1
|
Salimova EV, Mozgovoj OS, Efimova SS, Ostroumova OS, Parfenova LV. 3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds. MEMBRANES 2023; 13:309. [PMID: 36984696 PMCID: PMC10056636 DOI: 10.3390/membranes13030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Fusidic acid (FA) is an antibiotic with high activity against Staphylococcus aureus; it has been used in clinical practice since the 1960s. However, the narrow antimicrobial spectrum of FA limits its application in the treatment of bacterial infections. In this regard, this work aims both at the study of the antimicrobial effect of a number of FA amines and at the identification of their potential biological targets. In this way, FA analogues containing aliphatic and aromatic amino groups and biogenic polyamine, spermine and spermidine, moieties at the C-3 atom, were synthesized (20 examples). Pyrazinecarboxamide-substituted analogues exhibit a high antibacterial activity against S. aureus (MRSA) with MIC ≤ 0.25 μg/mL. Spermine and spermidine derivatives, along with activity against S. aureus, also inhibit the growth and reproduction of Gram-negative bacteria Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, and have a high fungicidal effect against Candida albicans and Cryptococcus neoformans. The study of the membrane activity demonstrated that the spermidine- and spermine-containing compounds are able to immerse into membranes and disorder the lipidsleading to a detergent effect. Moreover, spermine-based compounds are also able to form ion-permeable pores in the lipid bilayers mimicking the bacterial membranes. Using molecular docking, inhibition of the protein synthesis elongation factor EF-G was proposed, and polyamine substituents were shown to make the greatest contribution to the stability of the complexes of fusidic acid derivatives with biological targets. This suggests that the antibacterial effect of the obtained compounds may be associated with both membrane activity and inhibition of the elongation factor EF-G.
Collapse
Affiliation(s)
- Elena V. Salimova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| | - Oleg S. Mozgovoj
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| | - Svetlana S. Efimova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Prospect, 194064 Saint Petersburg, Russia
| | - Olga S. Ostroumova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Prospect, 194064 Saint Petersburg, Russia
| | - Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| |
Collapse
|
2
|
Characterization of the Role of Two-Component Systems in Antibiotic Resistance Formation in Salmonella enterica Serovar Enteritidis. mSphere 2022; 7:e0038322. [PMID: 36286534 PMCID: PMC9769886 DOI: 10.1128/msphere.00383-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates β-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.
Collapse
|
3
|
Khan AU, Khan I, Khan MI, Latif M, Siddiqui MI, Khan SU, Htar TT, Wahid G, Ullah I, Bibi F, Khan A, Naseer MI, Seo GH, Jelani M. Whole exome sequencing identifies a novel compound heterozygous GFM1 variant underlying developmental delay, dystonia, polymicrogyria, and severe intellectual disability in a Pakhtun family. Am J Med Genet A 2022; 188:2693-2700. [PMID: 35703069 DOI: 10.1002/ajmg.a.62856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023]
Abstract
Mitochondrial protein synthesis requires three elongation factors including EF-Tu (TUFM; OMIM 602389), EF-Ts (TSFM; OMIM 604723), and EF-G1 (GFM1; OMIM 606639). Pathogenic variants in any of these three members result in defective mitochondrial translation which can impart an oxidative phosphorylation (OXPHOS) deficiency. In this study, we investigated a consanguineous Pakhtun Pakistani family. There were four affected siblings at the time of this study and one affected girl had died in infancy. The index patient had severe intellectual disability, global developmental delay, dystonia, no speech development, feeding difficulties, and nystagmus. MRI brain presented thinning of corpus callosum and polymicrogyria. Whole exome sequencing revealed a novel compound heterozygous variant in GFM1 located on chromosome 3q25.32. Sanger sequencing confirmed recessive segregation of the maternal (NM_001308164.1:c.409G > A; p.Val137Met) and paternal (NM_001308164.1:c.1880G > A; p.Arg627Gln) variants in all the four affected siblings. These variants are classified as "likely-pathogenic" according to the recommendation of ACMG/AMP guideline. GFM1 alterations mostly lead to severe phenotypes and the patients may die in early neonatal life; however, four of the affected siblings had survived till the ages of 10-17 years, without developing any life-threatening conditions. Mostly, in cousin marriages, the pathogenic variants are identical-by-descent, and affected siblings born to such parents are homozygous. Three homozygous variants were shortlisted in the analysis of the WES data, but Sanger sequencing did not confirm their segregation with the disease phenotype. This is the first report from Pakistan expanding pathogenicity of GFM1 gene.
Collapse
Affiliation(s)
- Atta Ullah Khan
- Department of Medicine, Pak International Medical College Hayatabad Phase 5, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ibrar Khan
- Rare Disease Genetics and Genomics, Centre for Omic Sciences, Khyber Pakhtunkhwa, Pakistan
| | | | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah, Saudi Arabia
| | - Muhammad Imran Siddiqui
- Radiology Department, North West General Hospital and Research Center, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Shafi Ullah Khan
- School of Pharmacy Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway 47500 Selangor, Malaysia
| | - Thet Thet Htar
- School of Pharmacy Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway 47500 Selangor, Malaysia
| | - Ghazala Wahid
- Department of Radiology, Hayatabad Medical Complex, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ikram Ullah
- International Islamic University, Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Pakistan
| | - Fehmida Bibi
- Department of Medical Laboratory Technology, King Abdulaziz University, Jeddah, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imran Naseer
- Department of Medical Laboratory Technology, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Go Hun Seo
- 3billion Inc., Seoul, Republic of Korea (South Korea)
| | - Musharraf Jelani
- Rare Disease Genetics and Genomics, Centre for Omic Sciences, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
4
|
Wieland M, Holm M, Rundlet EJ, Morici M, Koller TO, Maviza TP, Pogorevc D, Osterman IA, Müller R, Blanchard SC, Wilson DN. The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation. Proc Natl Acad Sci U S A 2022; 119:e2114214119. [PMID: 35500116 PMCID: PMC9171646 DOI: 10.1073/pnas.2114214119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/16/2022] [Indexed: 11/18/2022] Open
Abstract
Argyrins are a family of naturally produced octapeptides that display promising antimicrobial activity against Pseudomonas aeruginosa. Argyrin B (ArgB) has been shown to interact with an elongated form of the translation elongation factor G (EF-G), leading to the suggestion that argyrins inhibit protein synthesis by interfering with EF-G binding to the ribosome. Here, using a combination of cryo-electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET), we demonstrate that rather than interfering with ribosome binding, ArgB rapidly and specifically binds EF-G on the ribosome to inhibit intermediate steps of the translocation mechanism. Our data support that ArgB inhibits conformational changes within EF-G after GTP hydrolysis required for translocation and factor dissociation, analogous to the mechanism of fusidic acid, a chemically distinct antibiotic that binds a different region of EF-G. These findings shed light on the mechanism of action of the argyrin-class antibiotics on protein synthesis as well as the nature and importance of rate-limiting, intramolecular conformational events within the EF-G-bound ribosome during late-steps of translocation.
Collapse
Affiliation(s)
- Maximiliane Wieland
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Mikael Holm
- St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Emily J. Rundlet
- St. Jude Children's Research Hospital, Memphis, TN 38105
- Weill Cornell Medicine, Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065
| | - Martino Morici
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Timm O. Koller
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| | - Tinashe P. Maviza
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Domen Pogorevc
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, 66123 Saarbrücken,Germany
| | - Ilya A. Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, 66123 Saarbrücken,Germany
| | | | - Daniel N. Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
5
|
Gao X, Yu X, Zhu K, Qin B, Wang W, Han P, Aleksandra Wojdyla J, Wang M, Cui S. Crystal Structure of Mycobacterium tuberculosis Elongation Factor G1. Front Mol Biosci 2021; 8:667638. [PMID: 34540889 PMCID: PMC8446442 DOI: 10.3389/fmolb.2021.667638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) caused an estimated 10 million cases of tuberculosis and 1.2 million deaths in 2019 globally. The increasing emergence of multidrug-resistant and extensively drug-resistant Mtb is becoming a public health threat worldwide and makes the identification of anti-Mtb drug targets urgent. Elongation factor G (EF-G) is involved in tRNA translocation on ribosomes during protein translation. Therefore, EF-G is a major focus of structural analysis and a valuable drug target of antibiotics. However, the crystal structure of Mtb EF-G1 is not yet available, and this has limited the design of inhibitors. Here, we report the crystal structure of Mtb EF-G1 in complex with GDP. The unique crystal form of the Mtb EF-G1-GDP complex provides an excellent platform for fragment-based screening using a crystallographic approach. Our findings provide a structure-based explanation for GDP recognition, and facilitate the identification of EF-G1 inhibitors with potential interest in the context of drug discovery.
