mutant ABD F-actin binding activities via co-sedimentation assays shows that the mutant FLNB ABDs have increased F-actin binding affinities, with dissociation constants of 2.0 microM (W148R) and 0.56 microM (M202V), compared to the wild type ABD K(d) of 7.0 microM. The increased F-actin binding affinity of the mutants presents a biochemical mechanism that differentiates the autosomal dominant gain-of-function FLNB disorders from those that arise through the complete loss of FLNB protein.
Collapse
Affiliation(s)
- Gregory M Sawyer
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
50
|
Sjöblom B, Ylänne J, Djinović-Carugo K. Novel structural insights into F-actin-binding and novel functions of calponin homology domains. Curr Opin Struct Biol 2008; 18:702-8. [PMID: 18952167 DOI: 10.1016/j.sbi.2008.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 12/23/2022]
Abstract
Tandem calponin homology (CH) domains are well-known actin filaments (F-actin) binding motifs. There has been a continuous debate about the details of CH domain-actin interaction, mainly because atomic level structures of F-actin are not available. A recent electron microscopy study has considerably advanced our structural understanding of CH domain:F-actin complex. On the contrary, it has recently also been shown that CH domains can bind other macromolecular systems: two CH domains from separate polypeptides Ncd80, Nuf2 can form a microtubule-binding site, as well as tandem CH domains in the EB1 dimer, while the single C-terminal CH domain of alpha-parvin has been observed to bind to a alpha-helical leucin-aspartate rich motif from paxillin.
Collapse
Affiliation(s)
- Björn Sjöblom
- Department for Biomolecular Structural Chemistry, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | | | | |
Collapse
|