Collapse
Affiliation(s)
- Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China
| | - Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Meitian Wang
- Swiss Light Source at the Paul Scherrer Institut, Villigen, Switzerland
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, And Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Sanming Project of Medicine in Shenzhen on Construction of Novel Systematic Network Against Tuberculosis, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Paleskava A, Kaiumov MY, Kirillov SV, Konevega AL. Peculiarities in Activation of Hydrolytic Activity of Elongation Factors. BIOCHEMISTRY (MOSCOW) 2021; 85:1422-1433. [PMID: 33280582 DOI: 10.1134/s0006297920110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational GTPases (trGTPases) belong to the family of G proteins and play key roles at all stages of protein biosynthesis on the ribosome. Unidirectional and cyclic functioning of G proteins is ensured by their ability to switch between the active and inactive states due to GTP hydrolysis accelerated by the auxiliary GTPase-activating proteins. Although trGTPases interact with the ribosomes in different conformational states, they bind to the same conserved region, which, unlike in classical GTPase-activating proteins, is represented by ribosomal RNA. The resulting catalytic sites have almost identical structure in all elongation factors suggesting a common mechanism of GTP hydrolysis. However, fine details of the activated state formation and significantly different rates of GTP hydrolysis indicate the existence of distinctive features upon GTP hydrolysis catalyzed by the different factors. Here, we present a contemporary view on the mechanism of GTPase activation and GTP hydrolysis by the elongation factors EF-Tu, EF-G, and SelB based on the analysis of structural, biochemical, and bioinformatics data.
Collapse
Affiliation(s)
- A Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - M Yu Kaiumov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - S V Kirillov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - A L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
| |
Collapse
|
7
|
Kummer E, Ban N. Structural insights into mammalian mitochondrial translation elongation catalyzed by mtEFG1. EMBO J 2020; 39:e104820. [PMID: 32602580 PMCID: PMC7396830 DOI: 10.15252/embj.2020104820] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are eukaryotic organelles of bacterial origin where respiration takes place to produce cellular chemical energy. These reactions are catalyzed by the respiratory chain complexes located in the inner mitochondrial membrane. Notably, key components of the respiratory chain complexes are encoded on the mitochondrial chromosome and their expression relies on a dedicated mitochondrial translation machinery. Defects in the mitochondrial gene expression machinery lead to a variety of diseases in humans mostly affecting tissues with high energy demand such as the nervous system, the heart, or the muscles. The mitochondrial translation system has substantially diverged from its bacterial ancestor, including alterations in the mitoribosomal architecture, multiple changes to the set of translation factors and striking reductions in otherwise conserved tRNA elements. Although a number of structures of mitochondrial ribosomes from different species have been determined, our mechanistic understanding of the mitochondrial translation cycle remains largely unexplored. Here, we present two cryo-EM reconstructions of human mitochondrial elongation factor G1 bound to the mammalian mitochondrial ribosome at two different steps of the tRNA translocation reaction during translation elongation. Our structures explain the mechanism of tRNA and mRNA translocation on the mitoribosome, the regulation of mtEFG1 activity by the ribosomal GTPase-associated center, and the basis of decreased susceptibility of mtEFG1 to the commonly used antibiotic fusidic acid.
Collapse
Affiliation(s)
- Eva Kummer
- Department of BiologyInstitute of Molecular Biology and BiophysicsSwiss Federal Institute of Technology ZurichZurichSwitzerland
| | - Nenad Ban
- Department of BiologyInstitute of Molecular Biology and BiophysicsSwiss Federal Institute of Technology ZurichZurichSwitzerland
| |
Collapse
|
8
|
Synthesis, antifungal activity and potential mechanism of fusidic acid derivatives possessing amino-terminal groups. Future Med Chem 2020; 12:763-774. [PMID: 32208979 DOI: 10.4155/fmc-2019-0289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Fusidic acid (FA) is a narrow-spectrum bacteriostatic antibiotic. We inadvertently discovered that a FA derivative modified by an amino-terminal group at the 3-OH position, namely 2, inhibited the growth of Cryptococcus neoformans. Methods & results: Multiscale molecular modeling approaches were used to analyze the binding modes of 2 with eEF2. FA derivatives modified at the 3-OH position were designed based on in silico models; seven derivatives possessing different amino-terminal groups were synthesized and tested in vitro for antifungal activity against C. neoformans. Conclusion: Compound 7 had the strongest minimum inhibitory concentration. Two protonated nitrogen atoms of 7 interacted with a negative electrostatic pocket of eEF2 likely explain the superiority of 7-2.
Collapse
|
9
|
Fenwick MK, Ealick SE. Structural basis of elongation factor 2 switching. Curr Res Struct Biol 2020; 2:25-34. [PMID: 34235467 PMCID: PMC8244253 DOI: 10.1016/j.crstbi.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Archaebacterial and eukaryotic elongation factor 2 (EF-2) and bacterial elongation factor G (EF-G) are five domain GTPases that catalyze the ribosomal translocation of tRNA and mRNA. In the classical mechanism of activation, GTPases are switched on through GDP/GTP exchange, which is accompanied by the ordering of two flexible segments called switch I and II. However, crystal structures of EF-2 and EF-G have thus far not revealed the conformations required by the classical mechanism. Here, we describe crystal structures of Methanoperedens nitroreducens EF-2 (MnEF-2) and MnEF-2-H595N bound to GMPPCP (GppCp) and magnesium displaying previously unreported compact conformations. Domain III forms interfaces with the other four domains and the overall conformations resemble that of SNU114, the eukaryotic spliceosomal GTPase. The gamma phosphate of GMPPCP is detected through interactions with switch I and a P-loop structural element. Switch II is highly ordered whereas switch I shows a variable degree of ordering. The ordered state results in a tight interdomain arrangement of domains I-III and the formation of a portion of a predicted monovalent cation site involving the P-loop and switch I. The side chain of an essential histidine residue in switch II is placed in the inactive conformation observed for the “on” state of elongation factor EF-Tu. The compact conformations of MnEF-2 and MnEF-2-H595N suggest an “on” ribosome-free conformational state. Crystal structures of ribosome-free elongation factor 2 (EF-2) bound to GTP analog and magnesium. Compact conformation and P-loop, switch I, and switch II structures suggest “on” state. Arrangement of domains I-III similar to that of ribosome-bound EF-2/EF-G complexed with GTP analog. Switch II histidine shows inactive conformation observed for “on” state of ribosome-free EF-Tu.
Collapse
Affiliation(s)
- Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
10
|
Yin H, Gavriliuc M, Lin R, Xu S, Wang Y. Modulation and Visualization of EF-G Power Stroke During Ribosomal Translocation. Chembiochem 2019; 20:2927-2935. [PMID: 31194278 PMCID: PMC6888950 DOI: 10.1002/cbic.201900276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/30/2022]
Abstract
During ribosome translocation, the elongation factor EF‐G undergoes large conformational change while maintaining its contact with the moving tRNA. We previously measured a power stroke accompanying EF‐G catalysis, which was consistent with structural studies. However, the role of power stroke in translocation fidelity remains unclear. Here, we report quantitative measurements of the power strokes of structurally modified EF‐Gs by using two different techniques and reveal the correlation between power stroke and translocation efficiency and fidelity. We discovered that the reduced power stroke only lowered the percentage of translocation but did not introduce translocation error. The established force ‐structure–function correlation for EF‐G indicates that power stroke drives ribosomal translocation, but the mRNA reading frame is probably maintained by ribosome itself. Furthermore, the microscope detection method reported here can be simply implemented for other biochemical applications.
Collapse
Affiliation(s)
- Heng Yin
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Miriam Gavriliuc
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Ran Lin
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Shoujun Xu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
11
|
Abstract
Many cellular processes are controlled by GTPases, and gaining quantitative understanding of the activation of such processes has been a major challenge. In particular, it is crucial to obtain reliable free-energy surfaces for the relevant reaction paths both in solution and in GTPases active sites. Here, we revisit the energetics of the activation of EF-G and EF-Tu by the ribosome and explore the nature of the catalysis of the GTPase reaction. The comparison of EF-Tu to EF-G allows us to explore the impact of possible problems with the available structure of EF-Tu. Additionally, mutational effects are used for a careful validation of the emerging conclusions. It is found that the reaction may proceed by both a two-water mechanism and a one-water (GTP as a base) mechanism. However, in both cases, the activation involves a structural allosteric effect, which is likely to be a general-activation mechanism for all GTPases.
Collapse
|
12
|
Fernandes P. Fusidic Acid: A Bacterial Elongation Factor Inhibitor for the Oral Treatment of Acute and Chronic Staphylococcal Infections. Cold Spring Harb Perspect Med 2016; 6:a025437. [PMID: 26729758 DOI: 10.1101/cshperspect.a025437] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fusidic acid is an oral antistaphylococcal antibiotic that has been used in Europe for more than 40 years to treat skin infections as well as chronic bone and joint infections. It is a steroidal antibiotic and the only marketed member of the fusidane class. Fusidic acid inhibits protein synthesis by binding EF-G-GDP, which results in the inhibition of both peptide translocation and ribosome disassembly. It has a novel structure and novel mode of action and, therefore, there is little cross-resistance with other known antibiotics. Many mutations can occur in the FusA gene that codes for EF-G, and some of these mutations can result in high-level resistance (minimum inhibitory concentration [MIC] > 64 mg/L), whereas others result in biologically unfit staphylococci that require compensatory mutations to survive. Low-level resistance (<8 mg/L) is more common and is mediated by fusB, fusC, and fusD genes that code for small proteins that protect EF-G-GDP from binding fusidic acid. The genes for these proteins are spread by plasmids and can be selected mostly by topical antibiotic use. Reports of resistance have led to combination use of fusidic acid with rifampin, which is superseded by the development of a new dosing regimen for fusidic acid that can be used in monotherapy. It consists of a front-loading dose to decrease the potential for resistance development followed by a maintenance dose. This dosing regimen is now being used in clinical trials in the United States for skin and refractory bone and joint infections.
Collapse
|
13
|
Structure of BipA in GTP form bound to the ratcheted ribosome. Proc Natl Acad Sci U S A 2015; 112:10944-9. [PMID: 26283392 DOI: 10.1073/pnas.1513216112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BPI-inducible protein A (BipA) is a member of the family of ribosome-dependent translational GTPase (trGTPase) factors along with elongation factors G and 4 (EF-G and EF4). Despite being highly conserved in bacteria and playing a critical role in coordinating cellular responses to environmental changes, its structures (isolated and ribosome bound) remain elusive. Here, we present the crystal structures of apo form and GTP analog, GDP, and guanosine-3',5'-bisdiphosphate (ppGpp)-bound BipA. In addition to having a distinctive domain arrangement, the C-terminal domain of BipA has a unique fold. Furthermore, we report the cryo-electron microscopy structure of BipA bound to the ribosome in its active GTP form and elucidate the unique structural attributes of BipA interactions with the ribosome and A-site tRNA in the light of its possible function in regulating translation.
Collapse
|
14
|
Koripella RK, Holm M, Dourado D, Mandava CS, Flores S, Sanyal S. A conserved histidine in switch-II of EF-G moderates release of inorganic phosphate. Sci Rep 2015; 5:12970. [PMID: 26264741 PMCID: PMC4532990 DOI: 10.1038/srep12970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/13/2015] [Indexed: 01/13/2023] Open
Abstract
Elongation factor G (EF-G), a translational GTPase responsible for tRNA-mRNA translocation possesses a conserved histidine (H91 in Escherichia coli) at the apex of switch-II, which has been implicated in GTPase activation and GTP hydrolysis. While H91A, H91R and H91E mutants showed different degrees of defect in ribosome associated GTP hydrolysis, H91Q behaved like the WT. However, all these mutants, including H91Q, are much more defective in inorganic phosphate (Pi) release, thereby suggesting that H91 facilitates Pi release. In crystal structures of the ribosome bound EF-G•GTP a tight coupling between H91 and the γ-phosphate of GTP can be seen. Following GTP hydrolysis, H91 flips ~140° in the opposite direction, probably with Pi still coupled to it. This, we suggest, promotes Pi to detach from GDP and reach the inter-domain space of EF-G, which constitutes an exit path for the Pi. Molecular dynamics simulations are consistent with this hypothesis and demonstrate a vital role of an Mg2+ ion in the process.
Collapse
Affiliation(s)
- Ravi Kiran Koripella
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Mikael Holm
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Daniel Dourado
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Samuel Flores
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC, 75124, Uppsala, Sweden
| |
Collapse
|
15
|
EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon-anticodon duplex. Nat Struct Mol Biol 2014; 21:817-24. [PMID: 25108354 DOI: 10.1038/nsmb.2869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/11/2014] [Indexed: 02/01/2023]
Abstract
During translation, elongation factor G (EF-G) catalyzes the translocation of tRNA2-mRNA inside the ribosome. Translocation is coupled to a cycle of conformational rearrangements of the ribosomal machinery, and how EF-G initiates translocation remains unresolved. Here we performed systematic mutagenesis of Escherichia coli EF-G and analyzed inhibitory single-site mutants of EF-G that preserved pretranslocation (Pre)-state ribosomes with tRNAs in A/P and P/E sites (Pre-EF-G). Our results suggest that the interactions between the decoding center and the codon-anticodon duplex constitute the barrier for translocation. Catalysis of translocation by EF-G involves the factor's highly conserved loops I and II at the tip of domain IV, which disrupt the hydrogen bonds between the decoding center and the duplex to release the latter, hence inducing subsequent translocation events, namely 30S head swiveling and tRNA2-mRNA movement on the 30S subunit.
Collapse
|
16
|
Ishida H, Matsumoto A. Free-energy landscape of reverse tRNA translocation through the ribosome analyzed by electron microscopy density maps and molecular dynamics simulations. PLoS One 2014; 9:e101951. [PMID: 24999999 PMCID: PMC4084982 DOI: 10.1371/journal.pone.0101951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 06/12/2014] [Indexed: 01/11/2023] Open
Abstract
To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA.
Collapse
Affiliation(s)
- Hisashi Ishida
- Quantum Beam Science Directorate and Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Kyoto, Japan
- * E-mail:
| | - Atsushi Matsumoto
- Quantum Beam Science Directorate and Center for Computational Science and e-Systems, Japan Atomic Energy Agency, Kyoto, Japan
| |
Collapse
|
17
|
Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc Natl Acad Sci U S A 2013; 110:20994-9. [PMID: 24324137 DOI: 10.1073/pnas.1311423110] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During protein synthesis, tRNAs and their associated mRNA codons move sequentially on the ribosome from the A (aminoacyl) site to the P (peptidyl) site to the E (exit) site in a process catalyzed by a universally conserved ribosome-dependent GTPase [elongation factor G (EF-G) in prokaryotes and elongation factor 2 (EF-2) in eukaryotes]. Although the high-resolution structure of EF-G bound to the posttranslocation ribosome has been determined, the pretranslocation conformation of the ribosome bound with EF-G and A-site tRNA has evaded visualization owing to the transient nature of this state. Here we use electron cryomicroscopy to determine the structure of the 70S ribosome with EF-G, which is trapped in the pretranslocation state using antibiotic viomycin. Comparison with the posttranslocation ribosome shows that the small subunit of the pretranslocation ribosome is rotated by ∼12° relative to the large subunit. Domain IV of EF-G is positioned in the cleft between the body and head of the small subunit outwardly of the A site and contacts the A-site tRNA. Our findings suggest a model in which domain IV of EF-G promotes the translocation of tRNA from the A to the P site as the small ribosome subunit spontaneously rotates back from the hybrid, rotated state into the nonrotated posttranslocation state.
Collapse
|
18
|
Palmer SO, Rangel EY, Hu Y, Tran AT, Bullard JM. Two homologous EF-G proteins from Pseudomonas aeruginosa exhibit distinct functions. PLoS One 2013; 8:e80252. [PMID: 24260360 PMCID: PMC3832671 DOI: 10.1371/journal.pone.0080252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022] Open
Abstract
Genes encoding two proteins corresponding to elongation factor G (EF-G) were cloned from Pseudomonas aeruginosa. The proteins encoded by these genes are both members of the EFG I subfamily. The gene encoding one of the forms of EF-G is located in the str operon and the resulting protein is referred to as EF-G1A while the gene encoding the other form of EF-G is located in another part of the genome and the resulting protein is referred to as EF-G1B. These proteins were expressed and purified to 98% homogeneity. Sequence analysis indicated the two proteins are 90/84% similar/identical. In other organisms containing multiple forms of EF-G a lower degree of similarity is seen. When assayed in a poly(U)-directed poly-phenylalanine translation system, EF-G1B was 75-fold more active than EF-G1A. EF-G1A pre-incubate with ribosomes in the presence of the ribosome recycling factor (RRF) decreased polymerization of poly-phenylalanine upon addition of EF-G1B in poly(U)-directed translation suggesting a role for EF-G1A in uncoupling of the ribosome into its constituent subunits. Both forms of P. aeruginosa EF-G were active in ribosome dependent GTPase activity. The kinetic parameters (KM) for the interaction of EF-G1A and EF-G1B with GTP were 85 and 70 μM, respectively. However, EF-G1B exhibited a 5-fold greater turnover number (observed kcat) for the hydrolysis of GTP than EF-G1A; 0.2 s-1 vs. 0.04 s-1. These values resulted in specificity constants (kcatobs/KM) for EF-G1A and EF-G1B of 0.5 x 103 s-1 M-1 and 3.0 x 103 s-1 M-1, respectively. The antibiotic fusidic acid (FA) completely inhibited poly(U)-dependent protein synthesis containing P. aeruginosa EF-G1B, but the same protein synthesis system containing EF-G1A was not affected. Likewise, the activity of EF-G1B in ribosome dependent GTPase assays was completely inhibited by FA, while the activity of EF-G1A was not affected.
Collapse
Affiliation(s)
- Stephanie O. Palmer
- The University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Edna Y. Rangel
- The University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Yanmei Hu
- The University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Alexis T. Tran
- The University of Texas-Pan American, Edinburg, Texas, United States of America
| | - James M. Bullard
- The University of Texas-Pan American, Edinburg, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Yao L, Li Y, Tsai TW, Xu S, Wang Y. Noninvasive Measurement of the Mechanical Force Generated by Motor Protein EF-G during Ribosome Translocation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Yao L, Li Y, Tsai TW, Xu S, Wang Y. Noninvasive Measurement of the Mechanical Force Generated by Motor Protein EF-G during Ribosome Translocation. Angew Chem Int Ed Engl 2013; 52:14041-4. [DOI: 10.1002/anie.201307419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/23/2013] [Indexed: 01/13/2023]
|
21
|
Structure of EF-G-ribosome complex in a pretranslocation state. Nat Struct Mol Biol 2013; 20:1077-84. [PMID: 23912278 DOI: 10.1038/nsmb.2645] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/09/2013] [Indexed: 11/08/2022]
Abstract
In protein synthesis, elongation factor G (EF-G) facilitates movement of tRNA-mRNA by one codon, which is coupled to the ratchet-like rotation of the ribosome complex and is triggered by EF-G-mediated GTP hydrolysis. Here we report the structure of a pretranslocational ribosome bound to Thermus thermophilus EF-G trapped with a GTP analog. The positioning of the catalytic His87 into the active site coupled to hydrophobic-gate opening involves the 23S rRNA sarcin-ricin loop and domain III of EF-G and provides a structural basis for the GTPase activation of EF-G. Interactions of the hybrid peptidyl-site-exit-site tRNA with ribosomal elements, including the entire L1 stalk and proteins S13 and S19, shed light on how formation and stabilization of the hybrid tRNA is coupled to head swiveling and body rotation of the 30S as well as to closure of the L1 stalk.
Collapse
|
22
|
The paradox of elongation factor 4: highly conserved, yet of no physiological significance? Biochem J 2013; 452:173-81. [DOI: 10.1042/bj20121792] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
LepA [EF4 (elongation factor 4)] is a highly conserved protein found in nearly all known genomes. EF4 triggers back-translocation of the elongating ribosome, causing the translation machinery to move one codon backwards along the mRNA. Knockout of the corresponding gene in various bacteria results in different phenotypes; however, the physiological function of the factor in vivo is unclear. Although functional research on Guf1 (GTPase of unknown function 1), the eukaryotic homologue of EF4, showed that it plays a critical role under suboptimal translation conditions in vivo, its detailed mechanism has yet to be identified. In the present review we briefly cover recent advances in our understanding of EF4, including in vitro structural and biochemical studies, and research on its physiological role in vivo. Lastly, we present a hypothesis for back-translocation and discuss the directions future EF4 research should focus on.
Collapse
|
23
|
Nyfeler B, Hoepfner D, Palestrant D, Kirby CA, Whitehead L, Yu R, Deng G, Caughlan RE, Woods AL, Jones AK, Barnes SW, Walker JR, Gaulis S, Hauy E, Brachmann SM, Krastel P, Studer C, Riedl R, Estoppey D, Aust T, Movva NR, Wang Z, Salcius M, Michaud GA, McAllister G, Murphy LO, Tallarico JA, Wilson CJ, Dean CR. Identification of elongation factor G as the conserved cellular target of argyrin B. PLoS One 2012; 7:e42657. [PMID: 22970117 PMCID: PMC3438169 DOI: 10.1371/journal.pone.0042657] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/10/2012] [Indexed: 11/19/2022] Open
Abstract
Argyrins, produced by myxobacteria and actinomycetes, are cyclic octapeptides with antibacterial and antitumor activity. Here, we identify elongation factor G (EF-G) as the cellular target of argyrin B in bacteria, via resistant mutant selection and whole genome sequencing, biophysical binding studies and crystallography. Argyrin B binds a novel allosteric pocket in EF-G, distinct from the known EF-G inhibitor antibiotic fusidic acid, revealing a new mode of protein synthesis inhibition. In eukaryotic cells, argyrin B was found to target mitochondrial elongation factor G1 (EF-G1), the closest homologue of bacterial EF-G. By blocking mitochondrial translation, argyrin B depletes electron transport components and inhibits the growth of yeast and tumor cells. Further supporting direct inhibition of EF-G1, expression of an argyrin B-binding deficient EF-G1 L693Q variant partially rescued argyrin B-sensitivity in tumor cells. In summary, we show that argyrin B is an antibacterial and cytotoxic agent that inhibits the evolutionarily conserved target EF-G, blocking protein synthesis in bacteria and mitochondrial translation in yeast and mammalian cells.
Collapse
Affiliation(s)
- Beat Nyfeler
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Dominic Hoepfner
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Deborah Palestrant
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Christina A. Kirby
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Lewis Whitehead
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Cambridge, Massachussetts, United States of America
| | - Robert Yu
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Gejing Deng
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Ruth E. Caughlan
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Angela L. Woods
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Adriana K. Jones
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - S. Whitney Barnes
- Novartis Institute for Functional Genomics, Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - John R. Walker
- Novartis Institute for Functional Genomics, Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Swann Gaulis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ervan Hauy
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saskia M. Brachmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Philipp Krastel
- Center for Proteomic Chemistry, Natural Products Unit, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Studer
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ralph Riedl
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David Estoppey
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Aust
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - N. Rao Movva
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Zuncai Wang
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Michael Salcius
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Gregory A. Michaud
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Gregory McAllister
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Leon O. Murphy
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - John A. Tallarico
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Christopher J. Wilson
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Charles R. Dean
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Evaluation of in vitro and in vivo inhibitory effects of fusidic acid on Babesia and Theileria parasites. Vet Parasitol 2012; 191:1-10. [PMID: 22985928 DOI: 10.1016/j.vetpar.2012.08.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/20/2012] [Accepted: 08/27/2012] [Indexed: 11/20/2022]
Abstract
Fusidic acid known to has antibacterial, antifungal, and antimalarial activities. Fusidic acid blocks translation elongation factor G gene in Plasmodium falciparum. In the present study, the inhibitory effects of fusidic acid on the in vitro growth of bovine and equine Babesia parasites were evaluated. The inhibitory effect of fusidic acid on the in vivo growth of Babesia microti was also assessed. The in vitro growth of four Babesia species that were tested was significantly inhibited (P<0.05) by micromolar concentrations of fusidic acid (IC(50) values=144.8, 17.3, 33.3, and 56.25 μM for Babesia bovis, Babesia bigemina, Babesia caballi, and Theileria equi, respectively). Combinations of fusidic acid with diminazene aceturate synergistically potentiated its inhibitory effects in vitro on B. bovis and B. caballi. In B. microti-infected mice, fusidic acid caused significant (P<0.05) inhibition of the growth of B. microti at the dose of 500 mg/kg BW relative to control group. These results indicate that fusidic acid might be incorporated in treatment of babesiosis.
Collapse
|
25
|
Koripella RK, Chen Y, Peisker K, Koh CS, Selmer M, Sanyal S. Mechanism of elongation factor-G-mediated fusidic acid resistance and fitness compensation in Staphylococcus aureus. J Biol Chem 2012; 287:30257-67. [PMID: 22767604 DOI: 10.1074/jbc.m112.378521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by secondary mutations. Fusidic acid (FA), an antibiotic used against pathogenic bacteria Staphylococcus aureus, locks elongation factor-G (EF-G) to the ribosome after GTP hydrolysis. To clarify the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that a significantly slower tRNA translocation and ribosome recycling, plus increased peptidyl-tRNA drop-off, are the causes for fitness defects of the primary FA-resistant mutant F88L. The double mutant F88L/M16I is three to four times faster than F88L in both reactions and showed no tRNA drop-off, explaining its fitness compensatory phenotype. The M16I mutation alone showed hypersensitivity to FA, higher activity, and somewhat increased affinity to GTP. The crystal structures demonstrate that Phe-88 in switch II is a key residue for FA locking and also for triggering interdomain movements in EF-G essential for its function, explaining functional deficiencies in F88L. The mutation M16I loosens the hydrophobic core in the G domain and affects domain I to domain II contact, resulting in improved activity both in the wild-type and F88L background. Thus, FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome.
Collapse
Affiliation(s)
- Ravi Kiran Koripella
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Li H, Pan JY, Liu XJ, Gao JX, Wu HK, Wang C, Peng XX. Alterations of protein complexes and pathways in genetic information flow and response to stimulus contribute to Escherichia coli resistance to balofloxacin. MOLECULAR BIOSYSTEMS 2012; 8:2303-11. [PMID: 22729160 DOI: 10.1039/c2mb25090j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein-protein interactions are important biological processes and essential for a global understanding of cell functions. To date, little is known about the protein interactions and roles of the protein interacting networks and protein complexes in bacterial resistance to antibiotics. In the present study, we investigated protein complexes in Escherichia coli exposed to an antibiotic balofloxacin (BLFX). One homomeric and eight heteromeric protein complexes involved in BLFX resistance were detected. Potential roles of these complexes that are played in BLFX resistance were characterized and categorized into four functional areas: information streams, monosaccharide metabolism, response to stimulus and amino acid metabolic processes. Protein complexes involved in information streams and response to stimulus played more significant roles in the resistance. These results are consistent with previously published mechanisms on the acquired quinolone-resistance through the GyrA-GyrB complex, and two novel antibiotic-resistant pathways were identified: upregulation of genetic information flow and alteration of the response to a stimulus. The balance of the two pathways will be a viable means of reducing BLFX-resistance.
Collapse
Affiliation(s)
- Hui Li
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Johnson RA, McFadden GI, Goodman CD. Characterization of two malaria parasite organelle translation elongation factor G proteins: the likely targets of the anti-malarial fusidic acid. PLoS One 2011; 6:e20633. [PMID: 21695207 PMCID: PMC3112199 DOI: 10.1371/journal.pone.0020633] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/06/2011] [Indexed: 11/18/2022] Open
Abstract
Malaria parasites harbour two organelles with bacteria-like metabolic processes that are the targets of many anti-bacterial drugs. One such drug is fusidic acid, which inhibits the translation component elongation factor G. The response of P. falciparum to fusidic acid was characterised using extended SYBR-Green based drug trials. This revealed that fusidic acid kills in vitro cultured P. falciparum parasites by immediately blocking parasite development. Two bacterial-type protein translation elongation factor G genes are identified as likely targets of fusidic acid. Sequence analysis suggests that these proteins function in the mitochondria and apicoplast and both should be sensitive to fusidic acid. Microscopic examination of protein-reporter fusions confirm the prediction that one elongation factor G is a component of parasite mitochondria whereas the second is a component of the relict plastid or apicoplast. The presence of two putative targets for a single inhibitory compound emphasizes the potential of elongation factor G as a drug target in malaria.
Collapse
Affiliation(s)
- Russell A. Johnson
- Plant Cell Biology Research Centre-School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey I. McFadden
- Plant Cell Biology Research Centre-School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher D. Goodman
- Plant Cell Biology Research Centre-School of Botany, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
28
|
Ticu C, Murataliev M, Nechifor R, Wilson KS. A central interdomain protein joint in elongation factor G regulates antibiotic sensitivity, GTP hydrolysis, and ribosome translocation. J Biol Chem 2011; 286:21697-705. [PMID: 21531717 DOI: 10.1074/jbc.m110.214056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antibiotic fusidic acid potently inhibits bacterial translation (and cellular growth) by lodging between domains I and III of elongation factor G (EF-G) and preventing release of EF-G from the ribosome. We examined the functions of key amino acid residues near the active site of EF-G that interact with fusidic acid and regulate hydrolysis of GTP. Alanine mutants of these residues spontaneously hydrolyzed GTP in solution, bypassing the normal activating role of the ribosome. A conserved phenylalanine in the switch II element of EF-G was important for suppressing GTP hydrolysis in solution and critical for catalyzing translocation of the ribosome along mRNA. These experimental results reveal the multipurpose roles of an interdomain joint in the heart of an essential translation factor that can both promote and inhibit bacterial translation.
Collapse
Affiliation(s)
- Cristina Ticu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
29
|
Smits P, Antonicka H, van Hasselt PM, Weraarpachai W, Haller W, Schreurs M, Venselaar H, Rodenburg RJ, Smeitink JA, van den Heuvel LP. Mutation in subdomain G' of mitochondrial elongation factor G1 is associated with combined OXPHOS deficiency in fibroblasts but not in muscle. Eur J Hum Genet 2010; 19:275-9. [PMID: 21119709 DOI: 10.1038/ejhg.2010.208] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The mitochondrial translation system is responsible for the synthesis of 13 proteins required for oxidative phosphorylation (OXPHOS), the major energy-generating process of our cells. Mitochondrial translation is controlled by various nuclear encoded proteins. In 27 patients with combined OXPHOS deficiencies, in whom complex II (the only complex that is entirely encoded by the nuclear DNA) showed normal activities, and mutations in the mitochondrial genome as well as polymerase gamma were excluded, we screened all mitochondrial translation factors for mutations. Here, we report a mutation in mitochondrial elongation factor G1 (GFM1) in a patient affected by severe, rapidly progressive mitochondrial encephalopathy. This mutation is predicted to result in an Arg250Trp substitution in subdomain G' of the elongation factor G1 protein and is presumed to hamper ribosome-dependent GTP hydrolysis. Strikingly, the decrease in enzyme activities of complex I, III and IV detected in patient fibroblasts was not found in muscle tissue. The OXPHOS system defects and the impairment in mitochondrial translation in fibroblasts were rescued by overexpressing wild-type GFM1, establishing the GFM1 defect as the cause of the fatal mitochondrial disease. Furthermore, this study evinces the importance of a thorough diagnostic biochemical analysis of both muscle tissue and fibroblasts in patients suspected to suffer from a mitochondrial disorder, as enzyme deficiencies can be selectively expressed.
Collapse
Affiliation(s)
- Paulien Smits
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen Y, Koripella RK, Sanyal S, Selmer M. Staphylococcus aureus elongation factor G--structure and analysis of a target for fusidic acid. FEBS J 2010; 277:3789-803. [PMID: 20718859 DOI: 10.1111/j.1742-4658.2010.07780.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) on the ribosome in a post-translocational state. It is used clinically against Gram-positive bacteria such as pathogenic strains of Staphylococcus aureus, but no structural information has been available for EF-G from these species. We have solved the apo crystal structure of EF-G from S. aureus to 1.9 Å resolution. This structure shows a dramatically different overall conformation from previous structures of EF-G, although the individual domains are highly similar. Between the different structures of free or ribosome-bound EF-G, domains III-V move relative to domains I-II, resulting in a displacement of the tip of domain IV relative to domain G. In S. aureus EF-G, this displacement is about 25 Å relative to structures of Thermus thermophilus EF-G in a direction perpendicular to that in previous observations. Part of the switch I region (residues 46-56) is ordered in a helix, and has a distinct conformation as compared with structures of EF-Tu in the GDP and GTP states. Also, the switch II region shows a new conformation, which, as in other structures of free EF-G, is incompatible with FA binding. We have analysed and discussed all known fusA-based fusidic acid resistance mutations in the light of the new structure of EF-G from S. aureus, and a recent structure of T. thermophilus EF-G in complex with the 70S ribosome with fusidic acid [Gao YG et al. (2009) Science326, 694-699]. The mutations can be classified as affecting FA binding, EF-G-ribosome interactions, EF-G conformation, and EF-G stability.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
31
|
Koc E, Haque M, Spremulli L. Current Views of the Structure of the Mammalian Mitochondrial Ribosome. Isr J Chem 2010. [DOI: 10.1002/ijch.201000002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Intramolecular movements in EF-G, trapped at different stages in its GTP hydrolytic cycle, probed by FRET. J Mol Biol 2010; 397:1245-60. [PMID: 20219471 DOI: 10.1016/j.jmb.2010.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 11/24/2022]
Abstract
Elongation factor G (EF-G) is one of several GTP hydrolytic proteins (GTPases) that cycles repeatedly on and off the ribosome during protein synthesis in bacterial cells. In the functional cycle of EF-G, hydrolysis of guanosine 5'-triphosphate (GTP) is coupled to tRNA-mRNA translocation in ribosomes. GTP hydrolysis induces conformational rearrangements in two switch elements in the G domain of EF-G and other GTPases. These switch elements are thought to initiate the cascade of events that lead to translocation and EF-G cycling between ribosomes. To further define the coupling mechanism, we developed a new fluorescent approach that can detect intramolecular movements in EF-G. We attached a fluorescent probe to the switch I element (sw1) of Escherichia coli EF-G. We monitored the position of the sw1 probe, relative to another fluorescent probe anchored to the GTP substrate or product, by measuring the distance-dependent, Förster resonance energy transfer between the two probes. By analyzing EF-G trapped at five different functional states in its cycle, we could infer the cyclical movements of sw1 within EF-G. Our results provide evidence for conformational changes in sw1, which help to drive the unidirectional EF-G cycle during protein synthesis. More generally, our approach might also serve to define the conformational dynamics of other GTPases with their cellular receptors.
Collapse
|
33
|
Koomanachai P, Crandon JL, Nicolau DP. Newer developments in the treatment of Gram-positive infections. Expert Opin Pharmacother 2010; 10:2829-43. [PMID: 19929705 DOI: 10.1517/14656560903357491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gram-positive organisms are continually a major cause of infection. These organisms are ever-evolving and exhibit resistance to nearly all available agents. Historically, vancomycin was crowned the drug of choice for many of these organisms including methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, and penicillin-resistant Enterococcus spp. Many of these organisms have exhibited reduced susceptibility or frank resistance to vancomycin which has resulted in treatment failure. For this reason, new strategies in treating Gram-positive infections are a hot topic. There are two general approaches to waging this war: i) development of new antimicrobial agents; and ii) reinvigorating old antibiotics that still retain appreciable activity against Gram-positives. We review both antibiotic groupings with a focus on S. aureus, S. pneumoniae and Enterococcus spp.
Collapse
Affiliation(s)
- Pornpan Koomanachai
- Hartford Hospital, Center for Anti-Infective Research and Development, 80 Seymour Street, Hartford, CT 06102, USA
| | | | | |
Collapse
|
34
|
Watanabe Y, Nakamura Y, Ito K. A novel class of bacterial translation factor RF3 mutations suggests specific structural domains for premature peptidyl-tRNA drop-off. FEBS Lett 2009; 584:790-4. [PMID: 20043913 DOI: 10.1016/j.febslet.2009.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/22/2009] [Accepted: 12/22/2009] [Indexed: 11/24/2022]
Abstract
The bacterial translation factor RF3 promotes translation termination by recycling the tRNA-mimicking release factors, RF1 and RF2, after mature polypeptide release. RF3 also enhances the premature peptidyl-tRNA drop-off reaction in the presence of RRF and EF-G. Despite the recently resolved X-ray crystal structure of RF3, the molecular details of the bimodal functionality of RF3 remain obscure. In this report, we demonstrate a novel class of RF3 mutations specifically defective in the tRNA drop-off reaction. These mutations suggest differential molecular pathways closely related to the guanine nucleotide modes of RF3.
Collapse
Affiliation(s)
- Yuya Watanabe
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo (IMSUT), Tokyo, Japan
| | | | | |
Collapse
|
35
|
Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 2009; 326:694-9. [PMID: 19833919 PMCID: PMC3763468 DOI: 10.1126/science.1179709] [Citation(s) in RCA: 387] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Elongation factor G (EF-G) is a guanosine triphosphatase (GTPase) that plays a crucial role in the translocation of transfer RNAs (tRNAs) and messenger RNA (mRNA) during translation by the ribosome. We report a crystal structure refined to 3.6 angstrom resolution of the ribosome trapped with EF-G in the posttranslocational state using the antibiotic fusidic acid. Fusidic acid traps EF-G in a conformation intermediate between the guanosine triphosphate and guanosine diphosphate forms. The interaction of EF-G with ribosomal elements implicated in stimulating catalysis, such as the L10-L12 stalk and the L11 region, and of domain IV of EF-G with the tRNA at the peptidyl-tRNA binding site (P site) and with mRNA shed light on the role of these elements in EF-G function. The stabilization of the mobile stalks of the ribosome also results in a more complete description of its structure.
Collapse
Affiliation(s)
- Yong-Gui Gao
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | | | | | | | - Ann C. Kelley
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
36
|
Ticu C, Nechifor R, Nguyen B, Desrosiers M, Wilson KS. Conformational changes in switch I of EF-G drive its directional cycling on and off the ribosome. EMBO J 2009; 28:2053-65. [PMID: 19536129 DOI: 10.1038/emboj.2009.169] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/26/2009] [Indexed: 11/09/2022] Open
Abstract
We have trapped elongation factor G (EF-G) from Escherichia coli in six, functionally defined states, representing intermediates in its unidirectional catalytic cycle, which couples GTP hydrolysis to tRNA-mRNA translocation in the ribosome. By probing EF-G with trypsin in each state, we identified a substantial conformational change involving its conserved switch I (sw1) element, which contacts the GTP substrate. By attaching FeBABE (a hydroxyl radical generating probe) to sw1, we could monitor sw1 movement (by approximately 20 A), relative to the 70S ribosome, during the EF-G cycle. In free EF-G, sw1 is disordered, particularly in GDP-bound and nucleotide-free states. On EF-G*GTP binding to the ribosome, sw1 becomes structured and tucked inside the ribosome, thereby locking GTP onto EF-G. After hydrolysis and translocation, sw1 flips out from the ribosome, greatly accelerating release of GDP and EF-G from the ribosome. Collectively, our results support a central role of sw1 in driving the EF-G cycle during protein synthesis.
Collapse
Affiliation(s)
- Cristina Ticu
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
37
|
Gao N, Zavialov AV, Ehrenberg M, Frank J. Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J Mol Biol 2007; 374:1345-58. [PMID: 17996252 DOI: 10.1016/j.jmb.2007.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/24/2007] [Accepted: 10/10/2007] [Indexed: 11/24/2022]
Abstract
After termination of protein synthesis, the bacterial ribosome is split into its 30S and 50S subunits by the action of ribosome recycling factor (RRF) and elongation factor G (EF-G) in a guanosine 5'-triphosphate (GTP)-hydrolysis-dependent manner. Based on a previous cryo-electron microscopy study of ribosomal complexes, we have proposed that the binding of EF-G to an RRF-containing posttermination ribosome triggers an interdomain rotation of RRF, which destabilizes two strong intersubunit bridges (B2a and B3) and, ultimately, separates the two subunits. Here, we present a 9-A (Fourier shell correlation cutoff of 0.5) cryo-electron microscopy map of a 50S x EF-G x guanosine 5'-[(betagamma)-imido]triphosphate x RRF complex and a quasi-atomic model derived from it, showing the interaction between EF-G and RRF on the 50S subunit in the presence of the noncleavable GTP analogue guanosine 5'-[(betagamma)-imido]triphosphate. The detailed information in this model and a comparative analysis of EF-G structures in various nucleotide- and ribosome-bound states show how rotation of the RRF head domain may be triggered by various domains of EF-G. For validation of our structural model, all known mutations in EF-G and RRF that relate to ribosome recycling have been taken into account. More importantly, our results indicate a substantial conformational change in the Switch I region of EF-G, suggesting that a conformational signal transduction mechanism, similar to that employed in transfer RNA translocation on the ribosome by EF-G, translates a large-scale movement of EF-G's domain IV, induced by GTP hydrolysis, into the domain rotation of RRF that eventually splits the ribosome into subunits.
Collapse
Affiliation(s)
- Ning Gao
- Howard Hughes Medical Institute, Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The ribosome is responsible for protein synthesis, the translation of the genetic code, in all living organisms. Ribosomes are composed of RNA (ribosomal RNA) and protein (ribosomal protein). Soluble protein factors bind to the ribosome and facilitate different phases of translation. Genetic approaches have proved useful for the identification and characterization of the structural and functional roles of specific nucleotides in ribosomal RNA and of specific amino acids in ribosomal proteins and in ribosomal factors. This chapter summarizes examples of mutations identified in ribosomal RNA, ribosomal proteins, and ribosomal factors.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Mutational Analysis
- Humans
- Mutation
- Nucleic Acid Conformation
- Peptide Elongation Factors/genetics
- Peptide Initiation Factors/genetics
- Peptide Termination Factors/genetics
- Protein Subunits/genetics
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/physiology
- RNA, Ribosomal, 23S/analysis
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/physiology
- Ribosomal Proteins/genetics
- Ribosomes/genetics
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Kathleen L Triman
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| |
Collapse
|
39
|
Ruggiero I, Raimo G, Palma M, Arcari P, Masullo M. Molecular and functional properties of the psychrophilic elongation factor G from the Antarctic Eubacterium Pseudoalteromonas haloplanktis TAC 125. Extremophiles 2007; 11:699-709. [PMID: 17541754 DOI: 10.1007/s00792-007-0088-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 04/17/2007] [Indexed: 11/25/2022]
Abstract
The molecular and functional properties of the elongation factor (EF) G from the psychrophilic Antarctic eubacterium Pseudoalteromonas haloplanktis (Ph) were studied. PhEF-G catalyzed protein synthesis in vitro that was inhibited by fusidic acid, an antibiotic specifically acting on EF-G. The EF interacted with GDP only in the presence of P. haloplanktis ribosome and fusidic acid with an affinity similar to that displayed by Escherichia coli EF-G. The psychrophilic translocase elicited a ribosome-dependent GTPase that was competitively inhibited by GDP, the slowly hydrolyzable GTP analog GppNHp, and the protein synthesis inhibitor ppGDP. The temperature dependence of the activity of PhEF-G reached its maximum at least 26 degrees C beyond the growth temperature of P. haloplanktis (4-20 degrees C). The heat inactivation profile of the ribosome-dependent GTPase of PhEF-G gave a temperature for half inactivation (46 degrees C), significantly lower than that for half denaturation measured by either UV- (57 degrees C) or fluorescence-melting (62 degrees C). This finding was attributed to a different effect of the temperature on the catalytic domain with respect to that elicited on the other domains constituting the EF, thus confirming the differential molecular flexibility present in psychrophilic enzymes. A molecular model, based on the 3D coordinates of a thermophilic EF-G, showed differences only in connecting loops.
Collapse
Affiliation(s)
- Immacolata Ruggiero
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | | | | | | | | |
Collapse
|
40
|
Connell SR, Takemoto C, Wilson DN, Wang H, Murayama K, Terada T, Shirouzu M, Rost M, Schüler M, Giesebrecht J, Dabrowski M, Mielke T, Fucini P, Yokoyama S, Spahn CMT. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol Cell 2007; 25:751-64. [PMID: 17349960 DOI: 10.1016/j.molcel.2007.01.027] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/24/2006] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Elongation factor G (EF-G) catalyzes tRNA translocation on the ribosome. Here a cryo-EM reconstruction of the 70S*EF-G ribosomal complex at 7.3 A resolution and the crystal structure of EF-G-2*GTP, an EF-G homolog, at 2.2 A resolution are presented. EF-G-2*GTP is structurally distinct from previous EF-G structures, and in the context of the cryo-EM structure, the conformational changes are associated with ribosome binding and activation of the GTP binding pocket. The P loop and switch II approach A2660-A2662 in helix 95 of the 23S rRNA, indicating an important role for these conserved bases. Furthermore, the ordering of the functionally important switch I and II regions, which interact with the bound GTP, is dependent on interactions with the ribosome in the ratcheted conformation. Therefore, a network of interaction with the ribosome establishes the active GTP conformation of EF-G and thus facilitates GTP hydrolysis and tRNA translocation.
Collapse
Affiliation(s)
- Sean R Connell
- Institut für Medizinische Physik und Biophysik, Charite-Universitätsmedizin Berlin, Ziegelstrasse 5-9, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Søe R, Mosley RT, Justice M, Nielsen-Kahn J, Shastry M, Merrill AR, Andersen GR. Sordarin derivatives induce a novel conformation of the yeast ribosome translocation factor eEF2. J Biol Chem 2006; 282:657-66. [PMID: 17082187 DOI: 10.1074/jbc.m607830200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sordarins are fungal specific inhibitors of the translation factor eEF2, which catalyzes the translocation of tRNA and mRNA after peptide bond formation. We have determined the crystal structures of eEF2 in complex with two novel sordarin derivatives. In both structures, the three domains of eEF2 that form the ligand-binding pocket are oriented in a different manner relative to the rest of eEF2 compared with our previous structure of eEF2 in complex with the parent natural product sordarin. Yeast eEF2 is also shown to bind adenylic nucleotides, which can be displaced by sordarin, suggesting that ADP or ATP also bind to the three C-terminal domains of eEF2. Fusidic acid is a universal inhibitor of translation that targets EF-G or eEF2 and is widely used as an antibiotic against Gram-positive bacteria. Based on mutations conferring resistance to fusidic acid, cryo-EM reconstructions, and x-ray structures of eEF2, EF-G, and an EF-G homolog, we suggest that the conformation of EF-G stalled on the 70 S ribosome by fusidic acid is similar to that of eEF2 trapped on the 80 S ribosome by sordarin.
Collapse
Affiliation(s)
- Rikke Søe
- Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
42
|
Wilden B, Savelsbergh A, Rodnina MV, Wintermeyer W. Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome. Proc Natl Acad Sci U S A 2006; 103:13670-5. [PMID: 16940356 PMCID: PMC1564220 DOI: 10.1073/pnas.0606099103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The translocation of tRNA and mRNA through the ribosome is promoted by elongation factor G (EF-G), a GTPase that hydrolyzes GTP during the reaction. Recently, it was reported that, in contrast to previous observations, the affinity of EF-G was much weaker for GTP than for GDP and that ribosome-catalyzed GDP-GTP exchange would be required for translocation [Zavialov AV, Hauryliuk VV, Ehrenberg M (2005) J Biol 4:9]. We have reinvestigated GTP/GDP binding and show that EF-G binds GTP and GDP with affinities in the 20 to 40 microM range (37 degrees C), in accordance with earlier reports. Furthermore, GDP exchange, which is extremely rapid on unbound EF-G, is retarded, rather than accelerated, on the ribosome, which, therefore, is not a nucleotide-exchange factor for EF-G. The EF-G.GDPNP complex, which is very labile, is stabilized 30,000-fold by binding to the ribosome. These findings, together with earlier kinetic results, reveal that EF-G enters the pretranslocation ribosome in the GTP-bound form and indicate that, upon ribosome-complex formation, the nucleotide-binding pocket of EF-G is closed, presumably in conjunction with GTPase activation. GTP hydrolysis is required for rapid tRNA-mRNA movement, and P(i) release induces further rearrangements of both EF-G and the ribosome that are required for EF-G turnover.
Collapse
Affiliation(s)
| | | | - Marina V. Rodnina
- Physical Biochemistry, University of Witten-Herdecke, D-58448 Witten, Germany
| | - Wolfgang Wintermeyer
- Institutes of Molecular Biology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
O'Neill AJ, Huovinen T, Fishwick CWG, Chopra I. Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob Agents Chemother 2006; 50:298-309. [PMID: 16377701 PMCID: PMC1346782 DOI: 10.1128/aac.50.1.298-309.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The adaptive and further evolutionary responses of Staphylococcus aureus to selection pressure with the antibiotic rifampin have not been explored in detail. We now present a detailed analysis of these systems. The use of rifampin for the chemotherapy of infections caused by S. aureus has resulted in the selection of mutants with alterations within the beta subunit of the target enzyme, RNA polymerase. Using a new collection of strains, we have identified numerous novel mutations in the beta subunits of both clinical and in vitro-derived resistant strains and established that additional, undefined mechanisms contribute to expression of rifampin resistance in clinical isolates of S. aureus. The fitness costs associated with rifampin resistance genotypes were found to have a significant influence on their clinical prevalence, with the most common clinical genotype (H481N, S529L) exhibiting no fitness cost in vitro. Intragenic mutations which compensate for the fitness costs associated with rifampin resistance in clinical strains of S. aureus were identified for the first time. Structural explanations for rifampin resistance and the loss of fitness were obtained by molecular modeling of mutated RNA polymerase enzymes.
Collapse
Affiliation(s)
- A J O'Neill
- Antimicrobial Research Centre and Division of Microbiology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
44
|
Howden BP, Grayson ML. Dumb and Dumber--The Potential Waste of a Useful Antistaphylococcal Agent: Emerging Fusidic Acid Resistance in Staphylococcus aureus. Clin Infect Dis 2006; 42:394-400. [PMID: 16392088 DOI: 10.1086/499365] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 10/16/2005] [Indexed: 11/03/2022] Open
Abstract
Fusidic acid has activity against a range of pathogens but has mainly been used to treat staphylococcal infections. Fusidic acid monotherapy, especially topical preparations, has been strongly associated with the emergence of fusidic acid resistance among both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus. Key resistance determinants include mutations in the fusA gene, which encodes elongation factor G, and plasmid-mediated resistance (i.e., acquisition of resistance gene fusB). Clonal outbreaks of fusidic acid-resistant S. aureus have been noted throughout the United Kingdom and Europe, such that the efficacy of fusidic acid is threatened. Fusidic acid in combination with other agents, such as rifampicin, has proven effective for difficult-to-treat MRSA infections and provides a convenient oral alternative to oxazolidinones. Ensuring that systemic fusidic acid is always used in combination and that the use of topical fusidic acid is either abolished or restricted will be vital if we are to prevent the loss of this potentially useful agent.
Collapse
Affiliation(s)
- Benjamin P Howden
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria, 3084, Australia
| | | |
Collapse
|
45
|
Zhang L, Ging NC, Komoda T, Hanada T, Suzuki T, Watanabe K. Antibiotic susceptibility of mammalian mitochondrial translation. FEBS Lett 2005; 579:6423-7. [PMID: 16271719 DOI: 10.1016/j.febslet.2005.09.103] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 09/22/2005] [Indexed: 11/25/2022]
Abstract
All medically useful antibiotics should have the potential to distinguish between target microbes (bacteria) and host cells. Although many antibiotics that target bacterial protein synthesis show little effect on the translation machinery of the eukaryotic cytoplasm, it is unclear whether these antibiotics target or not the mitochondrial translation machinery. We employed an in vitro translation system from bovine mitochondria, which consists of mitochondrial ribosomes and mitochondrial elongation factors, to estimate the effect of antibiotics on mitichondrial protein synthesis. Tetracycline and thiostrepton showed similar inhibitory effects on both Escherichia coli and mitochondrial protein synthesis. The mitochondrial system was more resistant to tiamulin, macrolides, virginiamycin, fusidic acid and kirromycin than the E. coli system. The present results, taken together with atomic structure of the ribosome, may provide useful information for the rational design of new antibiotics having less adverse effects in humans and animals.
Collapse
Affiliation(s)
- Li Zhang
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Hansson S, Singh R, Gudkov AT, Liljas A, Logan DT. Crystal structure of a mutant elongation factor G trapped with a GTP analogue. FEBS Lett 2005; 579:4492-7. [PMID: 16083884 DOI: 10.1016/j.febslet.2005.07.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 06/21/2005] [Accepted: 07/06/2005] [Indexed: 11/23/2022]
Abstract
Elongation factor G (EF-G) is a G protein factor that catalyzes the translocation step in protein synthesis on the ribosome. Its GTP conformation in the absence of the ribosome is currently unknown. We present the structure of a mutant EF-G (T84A) in complex with the non-hydrolysable GTP analogue GDPNP. The crystal structure provides a first insight into conformational changes induced in EF-G by GTP. Comparison of this structure with that of EF-G in complex with GDP suggests that the GTP and GDP conformations in solution are very similar and that the major contribution to the active GTPase conformation, which is quite different, therefore comes from its interaction with the ribosome.
Collapse
Affiliation(s)
- Sebastian Hansson
- Department of Molecular Biophysics, Lund University, Box 124, S-211 00 Lund, Sweden
| | | | | | | | | |
Collapse
|